Properties

Label 80.2.j.b.43.8
Level $80$
Weight $2$
Character 80.43
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.8
Root \(0.482716 - 1.32928i\) of defining polynomial
Character \(\chi\) \(=\) 80.43
Dual form 80.2.j.b.67.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.759419 - 1.19301i) q^{2} -1.39319i q^{3} +(-0.846564 - 1.81200i) q^{4} +(0.535339 + 2.17104i) q^{5} +(-1.66209 - 1.05801i) q^{6} +(-2.13436 + 2.13436i) q^{7} +(-2.80463 - 0.366101i) q^{8} +1.05903 q^{9} +O(q^{10})\) \(q+(0.759419 - 1.19301i) q^{2} -1.39319i q^{3} +(-0.846564 - 1.81200i) q^{4} +(0.535339 + 2.17104i) q^{5} +(-1.66209 - 1.05801i) q^{6} +(-2.13436 + 2.13436i) q^{7} +(-2.80463 - 0.366101i) q^{8} +1.05903 q^{9} +(2.99663 + 1.01006i) q^{10} +(2.17074 - 2.17074i) q^{11} +(-2.52445 + 1.17942i) q^{12} +1.54663 q^{13} +(0.925449 + 4.16720i) q^{14} +(3.02466 - 0.745827i) q^{15} +(-2.56666 + 3.06794i) q^{16} +(-3.86386 + 3.86386i) q^{17} +(0.804250 - 1.26344i) q^{18} +(-0.0136865 + 0.0136865i) q^{19} +(3.48071 - 2.80796i) q^{20} +(2.97357 + 2.97357i) q^{21} +(-0.941219 - 4.23822i) q^{22} +(-3.15240 - 3.15240i) q^{23} +(-0.510047 + 3.90738i) q^{24} +(-4.42682 + 2.32449i) q^{25} +(1.17454 - 1.84515i) q^{26} -5.65499i q^{27} +(5.67434 + 2.06058i) q^{28} +(-3.33787 - 3.33787i) q^{29} +(1.40720 - 4.17486i) q^{30} +8.92639i q^{31} +(1.71093 + 5.39191i) q^{32} +(-3.02424 - 3.02424i) q^{33} +(1.67535 + 7.54394i) q^{34} +(-5.77640 - 3.49118i) q^{35} +(-0.896540 - 1.91896i) q^{36} +7.24737 q^{37} +(0.00593441 + 0.0267220i) q^{38} -2.15475i q^{39} +(-0.706610 - 6.28496i) q^{40} -10.3771i q^{41} +(5.80569 - 1.28932i) q^{42} -2.02975 q^{43} +(-5.77103 - 2.09570i) q^{44} +(0.566942 + 2.29920i) q^{45} +(-6.15484 + 1.36686i) q^{46} +(-3.34313 - 3.34313i) q^{47} +(4.27421 + 3.57583i) q^{48} -2.11103i q^{49} +(-0.588672 + 7.04652i) q^{50} +(5.38308 + 5.38308i) q^{51} +(-1.30932 - 2.80249i) q^{52} -7.30702i q^{53} +(-6.74648 - 4.29451i) q^{54} +(5.87483 + 3.55067i) q^{55} +(6.76751 - 5.20472i) q^{56} +(0.0190679 + 0.0190679i) q^{57} +(-6.51696 + 1.44728i) q^{58} +(3.52732 + 3.52732i) q^{59} +(-3.91201 - 4.84928i) q^{60} +(1.41629 - 1.41629i) q^{61} +(10.6493 + 6.77887i) q^{62} +(-2.26036 + 2.26036i) q^{63} +(7.73194 + 2.05356i) q^{64} +(0.827973 + 3.35780i) q^{65} +(-5.90462 + 1.31129i) q^{66} +0.748197 q^{67} +(10.2723 + 3.73030i) q^{68} +(-4.39187 + 4.39187i) q^{69} +(-8.55174 + 4.24005i) q^{70} -0.269603 q^{71} +(-2.97020 - 0.387713i) q^{72} +(-0.811870 + 0.811870i) q^{73} +(5.50380 - 8.64622i) q^{74} +(3.23844 + 6.16739i) q^{75} +(0.0363865 + 0.0132134i) q^{76} +9.26628i q^{77} +(-2.57064 - 1.63636i) q^{78} +2.80567 q^{79} +(-8.03466 - 3.92992i) q^{80} -4.70135 q^{81} +(-12.3800 - 7.88056i) q^{82} +12.8279i q^{83} +(2.87077 - 7.90541i) q^{84} +(-10.4571 - 6.32012i) q^{85} +(-1.54143 + 2.42152i) q^{86} +(-4.65027 + 4.65027i) q^{87} +(-6.88283 + 5.29341i) q^{88} +13.3732 q^{89} +(3.17353 + 1.06969i) q^{90} +(-3.30108 + 3.30108i) q^{91} +(-3.04342 + 8.38083i) q^{92} +12.4361 q^{93} +(-6.52724 + 1.44956i) q^{94} +(-0.0370409 - 0.0223871i) q^{95} +(7.51194 - 2.38364i) q^{96} +(6.33466 - 6.33466i) q^{97} +(-2.51848 - 1.60315i) q^{98} +(2.29888 - 2.29888i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10}) \) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.759419 1.19301i 0.536991 0.843588i
\(3\) 1.39319i 0.804356i −0.915561 0.402178i \(-0.868253\pi\)
0.915561 0.402178i \(-0.131747\pi\)
\(4\) −0.846564 1.81200i −0.423282 0.905998i
\(5\) 0.535339 + 2.17104i 0.239411 + 0.970918i
\(6\) −1.66209 1.05801i −0.678546 0.431932i
\(7\) −2.13436 + 2.13436i −0.806714 + 0.806714i −0.984135 0.177421i \(-0.943225\pi\)
0.177421 + 0.984135i \(0.443225\pi\)
\(8\) −2.80463 0.366101i −0.991588 0.129436i
\(9\) 1.05903 0.353011
\(10\) 2.99663 + 1.01006i 0.947617 + 0.319410i
\(11\) 2.17074 2.17074i 0.654501 0.654501i −0.299572 0.954074i \(-0.596844\pi\)
0.954074 + 0.299572i \(0.0968440\pi\)
\(12\) −2.52445 + 1.17942i −0.728745 + 0.340470i
\(13\) 1.54663 0.428958 0.214479 0.976729i \(-0.431195\pi\)
0.214479 + 0.976729i \(0.431195\pi\)
\(14\) 0.925449 + 4.16720i 0.247337 + 1.11373i
\(15\) 3.02466 0.745827i 0.780964 0.192572i
\(16\) −2.56666 + 3.06794i −0.641664 + 0.766986i
\(17\) −3.86386 + 3.86386i −0.937125 + 0.937125i −0.998137 0.0610123i \(-0.980567\pi\)
0.0610123 + 0.998137i \(0.480567\pi\)
\(18\) 0.804250 1.26344i 0.189564 0.297796i
\(19\) −0.0136865 + 0.0136865i −0.00313991 + 0.00313991i −0.708675 0.705535i \(-0.750707\pi\)
0.705535 + 0.708675i \(0.250707\pi\)
\(20\) 3.48071 2.80796i 0.778311 0.627878i
\(21\) 2.97357 + 2.97357i 0.648886 + 0.648886i
\(22\) −0.941219 4.23822i −0.200669 0.903591i
\(23\) −3.15240 3.15240i −0.657320 0.657320i 0.297425 0.954745i \(-0.403872\pi\)
−0.954745 + 0.297425i \(0.903872\pi\)
\(24\) −0.510047 + 3.90738i −0.104113 + 0.797590i
\(25\) −4.42682 + 2.32449i −0.885365 + 0.464897i
\(26\) 1.17454 1.84515i 0.230347 0.361864i
\(27\) 5.65499i 1.08830i
\(28\) 5.67434 + 2.06058i 1.07235 + 0.389413i
\(29\) −3.33787 3.33787i −0.619826 0.619826i 0.325660 0.945487i \(-0.394413\pi\)
−0.945487 + 0.325660i \(0.894413\pi\)
\(30\) 1.40720 4.17486i 0.256919 0.762222i
\(31\) 8.92639i 1.60323i 0.597843 + 0.801613i \(0.296025\pi\)
−0.597843 + 0.801613i \(0.703975\pi\)
\(32\) 1.71093 + 5.39191i 0.302452 + 0.953164i
\(33\) −3.02424 3.02424i −0.526452 0.526452i
\(34\) 1.67535 + 7.54394i 0.287320 + 1.29377i
\(35\) −5.77640 3.49118i −0.976390 0.590117i
\(36\) −0.896540 1.91896i −0.149423 0.319827i
\(37\) 7.24737 1.19146 0.595730 0.803184i \(-0.296863\pi\)
0.595730 + 0.803184i \(0.296863\pi\)
\(38\) 0.00593441 + 0.0267220i 0.000962688 + 0.00433489i
\(39\) 2.15475i 0.345035i
\(40\) −0.706610 6.28496i −0.111725 0.993739i
\(41\) 10.3771i 1.62063i −0.585996 0.810314i \(-0.699296\pi\)
0.585996 0.810314i \(-0.300704\pi\)
\(42\) 5.80569 1.28932i 0.895838 0.198947i
\(43\) −2.02975 −0.309534 −0.154767 0.987951i \(-0.549463\pi\)
−0.154767 + 0.987951i \(0.549463\pi\)
\(44\) −5.77103 2.09570i −0.870015 0.315938i
\(45\) 0.566942 + 2.29920i 0.0845147 + 0.342745i
\(46\) −6.15484 + 1.36686i −0.907482 + 0.201533i
\(47\) −3.34313 3.34313i −0.487646 0.487646i 0.419917 0.907563i \(-0.362059\pi\)
−0.907563 + 0.419917i \(0.862059\pi\)
\(48\) 4.27421 + 3.57583i 0.616930 + 0.516127i
\(49\) 2.11103i 0.301575i
\(50\) −0.588672 + 7.04652i −0.0832508 + 0.996529i
\(51\) 5.38308 + 5.38308i 0.753782 + 0.753782i
\(52\) −1.30932 2.80249i −0.181570 0.388635i
\(53\) 7.30702i 1.00370i −0.864956 0.501848i \(-0.832654\pi\)
0.864956 0.501848i \(-0.167346\pi\)
\(54\) −6.74648 4.29451i −0.918080 0.584408i
\(55\) 5.87483 + 3.55067i 0.792162 + 0.478772i
\(56\) 6.76751 5.20472i 0.904346 0.695510i
\(57\) 0.0190679 + 0.0190679i 0.00252560 + 0.00252560i
\(58\) −6.51696 + 1.44728i −0.855719 + 0.190037i
\(59\) 3.52732 + 3.52732i 0.459218 + 0.459218i 0.898399 0.439181i \(-0.144731\pi\)
−0.439181 + 0.898399i \(0.644731\pi\)
\(60\) −3.91201 4.84928i −0.505038 0.626040i
\(61\) 1.41629 1.41629i 0.181338 0.181338i −0.610601 0.791939i \(-0.709072\pi\)
0.791939 + 0.610601i \(0.209072\pi\)
\(62\) 10.6493 + 6.77887i 1.35246 + 0.860918i
\(63\) −2.26036 + 2.26036i −0.284779 + 0.284779i
\(64\) 7.73194 + 2.05356i 0.966492 + 0.256695i
\(65\) 0.827973 + 3.35780i 0.102697 + 0.416484i
\(66\) −5.90462 + 1.31129i −0.726809 + 0.161409i
\(67\) 0.748197 0.0914068 0.0457034 0.998955i \(-0.485447\pi\)
0.0457034 + 0.998955i \(0.485447\pi\)
\(68\) 10.2723 + 3.73030i 1.24570 + 0.452365i
\(69\) −4.39187 + 4.39187i −0.528719 + 0.528719i
\(70\) −8.55174 + 4.24005i −1.02213 + 0.506783i
\(71\) −0.269603 −0.0319960 −0.0159980 0.999872i \(-0.505093\pi\)
−0.0159980 + 0.999872i \(0.505093\pi\)
\(72\) −2.97020 0.387713i −0.350041 0.0456925i
\(73\) −0.811870 + 0.811870i −0.0950222 + 0.0950222i −0.753020 0.657998i \(-0.771404\pi\)
0.657998 + 0.753020i \(0.271404\pi\)
\(74\) 5.50380 8.64622i 0.639803 1.00510i
\(75\) 3.23844 + 6.16739i 0.373943 + 0.712149i
\(76\) 0.0363865 + 0.0132134i 0.00417381 + 0.00151568i
\(77\) 9.26628i 1.05599i
\(78\) −2.57064 1.63636i −0.291068 0.185281i
\(79\) 2.80567 0.315662 0.157831 0.987466i \(-0.449550\pi\)
0.157831 + 0.987466i \(0.449550\pi\)
\(80\) −8.03466 3.92992i −0.898302 0.439379i
\(81\) −4.70135 −0.522372
\(82\) −12.3800 7.88056i −1.36714 0.870262i
\(83\) 12.8279i 1.40804i 0.710178 + 0.704022i \(0.248614\pi\)
−0.710178 + 0.704022i \(0.751386\pi\)
\(84\) 2.87077 7.90541i 0.313227 0.862551i
\(85\) −10.4571 6.32012i −1.13423 0.685514i
\(86\) −1.54143 + 2.42152i −0.166217 + 0.261119i
\(87\) −4.65027 + 4.65027i −0.498561 + 0.498561i
\(88\) −6.88283 + 5.29341i −0.733712 + 0.564279i
\(89\) 13.3732 1.41755 0.708777 0.705432i \(-0.249247\pi\)
0.708777 + 0.705432i \(0.249247\pi\)
\(90\) 3.17353 + 1.06969i 0.334519 + 0.112755i
\(91\) −3.30108 + 3.30108i −0.346047 + 0.346047i
\(92\) −3.04342 + 8.38083i −0.317299 + 0.873762i
\(93\) 12.4361 1.28957
\(94\) −6.52724 + 1.44956i −0.673233 + 0.149511i
\(95\) −0.0370409 0.0223871i −0.00380032 0.00229686i
\(96\) 7.51194 2.38364i 0.766684 0.243279i
\(97\) 6.33466 6.33466i 0.643187 0.643187i −0.308151 0.951338i \(-0.599710\pi\)
0.951338 + 0.308151i \(0.0997101\pi\)
\(98\) −2.51848 1.60315i −0.254405 0.161943i
\(99\) 2.29888 2.29888i 0.231046 0.231046i
\(100\) 7.95955 + 6.05356i 0.795955 + 0.605356i
\(101\) −3.78129 3.78129i −0.376252 0.376252i 0.493496 0.869748i \(-0.335719\pi\)
−0.869748 + 0.493496i \(0.835719\pi\)
\(102\) 10.5101 2.33407i 1.04066 0.231108i
\(103\) 10.7199 + 10.7199i 1.05626 + 1.05626i 0.998320 + 0.0579430i \(0.0184542\pi\)
0.0579430 + 0.998320i \(0.481546\pi\)
\(104\) −4.33774 0.566224i −0.425350 0.0555228i
\(105\) −4.86386 + 8.04760i −0.474665 + 0.785365i
\(106\) −8.71737 5.54909i −0.846706 0.538975i
\(107\) 10.9109i 1.05479i −0.849619 0.527397i \(-0.823168\pi\)
0.849619 0.527397i \(-0.176832\pi\)
\(108\) −10.2468 + 4.78731i −0.986000 + 0.460659i
\(109\) −9.12139 9.12139i −0.873670 0.873670i 0.119200 0.992870i \(-0.461967\pi\)
−0.992870 + 0.119200i \(0.961967\pi\)
\(110\) 8.69746 4.31231i 0.829270 0.411162i
\(111\) 10.0969i 0.958359i
\(112\) −1.06993 12.0263i −0.101098 1.13638i
\(113\) 4.88810 + 4.88810i 0.459834 + 0.459834i 0.898601 0.438767i \(-0.144585\pi\)
−0.438767 + 0.898601i \(0.644585\pi\)
\(114\) 0.0372288 0.00826773i 0.00348679 0.000774344i
\(115\) 5.15637 8.53157i 0.480834 0.795573i
\(116\) −3.22248 + 8.87392i −0.299200 + 0.823923i
\(117\) 1.63793 0.151427
\(118\) 6.88685 1.52943i 0.633986 0.140795i
\(119\) 16.4938i 1.51198i
\(120\) −8.75612 + 0.984439i −0.799320 + 0.0898666i
\(121\) 1.57582i 0.143256i
\(122\) −0.614097 2.76522i −0.0555978 0.250351i
\(123\) −14.4572 −1.30356
\(124\) 16.1746 7.55676i 1.45252 0.678617i
\(125\) −7.41640 8.36642i −0.663343 0.748315i
\(126\) 0.980081 + 4.41321i 0.0873125 + 0.393160i
\(127\) −1.38586 1.38586i −0.122975 0.122975i 0.642941 0.765916i \(-0.277714\pi\)
−0.765916 + 0.642941i \(0.777714\pi\)
\(128\) 8.32171 7.66480i 0.735542 0.677479i
\(129\) 2.82782i 0.248976i
\(130\) 4.63468 + 1.56219i 0.406488 + 0.137013i
\(131\) −3.52096 3.52096i −0.307627 0.307627i 0.536361 0.843989i \(-0.319798\pi\)
−0.843989 + 0.536361i \(0.819798\pi\)
\(132\) −2.91969 + 8.04012i −0.254127 + 0.699802i
\(133\) 0.0584241i 0.00506601i
\(134\) 0.568195 0.892609i 0.0490846 0.0771097i
\(135\) 12.2772 3.02734i 1.05665 0.260552i
\(136\) 12.2513 9.42216i 1.05054 0.807943i
\(137\) 5.62512 + 5.62512i 0.480587 + 0.480587i 0.905319 0.424732i \(-0.139632\pi\)
−0.424732 + 0.905319i \(0.639632\pi\)
\(138\) 1.90429 + 8.57484i 0.162104 + 0.729939i
\(139\) 12.1022 + 12.1022i 1.02650 + 1.02650i 0.999639 + 0.0268584i \(0.00855031\pi\)
0.0268584 + 0.999639i \(0.491450\pi\)
\(140\) −1.43591 + 13.4223i −0.121357 + 1.13439i
\(141\) −4.65760 + 4.65760i −0.392241 + 0.392241i
\(142\) −0.204742 + 0.321641i −0.0171816 + 0.0269915i
\(143\) 3.35733 3.35733i 0.280754 0.280754i
\(144\) −2.71817 + 3.24905i −0.226514 + 0.270754i
\(145\) 5.45975 9.03353i 0.453408 0.750194i
\(146\) 0.352023 + 1.58512i 0.0291336 + 0.131186i
\(147\) −2.94105 −0.242574
\(148\) −6.13537 13.1322i −0.504324 1.07946i
\(149\) −13.5590 + 13.5590i −1.11080 + 1.11080i −0.117757 + 0.993042i \(0.537570\pi\)
−0.993042 + 0.117757i \(0.962430\pi\)
\(150\) 9.81712 + 0.820130i 0.801564 + 0.0669633i
\(151\) −20.7185 −1.68605 −0.843025 0.537874i \(-0.819228\pi\)
−0.843025 + 0.537874i \(0.819228\pi\)
\(152\) 0.0433964 0.0333751i 0.00351991 0.00270707i
\(153\) −4.09196 + 4.09196i −0.330815 + 0.330815i
\(154\) 11.0548 + 7.03699i 0.890821 + 0.567057i
\(155\) −19.3795 + 4.77865i −1.55660 + 0.383830i
\(156\) −3.90439 + 1.82413i −0.312601 + 0.146047i
\(157\) 5.72312i 0.456755i 0.973573 + 0.228377i \(0.0733420\pi\)
−0.973573 + 0.228377i \(0.926658\pi\)
\(158\) 2.13068 3.34720i 0.169508 0.266289i
\(159\) −10.1800 −0.807329
\(160\) −10.7901 + 6.60100i −0.853034 + 0.521855i
\(161\) 13.4567 1.06054
\(162\) −3.57030 + 5.60878i −0.280509 + 0.440667i
\(163\) 17.9900i 1.40909i −0.709662 0.704543i \(-0.751152\pi\)
0.709662 0.704543i \(-0.248848\pi\)
\(164\) −18.8032 + 8.78487i −1.46829 + 0.685983i
\(165\) 4.94675 8.18473i 0.385104 0.637181i
\(166\) 15.3039 + 9.74175i 1.18781 + 0.756106i
\(167\) 2.39642 2.39642i 0.185441 0.185441i −0.608281 0.793722i \(-0.708141\pi\)
0.793722 + 0.608281i \(0.208141\pi\)
\(168\) −7.25114 9.42839i −0.559438 0.727416i
\(169\) −10.6079 −0.815995
\(170\) −15.4813 + 7.67582i −1.18736 + 0.588708i
\(171\) −0.0144945 + 0.0144945i −0.00110842 + 0.00110842i
\(172\) 1.71832 + 3.67790i 0.131020 + 0.280437i
\(173\) −9.45205 −0.718626 −0.359313 0.933217i \(-0.616989\pi\)
−0.359313 + 0.933217i \(0.616989\pi\)
\(174\) 2.01633 + 9.07934i 0.152858 + 0.688303i
\(175\) 4.48716 14.4098i 0.339197 1.08928i
\(176\) 1.08816 + 12.2312i 0.0820230 + 0.921963i
\(177\) 4.91421 4.91421i 0.369375 0.369375i
\(178\) 10.1559 15.9544i 0.761213 1.19583i
\(179\) −11.7991 + 11.7991i −0.881905 + 0.881905i −0.993728 0.111824i \(-0.964331\pi\)
0.111824 + 0.993728i \(0.464331\pi\)
\(180\) 3.68619 2.97372i 0.274752 0.221648i
\(181\) 2.54155 + 2.54155i 0.188912 + 0.188912i 0.795225 0.606314i \(-0.207352\pi\)
−0.606314 + 0.795225i \(0.707352\pi\)
\(182\) 1.43133 + 6.44513i 0.106097 + 0.477745i
\(183\) −1.97316 1.97316i −0.145860 0.145860i
\(184\) 7.68722 + 9.99541i 0.566709 + 0.736871i
\(185\) 3.87980 + 15.7343i 0.285249 + 1.15681i
\(186\) 9.44423 14.8365i 0.692484 1.08786i
\(187\) 16.7748i 1.22670i
\(188\) −3.22756 + 8.88791i −0.235394 + 0.648217i
\(189\) 12.0698 + 12.0698i 0.877949 + 0.877949i
\(190\) −0.0548377 + 0.0271892i −0.00397834 + 0.00197251i
\(191\) 5.46421i 0.395376i −0.980265 0.197688i \(-0.936657\pi\)
0.980265 0.197688i \(-0.0633433\pi\)
\(192\) 2.86099 10.7720i 0.206474 0.777404i
\(193\) 4.82485 + 4.82485i 0.347300 + 0.347300i 0.859103 0.511803i \(-0.171022\pi\)
−0.511803 + 0.859103i \(0.671022\pi\)
\(194\) −2.74667 12.3680i −0.197200 0.887970i
\(195\) 4.67804 1.15352i 0.335001 0.0826053i
\(196\) −3.82517 + 1.78712i −0.273226 + 0.127651i
\(197\) 2.94582 0.209881 0.104941 0.994478i \(-0.466535\pi\)
0.104941 + 0.994478i \(0.466535\pi\)
\(198\) −0.996782 4.48841i −0.0708382 0.318977i
\(199\) 2.14620i 0.152140i −0.997102 0.0760700i \(-0.975763\pi\)
0.997102 0.0760700i \(-0.0242372\pi\)
\(200\) 13.2666 4.89866i 0.938091 0.346388i
\(201\) 1.04238i 0.0735236i
\(202\) −7.38271 + 1.63955i −0.519446 + 0.115358i
\(203\) 14.2485 1.00005
\(204\) 5.19699 14.3112i 0.363862 1.00199i
\(205\) 22.5291 5.55526i 1.57350 0.387996i
\(206\) 20.9299 4.64809i 1.45825 0.323848i
\(207\) −3.33849 3.33849i −0.232041 0.232041i
\(208\) −3.96967 + 4.74498i −0.275247 + 0.329005i
\(209\) 0.0594197i 0.00411014i
\(210\) 5.90719 + 11.9142i 0.407634 + 0.822155i
\(211\) 5.54427 + 5.54427i 0.381684 + 0.381684i 0.871708 0.490025i \(-0.163012\pi\)
−0.490025 + 0.871708i \(0.663012\pi\)
\(212\) −13.2403 + 6.18586i −0.909346 + 0.424847i
\(213\) 0.375608i 0.0257362i
\(214\) −13.0168 8.28593i −0.889812 0.566414i
\(215\) −1.08661 4.40667i −0.0741059 0.300532i
\(216\) −2.07030 + 15.8602i −0.140866 + 1.07915i
\(217\) −19.0522 19.0522i −1.29335 1.29335i
\(218\) −17.8089 + 3.95498i −1.20617 + 0.267865i
\(219\) 1.13109 + 1.13109i 0.0764317 + 0.0764317i
\(220\) 1.46038 13.6510i 0.0984587 0.920353i
\(221\) −5.97597 + 5.97597i −0.401988 + 0.401988i
\(222\) −12.0458 7.66781i −0.808461 0.514630i
\(223\) −1.16163 + 1.16163i −0.0777882 + 0.0777882i −0.744930 0.667142i \(-0.767517\pi\)
0.667142 + 0.744930i \(0.267517\pi\)
\(224\) −15.1601 7.85656i −1.01292 0.524939i
\(225\) −4.68815 + 2.46171i −0.312543 + 0.164114i
\(226\) 9.54369 2.11945i 0.634837 0.140984i
\(227\) 12.8161 0.850632 0.425316 0.905045i \(-0.360163\pi\)
0.425316 + 0.905045i \(0.360163\pi\)
\(228\) 0.0184087 0.0506931i 0.00121915 0.00335723i
\(229\) −0.976882 + 0.976882i −0.0645542 + 0.0645542i −0.738647 0.674093i \(-0.764535\pi\)
0.674093 + 0.738647i \(0.264535\pi\)
\(230\) −6.26244 12.6307i −0.412933 0.832842i
\(231\) 12.9097 0.849393
\(232\) 8.13950 + 10.5835i 0.534384 + 0.694840i
\(233\) 0.303870 0.303870i 0.0199072 0.0199072i −0.697083 0.716990i \(-0.745519\pi\)
0.716990 + 0.697083i \(0.245519\pi\)
\(234\) 1.24388 1.95408i 0.0813149 0.127742i
\(235\) 5.46836 9.04777i 0.356716 0.590212i
\(236\) 3.40538 9.37758i 0.221671 0.610429i
\(237\) 3.90881i 0.253905i
\(238\) −19.6773 12.5257i −1.27549 0.811921i
\(239\) 12.5096 0.809178 0.404589 0.914499i \(-0.367415\pi\)
0.404589 + 0.914499i \(0.367415\pi\)
\(240\) −5.47511 + 11.1938i −0.353417 + 0.722555i
\(241\) −19.5775 −1.26110 −0.630548 0.776150i \(-0.717170\pi\)
−0.630548 + 0.776150i \(0.717170\pi\)
\(242\) 1.87997 + 1.19671i 0.120849 + 0.0769273i
\(243\) 10.4151i 0.668129i
\(244\) −3.76530 1.36733i −0.241049 0.0875346i
\(245\) 4.58312 1.13012i 0.292805 0.0722004i
\(246\) −10.9791 + 17.2477i −0.700001 + 1.09967i
\(247\) −0.0211680 + 0.0211680i −0.00134689 + 0.00134689i
\(248\) 3.26796 25.0352i 0.207516 1.58974i
\(249\) 17.8716 1.13257
\(250\) −15.6134 + 2.49425i −0.987479 + 0.157750i
\(251\) 5.17763 5.17763i 0.326809 0.326809i −0.524563 0.851372i \(-0.675771\pi\)
0.851372 + 0.524563i \(0.175771\pi\)
\(252\) 6.00931 + 2.18222i 0.378551 + 0.137467i
\(253\) −13.6860 −0.860433
\(254\) −2.70580 + 0.600902i −0.169777 + 0.0377040i
\(255\) −8.80511 + 14.5687i −0.551397 + 0.912325i
\(256\) −2.82454 15.7487i −0.176534 0.984295i
\(257\) −14.7989 + 14.7989i −0.923131 + 0.923131i −0.997249 0.0741183i \(-0.976386\pi\)
0.0741183 + 0.997249i \(0.476386\pi\)
\(258\) 3.37363 + 2.14750i 0.210033 + 0.133698i
\(259\) −15.4685 + 15.4685i −0.961168 + 0.961168i
\(260\) 5.38338 4.34288i 0.333863 0.269334i
\(261\) −3.53491 3.53491i −0.218805 0.218805i
\(262\) −6.87443 + 1.52667i −0.424704 + 0.0943178i
\(263\) 11.7906 + 11.7906i 0.727038 + 0.727038i 0.970029 0.242991i \(-0.0781285\pi\)
−0.242991 + 0.970029i \(0.578129\pi\)
\(264\) 7.37470 + 9.58906i 0.453881 + 0.590166i
\(265\) 15.8638 3.91173i 0.974507 0.240296i
\(266\) −0.0697008 0.0443684i −0.00427363 0.00272040i
\(267\) 18.6313i 1.14022i
\(268\) −0.633397 1.35573i −0.0386909 0.0828144i
\(269\) −2.10121 2.10121i −0.128113 0.128113i 0.640143 0.768256i \(-0.278875\pi\)
−0.768256 + 0.640143i \(0.778875\pi\)
\(270\) 5.71189 16.9459i 0.347614 1.03129i
\(271\) 18.8596i 1.14564i 0.819683 + 0.572818i \(0.194150\pi\)
−0.819683 + 0.572818i \(0.805850\pi\)
\(272\) −1.93690 21.7713i −0.117442 1.32008i
\(273\) 4.59901 + 4.59901i 0.278345 + 0.278345i
\(274\) 10.9827 2.43902i 0.663488 0.147347i
\(275\) −4.56362 + 14.6553i −0.275197 + 0.883748i
\(276\) 11.6761 + 4.24005i 0.702816 + 0.255221i
\(277\) 9.91909 0.595980 0.297990 0.954569i \(-0.403684\pi\)
0.297990 + 0.954569i \(0.403684\pi\)
\(278\) 23.6288 5.24746i 1.41716 0.314722i
\(279\) 9.45334i 0.565956i
\(280\) 14.9226 + 11.9062i 0.891793 + 0.711533i
\(281\) 9.31434i 0.555647i −0.960632 0.277823i \(-0.910387\pi\)
0.960632 0.277823i \(-0.0896130\pi\)
\(282\) 2.01951 + 9.09366i 0.120260 + 0.541519i
\(283\) −3.42364 −0.203514 −0.101757 0.994809i \(-0.532446\pi\)
−0.101757 + 0.994809i \(0.532446\pi\)
\(284\) 0.228237 + 0.488520i 0.0135434 + 0.0289883i
\(285\) −0.0311893 + 0.0516049i −0.00184750 + 0.00305681i
\(286\) −1.45572 6.55496i −0.0860785 0.387603i
\(287\) 22.1485 + 22.1485i 1.30738 + 1.30738i
\(288\) 1.81193 + 5.71021i 0.106769 + 0.336477i
\(289\) 12.8589i 0.756405i
\(290\) −6.63089 13.3738i −0.389379 0.785336i
\(291\) −8.82535 8.82535i −0.517351 0.517351i
\(292\) 2.15841 + 0.783805i 0.126311 + 0.0458687i
\(293\) 2.66471i 0.155674i 0.996966 + 0.0778369i \(0.0248013\pi\)
−0.996966 + 0.0778369i \(0.975199\pi\)
\(294\) −2.23349 + 3.50872i −0.130260 + 0.204633i
\(295\) −5.76963 + 9.54626i −0.335921 + 0.555804i
\(296\) −20.3262 2.65327i −1.18144 0.154218i
\(297\) −12.2755 12.2755i −0.712296 0.712296i
\(298\) 5.87912 + 26.4731i 0.340568 + 1.53355i
\(299\) −4.87559 4.87559i −0.281963 0.281963i
\(300\) 8.43373 11.0891i 0.486922 0.640231i
\(301\) 4.33223 4.33223i 0.249706 0.249706i
\(302\) −15.7341 + 24.7175i −0.905393 + 1.42233i
\(303\) −5.26804 + 5.26804i −0.302641 + 0.302641i
\(304\) −0.00686086 0.0771181i −0.000393497 0.00442303i
\(305\) 3.83303 + 2.31663i 0.219478 + 0.132650i
\(306\) 1.77425 + 7.98928i 0.101427 + 0.456717i
\(307\) 10.5554 0.602430 0.301215 0.953556i \(-0.402608\pi\)
0.301215 + 0.953556i \(0.402608\pi\)
\(308\) 16.7905 7.84450i 0.956725 0.446982i
\(309\) 14.9348 14.9348i 0.849612 0.849612i
\(310\) −9.01621 + 26.7491i −0.512086 + 1.51924i
\(311\) −20.4762 −1.16110 −0.580550 0.814225i \(-0.697162\pi\)
−0.580550 + 0.814225i \(0.697162\pi\)
\(312\) −0.788855 + 6.04327i −0.0446601 + 0.342133i
\(313\) 2.82393 2.82393i 0.159618 0.159618i −0.622780 0.782397i \(-0.713997\pi\)
0.782397 + 0.622780i \(0.213997\pi\)
\(314\) 6.82776 + 4.34625i 0.385313 + 0.245273i
\(315\) −6.11740 3.69727i −0.344676 0.208318i
\(316\) −2.37518 5.08385i −0.133614 0.285989i
\(317\) 20.2533i 1.13754i −0.822497 0.568769i \(-0.807420\pi\)
0.822497 0.568769i \(-0.192580\pi\)
\(318\) −7.73091 + 12.1449i −0.433528 + 0.681053i
\(319\) −14.4913 −0.811354
\(320\) −0.319150 + 17.8857i −0.0178410 + 0.999841i
\(321\) −15.2009 −0.848430
\(322\) 10.2193 16.0541i 0.569499 0.894658i
\(323\) 0.105766i 0.00588497i
\(324\) 3.98000 + 8.51883i 0.221111 + 0.473268i
\(325\) −6.84667 + 3.59512i −0.379785 + 0.199422i
\(326\) −21.4623 13.6620i −1.18869 0.756666i
\(327\) −12.7078 + 12.7078i −0.702742 + 0.702742i
\(328\) −3.79907 + 29.1039i −0.209768 + 1.60700i
\(329\) 14.2709 0.786781
\(330\) −6.00785 12.1172i −0.330721 0.667029i
\(331\) 19.4930 19.4930i 1.07143 1.07143i 0.0741908 0.997244i \(-0.476363\pi\)
0.997244 0.0741908i \(-0.0236374\pi\)
\(332\) 23.2441 10.8596i 1.27569 0.596000i
\(333\) 7.67521 0.420599
\(334\) −1.03908 4.67885i −0.0568557 0.256016i
\(335\) 0.400539 + 1.62437i 0.0218838 + 0.0887485i
\(336\) −16.7549 + 1.49061i −0.914053 + 0.0813192i
\(337\) −5.89449 + 5.89449i −0.321093 + 0.321093i −0.849186 0.528093i \(-0.822907\pi\)
0.528093 + 0.849186i \(0.322907\pi\)
\(338\) −8.05587 + 12.6554i −0.438181 + 0.688364i
\(339\) 6.81003 6.81003i 0.369870 0.369870i
\(340\) −2.59944 + 24.2986i −0.140975 + 1.31778i
\(341\) 19.3768 + 19.3768i 1.04931 + 1.04931i
\(342\) 0.00628473 + 0.0282995i 0.000339839 + 0.00153026i
\(343\) −10.4349 10.4349i −0.563429 0.563429i
\(344\) 5.69271 + 0.743095i 0.306930 + 0.0400650i
\(345\) −11.8861 7.18379i −0.639925 0.386762i
\(346\) −7.17807 + 11.2764i −0.385895 + 0.606225i
\(347\) 11.4626i 0.615346i 0.951492 + 0.307673i \(0.0995502\pi\)
−0.951492 + 0.307673i \(0.900450\pi\)
\(348\) 12.3630 + 4.48952i 0.662728 + 0.240663i
\(349\) −0.317872 0.317872i −0.0170153 0.0170153i 0.698548 0.715563i \(-0.253830\pi\)
−0.715563 + 0.698548i \(0.753830\pi\)
\(350\) −13.7834 16.2963i −0.736754 0.871073i
\(351\) 8.74618i 0.466837i
\(352\) 15.4184 + 7.99044i 0.821803 + 0.425892i
\(353\) −18.4551 18.4551i −0.982266 0.982266i 0.0175800 0.999845i \(-0.494404\pi\)
−0.999845 + 0.0175800i \(0.994404\pi\)
\(354\) −2.13077 9.59466i −0.113249 0.509951i
\(355\) −0.144329 0.585320i −0.00766020 0.0310655i
\(356\) −11.3213 24.2321i −0.600026 1.28430i
\(357\) −22.9789 −1.21617
\(358\) 5.11602 + 23.0369i 0.270390 + 1.21754i
\(359\) 15.5802i 0.822292i −0.911569 0.411146i \(-0.865129\pi\)
0.911569 0.411146i \(-0.134871\pi\)
\(360\) −0.748323 6.65598i −0.0394401 0.350801i
\(361\) 18.9996i 0.999980i
\(362\) 4.96220 1.10200i 0.260808 0.0579199i
\(363\) 2.19541 0.115229
\(364\) 8.77611 + 3.18696i 0.459993 + 0.167042i
\(365\) −2.19723 1.32798i −0.115008 0.0695095i
\(366\) −3.85246 + 0.855552i −0.201372 + 0.0447204i
\(367\) 5.37489 + 5.37489i 0.280567 + 0.280567i 0.833335 0.552768i \(-0.186428\pi\)
−0.552768 + 0.833335i \(0.686428\pi\)
\(368\) 17.7625 1.58025i 0.925933 0.0823762i
\(369\) 10.9897i 0.572100i
\(370\) 21.7177 + 7.32030i 1.12905 + 0.380564i
\(371\) 15.5958 + 15.5958i 0.809696 + 0.809696i
\(372\) −10.5280 22.5342i −0.545850 1.16834i
\(373\) 3.24424i 0.167980i 0.996467 + 0.0839902i \(0.0267664\pi\)
−0.996467 + 0.0839902i \(0.973234\pi\)
\(374\) 20.0126 + 12.7391i 1.03483 + 0.658726i
\(375\) −11.6560 + 10.3324i −0.601912 + 0.533564i
\(376\) 8.15233 + 10.6002i 0.420424 + 0.546662i
\(377\) −5.16245 5.16245i −0.265880 0.265880i
\(378\) 23.5655 5.23340i 1.21208 0.269177i
\(379\) −25.7690 25.7690i −1.32367 1.32367i −0.910785 0.412882i \(-0.864522\pi\)
−0.412882 0.910785i \(-0.635478\pi\)
\(380\) −0.00920772 + 0.0860701i −0.000472346 + 0.00441530i
\(381\) −1.93076 + 1.93076i −0.0989160 + 0.0989160i
\(382\) −6.51888 4.14962i −0.333535 0.212313i
\(383\) 0.418091 0.418091i 0.0213634 0.0213634i −0.696344 0.717708i \(-0.745191\pi\)
0.717708 + 0.696344i \(0.245191\pi\)
\(384\) −10.6785 11.5937i −0.544934 0.591638i
\(385\) −20.1175 + 4.96060i −1.02528 + 0.252816i
\(386\) 9.42019 2.09203i 0.479475 0.106481i
\(387\) −2.14957 −0.109269
\(388\) −16.8411 6.11568i −0.854976 0.310476i
\(389\) 13.3626 13.3626i 0.677508 0.677508i −0.281927 0.959436i \(-0.590974\pi\)
0.959436 + 0.281927i \(0.0909737\pi\)
\(390\) 2.17643 6.45697i 0.110208 0.326961i
\(391\) 24.3609 1.23198
\(392\) −0.772850 + 5.92066i −0.0390348 + 0.299038i
\(393\) −4.90535 + 4.90535i −0.247442 + 0.247442i
\(394\) 2.23712 3.51441i 0.112704 0.177053i
\(395\) 1.50198 + 6.09121i 0.0755730 + 0.306482i
\(396\) −6.11171 2.21941i −0.307125 0.111530i
\(397\) 13.8391i 0.694564i 0.937761 + 0.347282i \(0.112895\pi\)
−0.937761 + 0.347282i \(0.887105\pi\)
\(398\) −2.56044 1.62986i −0.128343 0.0816977i
\(399\) −0.0813957 −0.00407488
\(400\) 4.23075 19.5474i 0.211538 0.977370i
\(401\) 20.3112 1.01430 0.507148 0.861859i \(-0.330700\pi\)
0.507148 + 0.861859i \(0.330700\pi\)
\(402\) −1.24357 0.791602i −0.0620237 0.0394815i
\(403\) 13.8058i 0.687718i
\(404\) −3.65057 + 10.0528i −0.181623 + 0.500144i
\(405\) −2.51682 10.2068i −0.125062 0.507181i
\(406\) 10.8206 16.9986i 0.537015 0.843626i
\(407\) 15.7321 15.7321i 0.779813 0.779813i
\(408\) −13.1268 17.0683i −0.649874 0.845008i
\(409\) −18.2875 −0.904259 −0.452130 0.891952i \(-0.649336\pi\)
−0.452130 + 0.891952i \(0.649336\pi\)
\(410\) 10.4815 31.0963i 0.517644 1.53573i
\(411\) 7.83684 7.83684i 0.386563 0.386563i
\(412\) 10.3493 28.4995i 0.509875 1.40407i
\(413\) −15.0572 −0.740915
\(414\) −6.51818 + 1.44755i −0.320351 + 0.0711433i
\(415\) −27.8499 + 6.86728i −1.36710 + 0.337101i
\(416\) 2.64618 + 8.33930i 0.129740 + 0.408868i
\(417\) 16.8607 16.8607i 0.825670 0.825670i
\(418\) 0.0708885 + 0.0451245i 0.00346727 + 0.00220711i
\(419\) 17.3188 17.3188i 0.846079 0.846079i −0.143563 0.989641i \(-0.545856\pi\)
0.989641 + 0.143563i \(0.0458558\pi\)
\(420\) 18.6998 + 2.00049i 0.912456 + 0.0976139i
\(421\) 11.5457 + 11.5457i 0.562703 + 0.562703i 0.930074 0.367372i \(-0.119742\pi\)
−0.367372 + 0.930074i \(0.619742\pi\)
\(422\) 10.8248 2.40397i 0.526944 0.117023i
\(423\) −3.54048 3.54048i −0.172144 0.172144i
\(424\) −2.67511 + 20.4935i −0.129915 + 0.995252i
\(425\) 8.12315 26.0861i 0.394031 1.26536i
\(426\) 0.448105 + 0.285244i 0.0217108 + 0.0138201i
\(427\) 6.04577i 0.292576i
\(428\) −19.7705 + 9.23676i −0.955641 + 0.446475i
\(429\) −4.67738 4.67738i −0.225826 0.225826i
\(430\) −6.08241 2.05018i −0.293320 0.0988682i
\(431\) 15.9479i 0.768185i −0.923295 0.384093i \(-0.874514\pi\)
0.923295 0.384093i \(-0.125486\pi\)
\(432\) 17.3492 + 14.5144i 0.834713 + 0.698325i
\(433\) 3.52109 + 3.52109i 0.169213 + 0.169213i 0.786633 0.617420i \(-0.211822\pi\)
−0.617420 + 0.786633i \(0.711822\pi\)
\(434\) −37.1981 + 8.26092i −1.78557 + 0.396537i
\(435\) −12.5854 7.60645i −0.603423 0.364701i
\(436\) −8.80607 + 24.2498i −0.421734 + 1.16135i
\(437\) 0.0862907 0.00412784
\(438\) 2.20837 0.490433i 0.105520 0.0234338i
\(439\) 6.45840i 0.308242i 0.988052 + 0.154121i \(0.0492546\pi\)
−0.988052 + 0.154121i \(0.950745\pi\)
\(440\) −15.1768 12.1091i −0.723528 0.577279i
\(441\) 2.23565i 0.106459i
\(442\) 2.59115 + 11.6677i 0.123248 + 0.554975i
\(443\) 27.0992 1.28752 0.643761 0.765226i \(-0.277373\pi\)
0.643761 + 0.765226i \(0.277373\pi\)
\(444\) −18.2956 + 8.54771i −0.868271 + 0.405656i
\(445\) 7.15919 + 29.0337i 0.339378 + 1.37633i
\(446\) 0.503675 + 2.26800i 0.0238497 + 0.107393i
\(447\) 18.8903 + 18.8903i 0.893478 + 0.893478i
\(448\) −20.8858 + 12.1197i −0.986763 + 0.572604i
\(449\) 41.0879i 1.93906i 0.244976 + 0.969529i \(0.421220\pi\)
−0.244976 + 0.969529i \(0.578780\pi\)
\(450\) −0.623423 + 7.46250i −0.0293884 + 0.351785i
\(451\) −22.5259 22.5259i −1.06070 1.06070i
\(452\) 4.71913 12.9953i 0.221969 0.611248i
\(453\) 28.8648i 1.35619i
\(454\) 9.73276 15.2897i 0.456781 0.717583i
\(455\) −8.93396 5.39957i −0.418831 0.253136i
\(456\) −0.0464977 0.0604592i −0.00217745 0.00283126i
\(457\) 18.2449 + 18.2449i 0.853462 + 0.853462i 0.990558 0.137096i \(-0.0437769\pi\)
−0.137096 + 0.990558i \(0.543777\pi\)
\(458\) 0.423571 + 1.90730i 0.0197922 + 0.0891221i
\(459\) 21.8501 + 21.8501i 1.01988 + 1.01988i
\(460\) −19.8244 2.12080i −0.924316 0.0988827i
\(461\) 6.68802 6.68802i 0.311492 0.311492i −0.533995 0.845488i \(-0.679310\pi\)
0.845488 + 0.533995i \(0.179310\pi\)
\(462\) 9.80384 15.4014i 0.456116 0.716538i
\(463\) 28.6926 28.6926i 1.33346 1.33346i 0.431205 0.902254i \(-0.358089\pi\)
0.902254 0.431205i \(-0.141911\pi\)
\(464\) 18.8075 1.67322i 0.873118 0.0776775i
\(465\) 6.65754 + 26.9993i 0.308736 + 1.25206i
\(466\) −0.131756 0.593286i −0.00610349 0.0274834i
\(467\) −32.4161 −1.50004 −0.750018 0.661417i \(-0.769955\pi\)
−0.750018 + 0.661417i \(0.769955\pi\)
\(468\) −1.38662 2.96793i −0.0640964 0.137193i
\(469\) −1.59693 + 1.59693i −0.0737392 + 0.0737392i
\(470\) −6.64134 13.3949i −0.306342 0.617860i
\(471\) 7.97337 0.367394
\(472\) −8.60148 11.1842i −0.395915 0.514794i
\(473\) −4.40605 + 4.40605i −0.202591 + 0.202591i
\(474\) −4.66327 2.96843i −0.214191 0.136344i
\(475\) 0.0287737 0.0924020i 0.00132023 0.00423970i
\(476\) −29.8867 + 13.9631i −1.36985 + 0.639996i
\(477\) 7.73837i 0.354316i
\(478\) 9.50003 14.9241i 0.434521 0.682613i
\(479\) 7.33117 0.334970 0.167485 0.985875i \(-0.446435\pi\)
0.167485 + 0.985875i \(0.446435\pi\)
\(480\) 9.19642 + 15.0327i 0.419757 + 0.686144i
\(481\) 11.2090 0.511087
\(482\) −14.8675 + 23.3562i −0.677197 + 1.06385i
\(483\) 18.7477i 0.853051i
\(484\) 2.85538 1.33403i 0.129790 0.0606378i
\(485\) 17.1440 + 10.3616i 0.778468 + 0.470496i
\(486\) −12.4254 7.90943i −0.563626 0.358779i
\(487\) −11.7773 + 11.7773i −0.533681 + 0.533681i −0.921666 0.387985i \(-0.873171\pi\)
0.387985 + 0.921666i \(0.373171\pi\)
\(488\) −4.49069 + 3.45368i −0.203284 + 0.156341i
\(489\) −25.0634 −1.13341
\(490\) 2.13227 6.32596i 0.0963260 0.285778i
\(491\) −27.3556 + 27.3556i −1.23454 + 1.23454i −0.272343 + 0.962200i \(0.587798\pi\)
−0.962200 + 0.272343i \(0.912202\pi\)
\(492\) 12.2390 + 26.1964i 0.551775 + 1.18103i
\(493\) 25.7941 1.16171
\(494\) 0.00917834 + 0.0413292i 0.000412953 + 0.00185949i
\(495\) 6.22164 + 3.76028i 0.279642 + 0.169012i
\(496\) −27.3856 22.9110i −1.22965 1.02873i
\(497\) 0.575432 0.575432i 0.0258117 0.0258117i
\(498\) 13.5721 21.3211i 0.608179 0.955422i
\(499\) 12.1629 12.1629i 0.544488 0.544488i −0.380353 0.924841i \(-0.624198\pi\)
0.924841 + 0.380353i \(0.124198\pi\)
\(500\) −8.88145 + 20.5212i −0.397191 + 0.917736i
\(501\) −3.33866 3.33866i −0.149160 0.149160i
\(502\) −2.24499 10.1090i −0.100199 0.451185i
\(503\) −13.2748 13.2748i −0.591892 0.591892i 0.346250 0.938142i \(-0.387455\pi\)
−0.938142 + 0.346250i \(0.887455\pi\)
\(504\) 7.16701 5.51197i 0.319244 0.245522i
\(505\) 6.18505 10.2336i 0.275231 0.455389i
\(506\) −10.3934 + 16.3276i −0.462045 + 0.725851i
\(507\) 14.7788i 0.656350i
\(508\) −1.33795 + 3.68440i −0.0593621 + 0.163469i
\(509\) 9.29995 + 9.29995i 0.412213 + 0.412213i 0.882509 0.470296i \(-0.155853\pi\)
−0.470296 + 0.882509i \(0.655853\pi\)
\(510\) 10.6938 + 21.5683i 0.473531 + 0.955062i
\(511\) 3.46565i 0.153312i
\(512\) −20.9334 8.59016i −0.925136 0.379635i
\(513\) 0.0773972 + 0.0773972i 0.00341717 + 0.00341717i
\(514\) 6.41673 + 28.8939i 0.283030 + 1.27446i
\(515\) −17.5345 + 29.0121i −0.772664 + 1.27843i
\(516\) 5.12400 2.39393i 0.225572 0.105387i
\(517\) −14.5141 −0.638329
\(518\) 6.70708 + 30.2013i 0.294692 + 1.32697i
\(519\) 13.1685i 0.578031i
\(520\) −1.09287 9.72052i −0.0479253 0.426273i
\(521\) 33.5279i 1.46888i 0.678671 + 0.734442i \(0.262556\pi\)
−0.678671 + 0.734442i \(0.737444\pi\)
\(522\) −6.90168 + 1.53272i −0.302078 + 0.0670852i
\(523\) −25.9463 −1.13455 −0.567276 0.823528i \(-0.692003\pi\)
−0.567276 + 0.823528i \(0.692003\pi\)
\(524\) −3.39924 + 9.36067i −0.148497 + 0.408923i
\(525\) −20.0755 6.25144i −0.876165 0.272835i
\(526\) 23.0203 5.11233i 1.00373 0.222908i
\(527\) −34.4903 34.4903i −1.50242 1.50242i
\(528\) 17.0404 1.51601i 0.741587 0.0659757i
\(529\) 3.12481i 0.135861i
\(530\) 7.38054 21.8964i 0.320590 0.951119i
\(531\) 3.73554 + 3.73554i 0.162109 + 0.162109i
\(532\) −0.105864 + 0.0494598i −0.00458980 + 0.00214435i
\(533\) 16.0495i 0.695182i
\(534\) −22.2274 14.1490i −0.961875 0.612287i
\(535\) 23.6879 5.84102i 1.02412 0.252529i
\(536\) −2.09842 0.273916i −0.0906379 0.0118314i
\(537\) 16.4383 + 16.4383i 0.709365 + 0.709365i
\(538\) −4.10247 + 0.911073i −0.176870 + 0.0392792i
\(539\) −4.58248 4.58248i −0.197381 0.197381i
\(540\) −15.8790 19.6834i −0.683322 0.847039i
\(541\) 4.47122 4.47122i 0.192233 0.192233i −0.604428 0.796660i \(-0.706598\pi\)
0.796660 + 0.604428i \(0.206598\pi\)
\(542\) 22.4997 + 14.3223i 0.966445 + 0.615196i
\(543\) 3.54085 3.54085i 0.151952 0.151952i
\(544\) −27.4444 14.2228i −1.17667 0.609798i
\(545\) 14.9199 24.6859i 0.639096 1.05743i
\(546\) 8.97927 1.99411i 0.384277 0.0853399i
\(547\) 15.5964 0.666853 0.333426 0.942776i \(-0.391795\pi\)
0.333426 + 0.942776i \(0.391795\pi\)
\(548\) 5.43067 14.9547i 0.231987 0.638835i
\(549\) 1.49990 1.49990i 0.0640142 0.0640142i
\(550\) 14.0183 + 16.5740i 0.597741 + 0.706717i
\(551\) 0.0913677 0.00389239
\(552\) 13.9255 10.7097i 0.592707 0.455836i
\(553\) −5.98831 + 5.98831i −0.254649 + 0.254649i
\(554\) 7.53275 11.8336i 0.320036 0.502762i
\(555\) 21.9209 5.40529i 0.930488 0.229442i
\(556\) 11.6839 32.1745i 0.495506 1.36450i
\(557\) 15.5348i 0.658231i −0.944290 0.329116i \(-0.893249\pi\)
0.944290 0.329116i \(-0.106751\pi\)
\(558\) 11.2780 + 7.17905i 0.477434 + 0.303913i
\(559\) −3.13928 −0.132777
\(560\) 25.5368 8.76100i 1.07913 0.370220i
\(561\) 23.3705 0.986703
\(562\) −11.1121 7.07349i −0.468737 0.298377i
\(563\) 24.3087i 1.02449i 0.858839 + 0.512245i \(0.171186\pi\)
−0.858839 + 0.512245i \(0.828814\pi\)
\(564\) 12.3825 + 4.49659i 0.521398 + 0.189341i
\(565\) −7.99547 + 13.2291i −0.336372 + 0.556550i
\(566\) −2.59998 + 4.08445i −0.109285 + 0.171682i
\(567\) 10.0344 10.0344i 0.421405 0.421405i
\(568\) 0.756139 + 0.0987022i 0.0317269 + 0.00414145i
\(569\) 0.187259 0.00785029 0.00392515 0.999992i \(-0.498751\pi\)
0.00392515 + 0.999992i \(0.498751\pi\)
\(570\) 0.0378796 + 0.0763991i 0.00158660 + 0.00320001i
\(571\) −9.07187 + 9.07187i −0.379646 + 0.379646i −0.870974 0.491328i \(-0.836511\pi\)
0.491328 + 0.870974i \(0.336511\pi\)
\(572\) −8.92566 3.24127i −0.373200 0.135524i
\(573\) −7.61266 −0.318023
\(574\) 43.2434 9.60346i 1.80495 0.400841i
\(575\) 21.2828 + 6.62740i 0.887554 + 0.276382i
\(576\) 8.18838 + 2.17479i 0.341182 + 0.0906162i
\(577\) −1.53648 + 1.53648i −0.0639645 + 0.0639645i −0.738365 0.674401i \(-0.764402\pi\)
0.674401 + 0.738365i \(0.264402\pi\)
\(578\) −15.3408 9.76529i −0.638095 0.406183i
\(579\) 6.72191 6.72191i 0.279353 0.279353i
\(580\) −20.9908 2.24557i −0.871594 0.0932424i
\(581\) −27.3794 27.3794i −1.13589 1.13589i
\(582\) −17.2309 + 3.82663i −0.714244 + 0.158619i
\(583\) −15.8616 15.8616i −0.656920 0.656920i
\(584\) 2.57423 1.97977i 0.106522 0.0819235i
\(585\) 0.876850 + 3.55602i 0.0362533 + 0.147023i
\(586\) 3.17903 + 2.02363i 0.131325 + 0.0835954i
\(587\) 3.06150i 0.126362i 0.998002 + 0.0631808i \(0.0201245\pi\)
−0.998002 + 0.0631808i \(0.979876\pi\)
\(588\) 2.48979 + 5.32917i 0.102677 + 0.219771i
\(589\) −0.122171 0.122171i −0.00503398 0.00503398i
\(590\) 7.00724 + 14.1329i 0.288484 + 0.581841i
\(591\) 4.10408i 0.168819i
\(592\) −18.6015 + 22.2345i −0.764518 + 0.913833i
\(593\) −20.8213 20.8213i −0.855029 0.855029i 0.135718 0.990747i \(-0.456666\pi\)
−0.990747 + 0.135718i \(0.956666\pi\)
\(594\) −23.9671 + 5.32258i −0.983380 + 0.218388i
\(595\) 35.8087 8.82977i 1.46801 0.361985i
\(596\) 36.0475 + 13.0903i 1.47656 + 0.536200i
\(597\) −2.99005 −0.122375
\(598\) −9.51927 + 2.11403i −0.389272 + 0.0864492i
\(599\) 27.8866i 1.13942i 0.821847 + 0.569709i \(0.192944\pi\)
−0.821847 + 0.569709i \(0.807056\pi\)
\(600\) −6.82475 18.4829i −0.278619 0.754560i
\(601\) 4.70260i 0.191823i 0.995390 + 0.0959115i \(0.0305766\pi\)
−0.995390 + 0.0959115i \(0.969423\pi\)
\(602\) −1.87843 8.45839i −0.0765592 0.344738i
\(603\) 0.792365 0.0322676
\(604\) 17.5396 + 37.5419i 0.713675 + 1.52756i
\(605\) −3.42116 + 0.843598i −0.139090 + 0.0342971i
\(606\) 2.28419 + 10.2855i 0.0927889 + 0.417819i
\(607\) −28.8294 28.8294i −1.17015 1.17015i −0.982174 0.187975i \(-0.939807\pi\)
−0.187975 0.982174i \(-0.560193\pi\)
\(608\) −0.0972133 0.0503799i −0.00394252 0.00204317i
\(609\) 19.8507i 0.804393i
\(610\) 5.67465 2.81356i 0.229760 0.113918i
\(611\) −5.17059 5.17059i −0.209180 0.209180i
\(612\) 10.8787 + 3.95050i 0.439746 + 0.159690i
\(613\) 38.7980i 1.56704i −0.621369 0.783518i \(-0.713423\pi\)
0.621369 0.783518i \(-0.286577\pi\)
\(614\) 8.01599 12.5928i 0.323499 0.508203i
\(615\) −7.73951 31.3872i −0.312087 1.26565i
\(616\) 3.39240 25.9885i 0.136684 1.04711i
\(617\) −7.06723 7.06723i −0.284516 0.284516i 0.550391 0.834907i \(-0.314479\pi\)
−0.834907 + 0.550391i \(0.814479\pi\)
\(618\) −6.47565 29.1592i −0.260489 1.17296i
\(619\) −28.1001 28.1001i −1.12944 1.12944i −0.990268 0.139172i \(-0.955556\pi\)
−0.139172 0.990268i \(-0.544444\pi\)
\(620\) 25.0649 + 31.0702i 1.00663 + 1.24781i
\(621\) −17.8268 + 17.8268i −0.715363 + 0.715363i
\(622\) −15.5500 + 24.4284i −0.623500 + 0.979490i
\(623\) −28.5432 + 28.5432i −1.14356 + 1.14356i
\(624\) 6.61064 + 5.53049i 0.264637 + 0.221397i
\(625\) 14.1935 20.5802i 0.567741 0.823207i
\(626\) −1.22444 5.51353i −0.0489384 0.220365i
\(627\) 0.0827827 0.00330602
\(628\) 10.3703 4.84499i 0.413819 0.193336i
\(629\) −28.0029 + 28.0029i −1.11655 + 1.11655i
\(630\) −9.05657 + 4.49036i −0.360822 + 0.178900i
\(631\) 38.2613 1.52316 0.761580 0.648071i \(-0.224424\pi\)
0.761580 + 0.648071i \(0.224424\pi\)
\(632\) −7.86886 1.02716i −0.313007 0.0408582i
\(633\) 7.72420 7.72420i 0.307010 0.307010i
\(634\) −24.1625 15.3807i −0.959614 0.610847i
\(635\) 2.26685 3.75067i 0.0899574 0.148841i
\(636\) 8.61805 + 18.4462i 0.341728 + 0.731438i
\(637\) 3.26498i 0.129363i
\(638\) −11.0049 + 17.2883i −0.435690 + 0.684449i
\(639\) −0.285519 −0.0112950
\(640\) 21.0955 + 13.9635i 0.833874 + 0.551956i
\(641\) 7.15922 0.282772 0.141386 0.989955i \(-0.454844\pi\)
0.141386 + 0.989955i \(0.454844\pi\)
\(642\) −11.5438 + 18.1349i −0.455599 + 0.715726i
\(643\) 8.74864i 0.345013i 0.985008 + 0.172506i \(0.0551866\pi\)
−0.985008 + 0.172506i \(0.944813\pi\)
\(644\) −11.3920 24.3835i −0.448907 0.960845i
\(645\) −6.13931 + 1.51384i −0.241735 + 0.0596076i
\(646\) −0.126180 0.0803206i −0.00496449 0.00316017i
\(647\) 8.84125 8.84125i 0.347585 0.347585i −0.511624 0.859209i \(-0.670956\pi\)
0.859209 + 0.511624i \(0.170956\pi\)
\(648\) 13.1856 + 1.72117i 0.517978 + 0.0676140i
\(649\) 15.3137 0.601117
\(650\) −0.910459 + 10.8984i −0.0357111 + 0.427469i
\(651\) −26.5432 + 26.5432i −1.04031 + 1.04031i
\(652\) −32.5978 + 15.2297i −1.27663 + 0.596441i
\(653\) −20.7854 −0.813396 −0.406698 0.913563i \(-0.633320\pi\)
−0.406698 + 0.913563i \(0.633320\pi\)
\(654\) 5.51003 + 24.8111i 0.215459 + 0.970191i
\(655\) 5.75923 9.52904i 0.225032 0.372330i
\(656\) 31.8363 + 26.6344i 1.24300 + 1.03990i
\(657\) −0.859797 + 0.859797i −0.0335439 + 0.0335439i
\(658\) 10.8376 17.0254i 0.422494 0.663719i
\(659\) 13.3330 13.3330i 0.519382 0.519382i −0.398003 0.917384i \(-0.630297\pi\)
0.917384 + 0.398003i \(0.130297\pi\)
\(660\) −19.0184 2.03458i −0.740292 0.0791959i
\(661\) −30.5831 30.5831i −1.18954 1.18954i −0.977194 0.212350i \(-0.931888\pi\)
−0.212350 0.977194i \(-0.568112\pi\)
\(662\) −8.45208 38.0589i −0.328499 1.47920i
\(663\) 8.32564 + 8.32564i 0.323341 + 0.323341i
\(664\) 4.69631 35.9775i 0.182252 1.39620i
\(665\) 0.126841 0.0312767i 0.00491868 0.00121286i
\(666\) 5.82870 9.15663i 0.225858 0.354812i
\(667\) 21.0446i 0.814848i
\(668\) −6.37103 2.31358i −0.246503 0.0895151i
\(669\) 1.61836 + 1.61836i 0.0625695 + 0.0625695i
\(670\) 2.24207 + 0.755725i 0.0866186 + 0.0291962i
\(671\) 6.14880i 0.237372i
\(672\) −10.9457 + 21.1208i −0.422238 + 0.814752i
\(673\) 29.9888 + 29.9888i 1.15598 + 1.15598i 0.985331 + 0.170652i \(0.0545873\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(674\) 2.55582 + 11.5086i 0.0984464 + 0.443295i
\(675\) 13.1449 + 25.0336i 0.505949 + 0.963545i
\(676\) 8.98030 + 19.2215i 0.345396 + 0.739289i
\(677\) −33.4274 −1.28472 −0.642360 0.766403i \(-0.722044\pi\)
−0.642360 + 0.766403i \(0.722044\pi\)
\(678\) −2.95279 13.2961i −0.113401 0.510635i
\(679\) 27.0409i 1.03774i
\(680\) 27.0145 + 21.5540i 1.03596 + 0.826557i
\(681\) 17.8551i 0.684211i
\(682\) 37.8320 8.40169i 1.44866 0.321717i
\(683\) −4.07583 −0.155957 −0.0779787 0.996955i \(-0.524847\pi\)
−0.0779787 + 0.996955i \(0.524847\pi\)
\(684\) 0.0385345 + 0.0139934i 0.00147340 + 0.000535052i
\(685\) −9.20102 + 15.2237i −0.351553 + 0.581668i
\(686\) −20.3734 + 4.52450i −0.777858 + 0.172746i
\(687\) 1.36098 + 1.36098i 0.0519246 + 0.0519246i
\(688\) 5.20968 6.22716i 0.198617 0.237408i
\(689\) 11.3013i 0.430544i
\(690\) −17.5969 + 8.72474i −0.669901 + 0.332145i
\(691\) −8.69768 8.69768i −0.330875 0.330875i 0.522044 0.852919i \(-0.325170\pi\)
−0.852919 + 0.522044i \(0.825170\pi\)
\(692\) 8.00177 + 17.1271i 0.304182 + 0.651074i
\(693\) 9.81330i 0.372776i
\(694\) 13.6751 + 8.70494i 0.519098 + 0.330435i
\(695\) −19.7956 + 32.7532i −0.750890 + 1.24240i
\(696\) 14.7448 11.3398i 0.558899 0.429835i
\(697\) 40.0956 + 40.0956i 1.51873 + 1.51873i
\(698\) −0.620624 + 0.137828i −0.0234910 + 0.00521685i
\(699\) −0.423347 0.423347i −0.0160125 0.0160125i
\(700\) −29.9091 + 4.06808i −1.13046 + 0.153759i
\(701\) 11.8325 11.8325i 0.446908 0.446908i −0.447418 0.894325i \(-0.647656\pi\)
0.894325 + 0.447418i \(0.147656\pi\)
\(702\) −10.4343 6.64202i −0.393818 0.250687i
\(703\) −0.0991914 + 0.0991914i −0.00374108 + 0.00374108i
\(704\) 21.2417 12.3263i 0.800578 0.464563i
\(705\) −12.6052 7.61844i −0.474740 0.286927i
\(706\) −36.0323 + 8.00203i −1.35609 + 0.301160i
\(707\) 16.1413 0.607056
\(708\) −13.0647 4.74433i −0.491002 0.178303i
\(709\) 32.3901 32.3901i 1.21643 1.21643i 0.247563 0.968872i \(-0.420370\pi\)
0.968872 0.247563i \(-0.0796297\pi\)
\(710\) −0.807901 0.272316i −0.0303200 0.0102198i
\(711\) 2.97129 0.111432
\(712\) −37.5069 4.89594i −1.40563 0.183483i
\(713\) 28.1395 28.1395i 1.05383 1.05383i
\(714\) −17.4506 + 27.4142i −0.653074 + 1.02595i
\(715\) 9.08620 + 5.49158i 0.339805 + 0.205373i
\(716\) 31.3686 + 11.3912i 1.17230 + 0.425709i
\(717\) 17.4282i 0.650868i
\(718\) −18.5874 11.8319i −0.693676 0.441563i
\(719\) −4.16893 −0.155475 −0.0777374 0.996974i \(-0.524770\pi\)
−0.0777374 + 0.996974i \(0.524770\pi\)
\(720\) −8.50896 4.16192i −0.317110 0.155106i
\(721\) −45.7603 −1.70420
\(722\) 22.6668 + 14.4287i 0.843572 + 0.536980i
\(723\) 27.2751i 1.01437i
\(724\) 2.45369 6.75686i 0.0911906 0.251117i
\(725\) 22.5350 + 7.01733i 0.836928 + 0.260617i
\(726\) 1.66724 2.61915i 0.0618769 0.0972059i
\(727\) 28.6014 28.6014i 1.06077 1.06077i 0.0627368 0.998030i \(-0.480017\pi\)
0.998030 0.0627368i \(-0.0199829\pi\)
\(728\) 10.4668 8.04978i 0.387927 0.298345i
\(729\) −28.6142 −1.05979
\(730\) −3.25291 + 1.61283i −0.120396 + 0.0596936i
\(731\) 7.84269 7.84269i 0.290072 0.290072i
\(732\) −1.90495 + 5.24577i −0.0704090 + 0.193889i
\(733\) 18.7069 0.690956 0.345478 0.938427i \(-0.387717\pi\)
0.345478 + 0.938427i \(0.387717\pi\)
\(734\) 10.4941 2.33052i 0.387345 0.0860212i
\(735\) −1.57446 6.38514i −0.0580749 0.235519i
\(736\) 11.6039 22.3910i 0.427726 0.825342i
\(737\) 1.62414 1.62414i 0.0598259 0.0598259i
\(738\) −13.1108 8.34577i −0.482616 0.307212i
\(739\) −34.6914 + 34.6914i −1.27614 + 1.27614i −0.333337 + 0.942808i \(0.608175\pi\)
−0.942808 + 0.333337i \(0.891825\pi\)
\(740\) 25.2260 20.3503i 0.927328 0.748093i
\(741\) 0.0294910 + 0.0294910i 0.00108338 + 0.00108338i
\(742\) 30.4498 6.76227i 1.11785 0.248251i
\(743\) 24.7660 + 24.7660i 0.908577 + 0.908577i 0.996157 0.0875803i \(-0.0279134\pi\)
−0.0875803 + 0.996157i \(0.527913\pi\)
\(744\) −34.8788 4.55288i −1.27872 0.166917i
\(745\) −36.6959 22.1785i −1.34443 0.812558i
\(746\) 3.87042 + 2.46374i 0.141706 + 0.0902039i
\(747\) 13.5852i 0.497055i
\(748\) 30.3960 14.2010i 1.11139 0.519240i
\(749\) 23.2878 + 23.2878i 0.850917 + 0.850917i
\(750\) 3.47495 + 21.7524i 0.126887 + 0.794285i
\(751\) 45.2370i 1.65072i 0.564606 + 0.825361i \(0.309028\pi\)
−0.564606 + 0.825361i \(0.690972\pi\)
\(752\) 18.8372 1.67586i 0.686922 0.0611124i
\(753\) −7.21340 7.21340i −0.262871 0.262871i
\(754\) −10.0793 + 2.23841i −0.367068 + 0.0815181i
\(755\) −11.0914 44.9808i −0.403659 1.63702i
\(756\) 11.6526 32.0883i 0.423800 1.16704i
\(757\) 6.44058 0.234087 0.117044 0.993127i \(-0.462658\pi\)
0.117044 + 0.993127i \(0.462658\pi\)
\(758\) −50.3123 + 11.1733i −1.82743 + 0.405833i
\(759\) 19.0672i 0.692095i
\(760\) 0.0956903 + 0.0763483i 0.00347105 + 0.00276944i
\(761\) 9.50571i 0.344582i −0.985046 0.172291i \(-0.944883\pi\)
0.985046 0.172291i \(-0.0551169\pi\)
\(762\) 0.837169 + 3.76969i 0.0303274 + 0.136561i
\(763\) 38.9367 1.40960
\(764\) −9.90112 + 4.62580i −0.358210 + 0.167356i
\(765\) −11.0744 6.69322i −0.400395 0.241994i
\(766\) −0.181282 0.816294i −0.00654998 0.0294939i
\(767\) 5.45546 + 5.45546i 0.196985 + 0.196985i
\(768\) −21.9409 + 3.93511i −0.791724 + 0.141996i
\(769\) 46.8513i 1.68950i 0.535159 + 0.844751i \(0.320252\pi\)
−0.535159 + 0.844751i \(0.679748\pi\)
\(770\) −9.35952 + 27.7676i −0.337294 + 1.00067i
\(771\) 20.6176 + 20.6176i 0.742526 + 0.742526i
\(772\) 4.65806 12.8271i 0.167647 0.461659i
\(773\) 10.9964i 0.395513i 0.980251 + 0.197756i \(0.0633655\pi\)
−0.980251 + 0.197756i