Properties

Label 80.2.j.b.43.5
Level $80$
Weight $2$
Character 80.43
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(43,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.5
Root \(-0.480367 - 1.33013i\) of defining polynomial
Character \(\chi\) \(=\) 80.43
Dual form 80.2.j.b.67.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.307817 + 1.38031i) q^{2} +2.85601i q^{3} +(-1.81050 - 0.849763i) q^{4} +(1.43498 - 1.71489i) q^{5} +(-3.94217 - 0.879127i) q^{6} +(-0.458895 + 0.458895i) q^{7} +(1.73024 - 2.23747i) q^{8} -5.15678 q^{9} +O(q^{10})\) \(q+(-0.307817 + 1.38031i) q^{2} +2.85601i q^{3} +(-1.81050 - 0.849763i) q^{4} +(1.43498 - 1.71489i) q^{5} +(-3.94217 - 0.879127i) q^{6} +(-0.458895 + 0.458895i) q^{7} +(1.73024 - 2.23747i) q^{8} -5.15678 q^{9} +(1.92536 + 2.50858i) q^{10} +(-0.492763 + 0.492763i) q^{11} +(2.42693 - 5.17080i) q^{12} +4.52109 q^{13} +(-0.492160 - 0.774671i) q^{14} +(4.89773 + 4.09831i) q^{15} +(2.55581 + 3.07699i) q^{16} +(-3.12823 + 3.12823i) q^{17} +(1.58734 - 7.11794i) q^{18} +(4.04508 - 4.04508i) q^{19} +(-4.05527 + 1.88541i) q^{20} +(-1.31061 - 1.31061i) q^{21} +(-0.528484 - 0.831845i) q^{22} +(-1.80660 - 1.80660i) q^{23} +(6.39024 + 4.94157i) q^{24} +(-0.881683 - 4.92165i) q^{25} +(-1.39167 + 6.24050i) q^{26} -6.15978i q^{27} +(1.22078 - 0.440876i) q^{28} +(-3.83926 - 3.83926i) q^{29} +(-7.16453 + 5.49885i) q^{30} -0.139949i q^{31} +(-5.03391 + 2.58065i) q^{32} +(-1.40733 - 1.40733i) q^{33} +(-3.35500 - 5.28085i) q^{34} +(0.128450 + 1.44546i) q^{35} +(9.33634 + 4.38204i) q^{36} +5.84330 q^{37} +(4.33831 + 6.82860i) q^{38} +12.9123i q^{39} +(-1.35417 - 6.17788i) q^{40} -4.55648i q^{41} +(2.21247 - 1.40561i) q^{42} -7.49928 q^{43} +(1.31088 - 0.473414i) q^{44} +(-7.39986 + 8.84330i) q^{45} +(3.04976 - 1.93756i) q^{46} +(-4.14073 - 4.14073i) q^{47} +(-8.78790 + 7.29940i) q^{48} +6.57883i q^{49} +(7.06479 + 0.297972i) q^{50} +(-8.93426 - 8.93426i) q^{51} +(-8.18543 - 3.84186i) q^{52} +2.75773i q^{53} +(8.50239 + 1.89608i) q^{54} +(0.137930 + 1.55214i) q^{55} +(0.232768 + 1.82076i) q^{56} +(11.5528 + 11.5528i) q^{57} +(6.48115 - 4.11757i) q^{58} +(-3.62521 - 3.62521i) q^{59} +(-5.38475 - 11.5819i) q^{60} +(3.72781 - 3.72781i) q^{61} +(0.193173 + 0.0430787i) q^{62} +(2.36642 - 2.36642i) q^{63} +(-2.01257 - 7.74271i) q^{64} +(6.48766 - 7.75317i) q^{65} +(2.37576 - 1.50935i) q^{66} +3.32677 q^{67} +(8.32192 - 3.00540i) q^{68} +(5.15965 - 5.15965i) q^{69} +(-2.03471 - 0.267635i) q^{70} +1.37056 q^{71} +(-8.92244 + 11.5382i) q^{72} +(-2.55028 + 2.55028i) q^{73} +(-1.79867 + 8.06556i) q^{74} +(14.0563 - 2.51809i) q^{75} +(-10.7610 + 3.88625i) q^{76} -0.452252i q^{77} +(-17.8229 - 3.97461i) q^{78} -3.86426 q^{79} +(8.94421 + 0.0324871i) q^{80} +2.12204 q^{81} +(6.28934 + 1.40256i) q^{82} +14.4698i q^{83} +(1.25915 + 3.48655i) q^{84} +(0.875628 + 9.85351i) q^{85} +(2.30840 - 10.3513i) q^{86} +(10.9650 - 10.9650i) q^{87} +(0.249948 + 1.95514i) q^{88} -3.35011 q^{89} +(-9.92868 - 12.9362i) q^{90} +(-2.07470 + 2.07470i) q^{91} +(1.73566 + 4.80602i) q^{92} +0.399696 q^{93} +(6.99006 - 4.44089i) q^{94} +(-1.13226 - 12.7415i) q^{95} +(-7.37035 - 14.3769i) q^{96} +(-4.95582 + 4.95582i) q^{97} +(-9.08081 - 2.02507i) q^{98} +(2.54107 - 2.54107i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.307817 + 1.38031i −0.217659 + 0.976025i
\(3\) 2.85601i 1.64892i 0.565923 + 0.824458i \(0.308520\pi\)
−0.565923 + 0.824458i \(0.691480\pi\)
\(4\) −1.81050 0.849763i −0.905249 0.424882i
\(5\) 1.43498 1.71489i 0.641741 0.766921i
\(6\) −3.94217 0.879127i −1.60938 0.358902i
\(7\) −0.458895 + 0.458895i −0.173446 + 0.173446i −0.788491 0.615046i \(-0.789138\pi\)
0.615046 + 0.788491i \(0.289138\pi\)
\(8\) 1.73024 2.23747i 0.611731 0.791066i
\(9\) −5.15678 −1.71893
\(10\) 1.92536 + 2.50858i 0.608853 + 0.793283i
\(11\) −0.492763 + 0.492763i −0.148574 + 0.148574i −0.777481 0.628907i \(-0.783503\pi\)
0.628907 + 0.777481i \(0.283503\pi\)
\(12\) 2.42693 5.17080i 0.700594 1.49268i
\(13\) 4.52109 1.25393 0.626963 0.779049i \(-0.284298\pi\)
0.626963 + 0.779049i \(0.284298\pi\)
\(14\) −0.492160 0.774671i −0.131535 0.207040i
\(15\) 4.89773 + 4.09831i 1.26459 + 1.05818i
\(16\) 2.55581 + 3.07699i 0.638951 + 0.769247i
\(17\) −3.12823 + 3.12823i −0.758708 + 0.758708i −0.976087 0.217379i \(-0.930249\pi\)
0.217379 + 0.976087i \(0.430249\pi\)
\(18\) 1.58734 7.11794i 0.374140 1.67772i
\(19\) 4.04508 4.04508i 0.928005 0.928005i −0.0695721 0.997577i \(-0.522163\pi\)
0.997577 + 0.0695721i \(0.0221634\pi\)
\(20\) −4.05527 + 1.88541i −0.906786 + 0.421591i
\(21\) −1.31061 1.31061i −0.285998 0.285998i
\(22\) −0.528484 0.831845i −0.112673 0.177350i
\(23\) −1.80660 1.80660i −0.376701 0.376701i 0.493209 0.869911i \(-0.335824\pi\)
−0.869911 + 0.493209i \(0.835824\pi\)
\(24\) 6.39024 + 4.94157i 1.30440 + 1.00869i
\(25\) −0.881683 4.92165i −0.176337 0.984330i
\(26\) −1.39167 + 6.24050i −0.272928 + 1.22386i
\(27\) 6.15978i 1.18545i
\(28\) 1.22078 0.440876i 0.230706 0.0833177i
\(29\) −3.83926 3.83926i −0.712932 0.712932i 0.254215 0.967148i \(-0.418183\pi\)
−0.967148 + 0.254215i \(0.918183\pi\)
\(30\) −7.16453 + 5.49885i −1.30806 + 1.00395i
\(31\) 0.139949i 0.0251356i −0.999921 0.0125678i \(-0.995999\pi\)
0.999921 0.0125678i \(-0.00400057\pi\)
\(32\) −5.03391 + 2.58065i −0.889878 + 0.456199i
\(33\) −1.40733 1.40733i −0.244985 0.244985i
\(34\) −3.35500 5.28085i −0.575378 0.905658i
\(35\) 0.128450 + 1.44546i 0.0217120 + 0.244327i
\(36\) 9.33634 + 4.38204i 1.55606 + 0.730340i
\(37\) 5.84330 0.960633 0.480317 0.877095i \(-0.340522\pi\)
0.480317 + 0.877095i \(0.340522\pi\)
\(38\) 4.33831 + 6.82860i 0.703767 + 1.10774i
\(39\) 12.9123i 2.06762i
\(40\) −1.35417 6.17788i −0.214113 0.976809i
\(41\) 4.55648i 0.711602i −0.934562 0.355801i \(-0.884208\pi\)
0.934562 0.355801i \(-0.115792\pi\)
\(42\) 2.21247 1.40561i 0.341391 0.216891i
\(43\) −7.49928 −1.14363 −0.571815 0.820383i \(-0.693760\pi\)
−0.571815 + 0.820383i \(0.693760\pi\)
\(44\) 1.31088 0.473414i 0.197622 0.0713699i
\(45\) −7.39986 + 8.84330i −1.10311 + 1.31828i
\(46\) 3.04976 1.93756i 0.449662 0.285677i
\(47\) −4.14073 4.14073i −0.603987 0.603987i 0.337381 0.941368i \(-0.390459\pi\)
−0.941368 + 0.337381i \(0.890459\pi\)
\(48\) −8.78790 + 7.29940i −1.26842 + 1.05358i
\(49\) 6.57883i 0.939833i
\(50\) 7.06479 + 0.297972i 0.999112 + 0.0421396i
\(51\) −8.93426 8.93426i −1.25105 1.25105i
\(52\) −8.18543 3.84186i −1.13511 0.532770i
\(53\) 2.75773i 0.378803i 0.981900 + 0.189402i \(0.0606548\pi\)
−0.981900 + 0.189402i \(0.939345\pi\)
\(54\) 8.50239 + 1.89608i 1.15703 + 0.258024i
\(55\) 0.137930 + 1.55214i 0.0185985 + 0.209290i
\(56\) 0.232768 + 1.82076i 0.0311050 + 0.243309i
\(57\) 11.5528 + 11.5528i 1.53020 + 1.53020i
\(58\) 6.48115 4.11757i 0.851016 0.540663i
\(59\) −3.62521 3.62521i −0.471962 0.471962i 0.430587 0.902549i \(-0.358306\pi\)
−0.902549 + 0.430587i \(0.858306\pi\)
\(60\) −5.38475 11.5819i −0.695168 1.49522i
\(61\) 3.72781 3.72781i 0.477298 0.477298i −0.426969 0.904266i \(-0.640419\pi\)
0.904266 + 0.426969i \(0.140419\pi\)
\(62\) 0.193173 + 0.0430787i 0.0245330 + 0.00547100i
\(63\) 2.36642 2.36642i 0.298141 0.298141i
\(64\) −2.01257 7.74271i −0.251571 0.967839i
\(65\) 6.48766 7.75317i 0.804696 0.961662i
\(66\) 2.37576 1.50935i 0.292435 0.185789i
\(67\) 3.32677 0.406430 0.203215 0.979134i \(-0.434861\pi\)
0.203215 + 0.979134i \(0.434861\pi\)
\(68\) 8.32192 3.00540i 1.00918 0.364459i
\(69\) 5.15965 5.15965i 0.621149 0.621149i
\(70\) −2.03471 0.267635i −0.243195 0.0319885i
\(71\) 1.37056 0.162655 0.0813275 0.996687i \(-0.474084\pi\)
0.0813275 + 0.996687i \(0.474084\pi\)
\(72\) −8.92244 + 11.5382i −1.05152 + 1.35978i
\(73\) −2.55028 + 2.55028i −0.298488 + 0.298488i −0.840422 0.541933i \(-0.817693\pi\)
0.541933 + 0.840422i \(0.317693\pi\)
\(74\) −1.79867 + 8.06556i −0.209091 + 0.937602i
\(75\) 14.0563 2.51809i 1.62308 0.290764i
\(76\) −10.7610 + 3.88625i −1.23437 + 0.445783i
\(77\) 0.452252i 0.0515389i
\(78\) −17.8229 3.97461i −2.01805 0.450036i
\(79\) −3.86426 −0.434763 −0.217382 0.976087i \(-0.569752\pi\)
−0.217382 + 0.976087i \(0.569752\pi\)
\(80\) 8.94421 + 0.0324871i 0.999993 + 0.00363216i
\(81\) 2.12204 0.235782
\(82\) 6.28934 + 1.40256i 0.694541 + 0.154887i
\(83\) 14.4698i 1.58827i 0.607744 + 0.794133i \(0.292075\pi\)
−0.607744 + 0.794133i \(0.707925\pi\)
\(84\) 1.25915 + 3.48655i 0.137384 + 0.380414i
\(85\) 0.875628 + 9.85351i 0.0949752 + 1.06876i
\(86\) 2.30840 10.3513i 0.248922 1.11621i
\(87\) 10.9650 10.9650i 1.17557 1.17557i
\(88\) 0.249948 + 1.95514i 0.0266445 + 0.208419i
\(89\) −3.35011 −0.355111 −0.177556 0.984111i \(-0.556819\pi\)
−0.177556 + 0.984111i \(0.556819\pi\)
\(90\) −9.92868 12.9362i −1.04657 1.36359i
\(91\) −2.07470 + 2.07470i −0.217488 + 0.217488i
\(92\) 1.73566 + 4.80602i 0.180955 + 0.501062i
\(93\) 0.399696 0.0414466
\(94\) 6.99006 4.44089i 0.720970 0.458043i
\(95\) −1.13226 12.7415i −0.116168 1.30725i
\(96\) −7.37035 14.3769i −0.752234 1.46733i
\(97\) −4.95582 + 4.95582i −0.503187 + 0.503187i −0.912427 0.409240i \(-0.865794\pi\)
0.409240 + 0.912427i \(0.365794\pi\)
\(98\) −9.08081 2.02507i −0.917300 0.204563i
\(99\) 2.54107 2.54107i 0.255387 0.255387i
\(100\) −2.58595 + 9.65986i −0.258595 + 0.965986i
\(101\) −1.84536 1.84536i −0.183621 0.183621i 0.609311 0.792931i \(-0.291446\pi\)
−0.792931 + 0.609311i \(0.791446\pi\)
\(102\) 15.0821 9.58191i 1.49335 0.948751i
\(103\) −11.6655 11.6655i −1.14944 1.14944i −0.986664 0.162773i \(-0.947956\pi\)
−0.162773 0.986664i \(-0.552044\pi\)
\(104\) 7.82256 10.1158i 0.767065 0.991938i
\(105\) −4.12823 + 0.366853i −0.402874 + 0.0358012i
\(106\) −3.80651 0.848874i −0.369721 0.0824500i
\(107\) 15.3106i 1.48013i 0.672534 + 0.740067i \(0.265206\pi\)
−0.672534 + 0.740067i \(0.734794\pi\)
\(108\) −5.23435 + 11.1523i −0.503676 + 1.07313i
\(109\) 12.4798 + 12.4798i 1.19535 + 1.19535i 0.975544 + 0.219803i \(0.0705416\pi\)
0.219803 + 0.975544i \(0.429458\pi\)
\(110\) −2.18488 0.287388i −0.208320 0.0274013i
\(111\) 16.6885i 1.58400i
\(112\) −2.58486 0.239168i −0.244246 0.0225993i
\(113\) 2.53557 + 2.53557i 0.238526 + 0.238526i 0.816240 0.577713i \(-0.196055\pi\)
−0.577713 + 0.816240i \(0.696055\pi\)
\(114\) −19.5025 + 12.3903i −1.82658 + 1.16045i
\(115\) −5.69053 + 0.505686i −0.530645 + 0.0471555i
\(116\) 3.68851 + 10.2134i 0.342470 + 0.948293i
\(117\) −23.3143 −2.15541
\(118\) 6.11980 3.88800i 0.563373 0.357919i
\(119\) 2.87106i 0.263189i
\(120\) 17.6441 3.86751i 1.61068 0.353054i
\(121\) 10.5144i 0.955852i
\(122\) 3.99805 + 6.29301i 0.361966 + 0.569743i
\(123\) 13.0133 1.17337
\(124\) −0.118924 + 0.253378i −0.0106797 + 0.0227540i
\(125\) −9.70527 5.55047i −0.868066 0.496449i
\(126\) 2.53796 + 3.99481i 0.226100 + 0.355886i
\(127\) −0.615790 0.615790i −0.0546426 0.0546426i 0.679257 0.733900i \(-0.262302\pi\)
−0.733900 + 0.679257i \(0.762302\pi\)
\(128\) 11.3068 0.394630i 0.999391 0.0348807i
\(129\) 21.4180i 1.88575i
\(130\) 8.70475 + 11.3415i 0.763457 + 0.994718i
\(131\) 9.55413 + 9.55413i 0.834748 + 0.834748i 0.988162 0.153414i \(-0.0490268\pi\)
−0.153414 + 0.988162i \(0.549027\pi\)
\(132\) 1.35208 + 3.74388i 0.117683 + 0.325863i
\(133\) 3.71253i 0.321917i
\(134\) −1.02404 + 4.59197i −0.0884632 + 0.396686i
\(135\) −10.5633 8.83914i −0.909147 0.760752i
\(136\) 1.58676 + 12.4119i 0.136063 + 1.06431i
\(137\) −3.70277 3.70277i −0.316349 0.316349i 0.531014 0.847363i \(-0.321811\pi\)
−0.847363 + 0.531014i \(0.821811\pi\)
\(138\) 5.53368 + 8.71013i 0.471058 + 0.741456i
\(139\) 5.46761 + 5.46761i 0.463756 + 0.463756i 0.899885 0.436128i \(-0.143651\pi\)
−0.436128 + 0.899885i \(0.643651\pi\)
\(140\) 0.995737 2.72615i 0.0841551 0.230401i
\(141\) 11.8260 11.8260i 0.995925 0.995925i
\(142\) −0.421880 + 1.89179i −0.0354034 + 0.158755i
\(143\) −2.22783 + 2.22783i −0.186300 + 0.186300i
\(144\) −13.1797 15.8674i −1.09831 1.32228i
\(145\) −12.0931 + 1.07465i −1.00428 + 0.0892450i
\(146\) −2.73516 4.30520i −0.226363 0.356301i
\(147\) −18.7892 −1.54971
\(148\) −10.5793 4.96542i −0.869612 0.408155i
\(149\) 4.21561 4.21561i 0.345356 0.345356i −0.513021 0.858376i \(-0.671474\pi\)
0.858376 + 0.513021i \(0.171474\pi\)
\(150\) −0.851010 + 20.1771i −0.0694847 + 1.64745i
\(151\) 12.4417 1.01249 0.506244 0.862390i \(-0.331034\pi\)
0.506244 + 0.862390i \(0.331034\pi\)
\(152\) −2.05181 16.0497i −0.166424 1.30180i
\(153\) 16.1316 16.1316i 1.30416 1.30416i
\(154\) 0.624247 + 0.139211i 0.0503033 + 0.0112179i
\(155\) −0.239997 0.200824i −0.0192771 0.0161306i
\(156\) 10.9724 23.3777i 0.878493 1.87171i
\(157\) 7.50500i 0.598964i −0.954102 0.299482i \(-0.903186\pi\)
0.954102 0.299482i \(-0.0968138\pi\)
\(158\) 1.18948 5.33387i 0.0946302 0.424340i
\(159\) −7.87609 −0.624615
\(160\) −2.79802 + 12.3358i −0.221203 + 0.975228i
\(161\) 1.65807 0.130675
\(162\) −0.653199 + 2.92907i −0.0513202 + 0.230129i
\(163\) 23.7284i 1.85855i −0.369383 0.929277i \(-0.620431\pi\)
0.369383 0.929277i \(-0.379569\pi\)
\(164\) −3.87193 + 8.24949i −0.302347 + 0.644177i
\(165\) −4.43291 + 0.393929i −0.345102 + 0.0306673i
\(166\) −19.9728 4.45404i −1.55019 0.345701i
\(167\) −0.402976 + 0.402976i −0.0311832 + 0.0311832i −0.722526 0.691343i \(-0.757019\pi\)
0.691343 + 0.722526i \(0.257019\pi\)
\(168\) −5.20010 + 0.664788i −0.401197 + 0.0512895i
\(169\) 7.44028 0.572330
\(170\) −13.8704 1.82444i −1.06381 0.139928i
\(171\) −20.8596 + 20.8596i −1.59517 + 1.59517i
\(172\) 13.5774 + 6.37261i 1.03527 + 0.485907i
\(173\) −15.4500 −1.17464 −0.587320 0.809355i \(-0.699817\pi\)
−0.587320 + 0.809355i \(0.699817\pi\)
\(174\) 11.7598 + 18.5102i 0.891509 + 1.40325i
\(175\) 2.66312 + 1.85392i 0.201313 + 0.140143i
\(176\) −2.77563 0.256820i −0.209221 0.0193585i
\(177\) 10.3536 10.3536i 0.778225 0.778225i
\(178\) 1.03122 4.62419i 0.0772932 0.346597i
\(179\) 5.20444 5.20444i 0.388998 0.388998i −0.485332 0.874330i \(-0.661301\pi\)
0.874330 + 0.485332i \(0.161301\pi\)
\(180\) 20.9121 9.72265i 1.55870 0.724684i
\(181\) −9.08925 9.08925i −0.675599 0.675599i 0.283402 0.959001i \(-0.408537\pi\)
−0.959001 + 0.283402i \(0.908537\pi\)
\(182\) −2.22510 3.50236i −0.164936 0.259612i
\(183\) 10.6467 + 10.6467i 0.787024 + 0.787024i
\(184\) −7.16804 + 0.916372i −0.528435 + 0.0675559i
\(185\) 8.38500 10.0206i 0.616478 0.736730i
\(186\) −0.123033 + 0.551704i −0.00902123 + 0.0404529i
\(187\) 3.08295i 0.225448i
\(188\) 3.97814 + 11.0154i 0.290136 + 0.803382i
\(189\) 2.82669 + 2.82669i 0.205611 + 0.205611i
\(190\) 17.9357 + 2.35916i 1.30119 + 0.171151i
\(191\) 15.1075i 1.09314i −0.837413 0.546571i \(-0.815933\pi\)
0.837413 0.546571i \(-0.184067\pi\)
\(192\) 22.1132 5.74791i 1.59589 0.414820i
\(193\) 4.19166 + 4.19166i 0.301722 + 0.301722i 0.841687 0.539965i \(-0.181563\pi\)
−0.539965 + 0.841687i \(0.681563\pi\)
\(194\) −5.31507 8.36604i −0.381600 0.600647i
\(195\) 22.1431 + 18.5288i 1.58570 + 1.32688i
\(196\) 5.59045 11.9110i 0.399318 0.850783i
\(197\) −4.03184 −0.287256 −0.143628 0.989632i \(-0.545877\pi\)
−0.143628 + 0.989632i \(0.545877\pi\)
\(198\) 2.72527 + 4.28964i 0.193677 + 0.304852i
\(199\) 5.43055i 0.384961i 0.981301 + 0.192481i \(0.0616533\pi\)
−0.981301 + 0.192481i \(0.938347\pi\)
\(200\) −12.5376 6.54287i −0.886541 0.462651i
\(201\) 9.50129i 0.670169i
\(202\) 3.11520 1.97914i 0.219185 0.139252i
\(203\) 3.52363 0.247310
\(204\) 8.58345 + 23.7675i 0.600962 + 1.66405i
\(205\) −7.81385 6.53844i −0.545743 0.456664i
\(206\) 19.6928 12.5111i 1.37206 0.871693i
\(207\) 9.31622 + 9.31622i 0.647522 + 0.647522i
\(208\) 11.5550 + 13.9114i 0.801197 + 0.964579i
\(209\) 3.98653i 0.275754i
\(210\) 0.764368 5.81115i 0.0527464 0.401008i
\(211\) 3.23020 + 3.23020i 0.222376 + 0.222376i 0.809498 0.587122i \(-0.199739\pi\)
−0.587122 + 0.809498i \(0.699739\pi\)
\(212\) 2.34342 4.99286i 0.160946 0.342911i
\(213\) 3.91432i 0.268205i
\(214\) −21.1334 4.71286i −1.44465 0.322165i
\(215\) −10.7613 + 12.8604i −0.733914 + 0.877074i
\(216\) −13.7823 10.6579i −0.937770 0.725176i
\(217\) 0.0642220 + 0.0642220i 0.00435967 + 0.00435967i
\(218\) −21.0674 + 13.3845i −1.42687 + 0.906511i
\(219\) −7.28363 7.28363i −0.492182 0.492182i
\(220\) 1.06923 2.92735i 0.0720872 0.197362i
\(221\) −14.1430 + 14.1430i −0.951363 + 0.951363i
\(222\) −23.0353 5.13700i −1.54603 0.344773i
\(223\) −8.17319 + 8.17319i −0.547317 + 0.547317i −0.925664 0.378347i \(-0.876493\pi\)
0.378347 + 0.925664i \(0.376493\pi\)
\(224\) 1.12579 3.49428i 0.0752199 0.233471i
\(225\) 4.54664 + 25.3799i 0.303110 + 1.69199i
\(226\) −4.28035 + 2.71937i −0.284725 + 0.180890i
\(227\) −1.54068 −0.102258 −0.0511292 0.998692i \(-0.516282\pi\)
−0.0511292 + 0.998692i \(0.516282\pi\)
\(228\) −11.0992 30.7334i −0.735060 2.03537i
\(229\) −17.5646 + 17.5646i −1.16070 + 1.16070i −0.176378 + 0.984322i \(0.556438\pi\)
−0.984322 + 0.176378i \(0.943562\pi\)
\(230\) 1.05364 8.01034i 0.0694748 0.528186i
\(231\) 1.29164 0.0849834
\(232\) −15.2331 + 1.94741i −1.00010 + 0.127854i
\(233\) 9.99018 9.99018i 0.654479 0.654479i −0.299590 0.954068i \(-0.596850\pi\)
0.954068 + 0.299590i \(0.0968498\pi\)
\(234\) 7.17652 32.1809i 0.469144 2.10373i
\(235\) −13.0427 + 1.15904i −0.850814 + 0.0756072i
\(236\) 3.48286 + 9.64399i 0.226715 + 0.627771i
\(237\) 11.0364i 0.716889i
\(238\) 3.96294 + 0.883759i 0.256879 + 0.0572856i
\(239\) 26.2762 1.69967 0.849833 0.527052i \(-0.176703\pi\)
0.849833 + 0.527052i \(0.176703\pi\)
\(240\) −0.0927833 + 25.5447i −0.00598913 + 1.64891i
\(241\) −0.113242 −0.00729456 −0.00364728 0.999993i \(-0.501161\pi\)
−0.00364728 + 0.999993i \(0.501161\pi\)
\(242\) −14.5131 3.23650i −0.932935 0.208050i
\(243\) 12.4188i 0.796665i
\(244\) −9.91696 + 3.58144i −0.634868 + 0.229278i
\(245\) 11.2820 + 9.44047i 0.720778 + 0.603130i
\(246\) −4.00572 + 17.9624i −0.255395 + 1.14524i
\(247\) 18.2882 18.2882i 1.16365 1.16365i
\(248\) −0.313133 0.242145i −0.0198840 0.0153762i
\(249\) −41.3258 −2.61892
\(250\) 10.6488 11.6877i 0.673489 0.739197i
\(251\) 19.2220 19.2220i 1.21328 1.21328i 0.243339 0.969941i \(-0.421757\pi\)
0.969941 0.243339i \(-0.0782427\pi\)
\(252\) −6.29529 + 2.27350i −0.396566 + 0.143217i
\(253\) 1.78045 0.111936
\(254\) 1.03953 0.660430i 0.0652260 0.0414390i
\(255\) −28.1417 + 2.50080i −1.76230 + 0.156606i
\(256\) −2.93572 + 15.7284i −0.183482 + 0.983023i
\(257\) −0.757800 + 0.757800i −0.0472703 + 0.0472703i −0.730347 0.683077i \(-0.760642\pi\)
0.683077 + 0.730347i \(0.260642\pi\)
\(258\) 29.5634 + 6.59282i 1.84054 + 0.410451i
\(259\) −2.68146 + 2.68146i −0.166618 + 0.166618i
\(260\) −18.3343 + 8.52412i −1.13704 + 0.528643i
\(261\) 19.7982 + 19.7982i 1.22548 + 1.22548i
\(262\) −16.1286 + 10.2467i −0.996425 + 0.633044i
\(263\) 5.73017 + 5.73017i 0.353338 + 0.353338i 0.861350 0.508012i \(-0.169620\pi\)
−0.508012 + 0.861350i \(0.669620\pi\)
\(264\) −5.58389 + 0.713852i −0.343665 + 0.0439346i
\(265\) 4.72919 + 3.95728i 0.290512 + 0.243094i
\(266\) −5.12443 1.14278i −0.314199 0.0700682i
\(267\) 9.56795i 0.585549i
\(268\) −6.02311 2.82697i −0.367920 0.172685i
\(269\) 9.78879 + 9.78879i 0.596833 + 0.596833i 0.939468 0.342635i \(-0.111320\pi\)
−0.342635 + 0.939468i \(0.611320\pi\)
\(270\) 15.4523 11.8598i 0.940397 0.721765i
\(271\) 4.10159i 0.249154i −0.992210 0.124577i \(-0.960243\pi\)
0.992210 0.124577i \(-0.0397574\pi\)
\(272\) −17.6207 1.63038i −1.06841 0.0988565i
\(273\) −5.92537 5.92537i −0.358620 0.358620i
\(274\) 6.25074 3.97119i 0.377621 0.239908i
\(275\) 2.85967 + 1.99075i 0.172444 + 0.120046i
\(276\) −13.7260 + 4.95706i −0.826209 + 0.298380i
\(277\) 24.6755 1.48261 0.741305 0.671169i \(-0.234207\pi\)
0.741305 + 0.671169i \(0.234207\pi\)
\(278\) −9.23000 + 5.86396i −0.553578 + 0.351697i
\(279\) 0.721688i 0.0432063i
\(280\) 3.45642 + 2.21358i 0.206560 + 0.132286i
\(281\) 23.6688i 1.41196i 0.708230 + 0.705981i \(0.249494\pi\)
−0.708230 + 0.705981i \(0.750506\pi\)
\(282\) 12.6832 + 19.9637i 0.755275 + 1.18882i
\(283\) 13.0492 0.775694 0.387847 0.921724i \(-0.373219\pi\)
0.387847 + 0.921724i \(0.373219\pi\)
\(284\) −2.48139 1.16465i −0.147243 0.0691091i
\(285\) 36.3897 3.23375i 2.15554 0.191551i
\(286\) −2.38932 3.76085i −0.141284 0.222384i
\(287\) 2.09094 + 2.09094i 0.123424 + 0.123424i
\(288\) 25.9588 13.3078i 1.52963 0.784172i
\(289\) 2.57168i 0.151275i
\(290\) 2.23912 17.0231i 0.131486 0.999628i
\(291\) −14.1539 14.1539i −0.829714 0.829714i
\(292\) 6.78442 2.45015i 0.397028 0.143384i
\(293\) 31.6731i 1.85036i −0.379526 0.925181i \(-0.623913\pi\)
0.379526 0.925181i \(-0.376087\pi\)
\(294\) 5.78363 25.9349i 0.337308 1.51255i
\(295\) −11.4189 + 1.01474i −0.664835 + 0.0590802i
\(296\) 10.1103 13.0742i 0.587649 0.759924i
\(297\) 3.03531 + 3.03531i 0.176127 + 0.176127i
\(298\) 4.52120 + 7.11646i 0.261906 + 0.412246i
\(299\) −8.16779 8.16779i −0.472355 0.472355i
\(300\) −27.5886 7.38550i −1.59283 0.426402i
\(301\) 3.44138 3.44138i 0.198358 0.198358i
\(302\) −3.82975 + 17.1733i −0.220377 + 0.988213i
\(303\) 5.27037 5.27037i 0.302775 0.302775i
\(304\) 22.7851 + 2.10823i 1.30682 + 0.120915i
\(305\) −1.04346 11.7421i −0.0597482 0.672351i
\(306\) 17.3010 + 27.2322i 0.989033 + 1.55676i
\(307\) −27.3597 −1.56150 −0.780751 0.624843i \(-0.785163\pi\)
−0.780751 + 0.624843i \(0.785163\pi\)
\(308\) −0.384307 + 0.818802i −0.0218979 + 0.0466556i
\(309\) 33.3168 33.3168i 1.89532 1.89532i
\(310\) 0.351074 0.269453i 0.0199397 0.0153039i
\(311\) −15.8076 −0.896368 −0.448184 0.893941i \(-0.647929\pi\)
−0.448184 + 0.893941i \(0.647929\pi\)
\(312\) 28.8909 + 22.3413i 1.63562 + 1.26483i
\(313\) −13.8388 + 13.8388i −0.782217 + 0.782217i −0.980205 0.197988i \(-0.936559\pi\)
0.197988 + 0.980205i \(0.436559\pi\)
\(314\) 10.3592 + 2.31016i 0.584604 + 0.130370i
\(315\) −0.662387 7.45390i −0.0373213 0.419980i
\(316\) 6.99624 + 3.28371i 0.393569 + 0.184723i
\(317\) 35.0092i 1.96631i 0.182766 + 0.983156i \(0.441495\pi\)
−0.182766 + 0.983156i \(0.558505\pi\)
\(318\) 2.42439 10.8714i 0.135953 0.609639i
\(319\) 3.78369 0.211846
\(320\) −16.1659 7.65928i −0.903700 0.428167i
\(321\) −43.7272 −2.44062
\(322\) −0.510383 + 2.28865i −0.0284425 + 0.127542i
\(323\) 25.3079i 1.40817i
\(324\) −3.84195 1.80323i −0.213442 0.100180i
\(325\) −3.98617 22.2512i −0.221113 1.23428i
\(326\) 32.7525 + 7.30401i 1.81400 + 0.404532i
\(327\) −35.6424 + 35.6424i −1.97103 + 1.97103i
\(328\) −10.1950 7.88378i −0.562924 0.435309i
\(329\) 3.80032 0.209518
\(330\) 0.820781 6.24004i 0.0451825 0.343503i
\(331\) 16.8212 16.8212i 0.924578 0.924578i −0.0727709 0.997349i \(-0.523184\pi\)
0.997349 + 0.0727709i \(0.0231842\pi\)
\(332\) 12.2959 26.1975i 0.674825 1.43778i
\(333\) −30.1326 −1.65126
\(334\) −0.432188 0.680273i −0.0236483 0.0372229i
\(335\) 4.77384 5.70504i 0.260823 0.311700i
\(336\) 0.683066 7.38238i 0.0372643 0.402742i
\(337\) 14.4984 14.4984i 0.789777 0.789777i −0.191680 0.981457i \(-0.561394\pi\)
0.981457 + 0.191680i \(0.0613937\pi\)
\(338\) −2.29024 + 10.2699i −0.124573 + 0.558608i
\(339\) −7.24160 + 7.24160i −0.393310 + 0.393310i
\(340\) 6.78783 18.5838i 0.368122 1.00785i
\(341\) 0.0689618 + 0.0689618i 0.00373449 + 0.00373449i
\(342\) −22.3717 35.2136i −1.20972 1.90413i
\(343\) −6.23125 6.23125i −0.336456 0.336456i
\(344\) −12.9755 + 16.7794i −0.699593 + 0.904687i
\(345\) −1.44424 16.2522i −0.0777555 0.874989i
\(346\) 4.75576 21.3257i 0.255671 1.14648i
\(347\) 16.7705i 0.900286i 0.892956 + 0.450143i \(0.148627\pi\)
−0.892956 + 0.450143i \(0.851373\pi\)
\(348\) −29.1696 + 10.5344i −1.56366 + 0.564704i
\(349\) 1.86337 + 1.86337i 0.0997439 + 0.0997439i 0.755218 0.655474i \(-0.227531\pi\)
−0.655474 + 0.755218i \(0.727531\pi\)
\(350\) −3.37873 + 3.10525i −0.180601 + 0.165983i
\(351\) 27.8489i 1.48647i
\(352\) 1.20888 3.75217i 0.0644333 0.199991i
\(353\) 24.1362 + 24.1362i 1.28464 + 1.28464i 0.937998 + 0.346642i \(0.112678\pi\)
0.346642 + 0.937998i \(0.387322\pi\)
\(354\) 11.1042 + 17.4782i 0.590179 + 0.928955i
\(355\) 1.96672 2.35035i 0.104382 0.124744i
\(356\) 6.06537 + 2.84680i 0.321464 + 0.150880i
\(357\) 8.19976 0.433978
\(358\) 5.58171 + 8.78574i 0.295003 + 0.464341i
\(359\) 12.2500i 0.646532i −0.946308 0.323266i \(-0.895219\pi\)
0.946308 0.323266i \(-0.104781\pi\)
\(360\) 6.98314 + 31.8580i 0.368044 + 1.67906i
\(361\) 13.7253i 0.722386i
\(362\) 15.3438 9.74814i 0.806451 0.512351i
\(363\) −30.0291 −1.57612
\(364\) 5.51926 1.99324i 0.289288 0.104474i
\(365\) 0.713853 + 8.03305i 0.0373648 + 0.420469i
\(366\) −17.9729 + 11.4185i −0.939458 + 0.596852i
\(367\) 2.71307 + 2.71307i 0.141621 + 0.141621i 0.774363 0.632742i \(-0.218071\pi\)
−0.632742 + 0.774363i \(0.718071\pi\)
\(368\) 0.941567 10.1762i 0.0490826 0.530470i
\(369\) 23.4967i 1.22319i
\(370\) 11.2505 + 14.6584i 0.584885 + 0.762054i
\(371\) −1.26551 1.26551i −0.0657018 0.0657018i
\(372\) −0.723649 0.339647i −0.0375195 0.0176099i
\(373\) 16.4846i 0.853541i 0.904360 + 0.426771i \(0.140349\pi\)
−0.904360 + 0.426771i \(0.859651\pi\)
\(374\) 4.25542 + 0.948984i 0.220043 + 0.0490708i
\(375\) 15.8522 27.7183i 0.818603 1.43137i
\(376\) −16.4292 + 2.10033i −0.847272 + 0.108316i
\(377\) −17.3576 17.3576i −0.893964 0.893964i
\(378\) −4.77180 + 3.03160i −0.245435 + 0.155929i
\(379\) −13.7716 13.7716i −0.707401 0.707401i 0.258587 0.965988i \(-0.416743\pi\)
−0.965988 + 0.258587i \(0.916743\pi\)
\(380\) −8.77726 + 24.0305i −0.450264 + 1.23274i
\(381\) 1.75870 1.75870i 0.0901011 0.0901011i
\(382\) 20.8530 + 4.65034i 1.06693 + 0.237932i
\(383\) 11.5530 11.5530i 0.590332 0.590332i −0.347389 0.937721i \(-0.612932\pi\)
0.937721 + 0.347389i \(0.112932\pi\)
\(384\) 1.12707 + 32.2924i 0.0575153 + 1.64791i
\(385\) −0.775562 0.648972i −0.0395263 0.0330747i
\(386\) −7.07604 + 4.49552i −0.360161 + 0.228816i
\(387\) 38.6722 1.96582
\(388\) 13.1838 4.76123i 0.669305 0.241715i
\(389\) −15.7728 + 15.7728i −0.799712 + 0.799712i −0.983050 0.183338i \(-0.941310\pi\)
0.183338 + 0.983050i \(0.441310\pi\)
\(390\) −32.3915 + 24.8608i −1.64021 + 1.25888i
\(391\) 11.3029 0.571612
\(392\) 14.7200 + 11.3829i 0.743470 + 0.574925i
\(393\) −27.2867 + 27.2867i −1.37643 + 1.37643i
\(394\) 1.24107 5.56517i 0.0625240 0.280369i
\(395\) −5.54512 + 6.62677i −0.279006 + 0.333429i
\(396\) −6.75991 + 2.44129i −0.339698 + 0.122680i
\(397\) 29.9558i 1.50344i −0.659483 0.751720i \(-0.729225\pi\)
0.659483 0.751720i \(-0.270775\pi\)
\(398\) −7.49583 1.67161i −0.375732 0.0837904i
\(399\) −10.6030 −0.530815
\(400\) 12.8905 15.2917i 0.644523 0.764585i
\(401\) 19.9241 0.994963 0.497481 0.867475i \(-0.334258\pi\)
0.497481 + 0.867475i \(0.334258\pi\)
\(402\) −13.1147 2.92465i −0.654102 0.145868i
\(403\) 0.632724i 0.0315182i
\(404\) 1.77291 + 4.90915i 0.0882054 + 0.244239i
\(405\) 3.04508 3.63906i 0.151311 0.180826i
\(406\) −1.08463 + 4.86369i −0.0538294 + 0.241381i
\(407\) −2.87936 + 2.87936i −0.142725 + 0.142725i
\(408\) −35.4485 + 4.53179i −1.75496 + 0.224357i
\(409\) 5.89856 0.291665 0.145832 0.989309i \(-0.453414\pi\)
0.145832 + 0.989309i \(0.453414\pi\)
\(410\) 11.4303 8.77287i 0.564502 0.433261i
\(411\) 10.5751 10.5751i 0.521634 0.521634i
\(412\) 11.2075 + 31.0333i 0.552152 + 1.52890i
\(413\) 3.32717 0.163720
\(414\) −15.7269 + 9.99156i −0.772936 + 0.491058i
\(415\) 24.8141 + 20.7638i 1.21808 + 1.01926i
\(416\) −22.7588 + 11.6674i −1.11584 + 0.572039i
\(417\) −15.6155 + 15.6155i −0.764696 + 0.764696i
\(418\) −5.50264 1.22712i −0.269143 0.0600204i
\(419\) 8.24430 8.24430i 0.402760 0.402760i −0.476444 0.879205i \(-0.658075\pi\)
0.879205 + 0.476444i \(0.158075\pi\)
\(420\) 7.78590 + 2.84383i 0.379913 + 0.138765i
\(421\) −17.1776 17.1776i −0.837184 0.837184i 0.151304 0.988487i \(-0.451653\pi\)
−0.988487 + 0.151304i \(0.951653\pi\)
\(422\) −5.45297 + 3.46436i −0.265447 + 0.168642i
\(423\) 21.3528 + 21.3528i 1.03821 + 1.03821i
\(424\) 6.17034 + 4.77152i 0.299658 + 0.231725i
\(425\) 18.1542 + 12.6380i 0.880607 + 0.613031i
\(426\) −5.40296 1.20489i −0.261774 0.0583772i
\(427\) 3.42135i 0.165571i
\(428\) 13.0104 27.7198i 0.628881 1.33989i
\(429\) −6.36269 6.36269i −0.307194 0.307194i
\(430\) −14.4388 18.8126i −0.696303 0.907222i
\(431\) 32.1769i 1.54990i 0.632020 + 0.774952i \(0.282226\pi\)
−0.632020 + 0.774952i \(0.717774\pi\)
\(432\) 18.9536 15.7432i 0.911904 0.757445i
\(433\) −20.3383 20.3383i −0.977396 0.977396i 0.0223540 0.999750i \(-0.492884\pi\)
−0.999750 + 0.0223540i \(0.992884\pi\)
\(434\) −0.108415 + 0.0688775i −0.00520407 + 0.00330623i
\(435\) −3.06921 34.5381i −0.147158 1.65598i
\(436\) −11.9898 33.1995i −0.574206 1.58997i
\(437\) −14.6156 −0.699161
\(438\) 12.2957 7.81163i 0.587510 0.373254i
\(439\) 35.4180i 1.69041i 0.534444 + 0.845204i \(0.320521\pi\)
−0.534444 + 0.845204i \(0.679479\pi\)
\(440\) 3.71151 + 2.37695i 0.176940 + 0.113317i
\(441\) 33.9256i 1.61550i
\(442\) −15.1683 23.8752i −0.721481 1.13563i
\(443\) −3.03787 −0.144333 −0.0721667 0.997393i \(-0.522991\pi\)
−0.0721667 + 0.997393i \(0.522991\pi\)
\(444\) 14.1813 30.2145i 0.673014 1.43392i
\(445\) −4.80733 + 5.74507i −0.227890 + 0.272342i
\(446\) −8.76567 13.7974i −0.415067 0.653324i
\(447\) 12.0398 + 12.0398i 0.569463 + 0.569463i
\(448\) 4.47664 + 2.62953i 0.211502 + 0.124234i
\(449\) 8.65559i 0.408483i 0.978921 + 0.204241i \(0.0654727\pi\)
−0.978921 + 0.204241i \(0.934527\pi\)
\(450\) −36.4316 1.53658i −1.71740 0.0724349i
\(451\) 2.24526 + 2.24526i 0.105725 + 0.105725i
\(452\) −2.43601 6.74527i −0.114580 0.317271i
\(453\) 35.5335i 1.66951i
\(454\) 0.474247 2.12661i 0.0222575 0.0998068i
\(455\) 0.580733 + 6.53504i 0.0272252 + 0.306367i
\(456\) 45.8381 5.86000i 2.14656 0.274420i
\(457\) −13.5575 13.5575i −0.634193 0.634193i 0.314924 0.949117i \(-0.398021\pi\)
−0.949117 + 0.314924i \(0.898021\pi\)
\(458\) −18.8379 29.6512i −0.880236 1.38551i
\(459\) 19.2692 + 19.2692i 0.899411 + 0.899411i
\(460\) 10.7324 + 3.92006i 0.500401 + 0.182774i
\(461\) −1.19682 + 1.19682i −0.0557416 + 0.0557416i −0.734428 0.678687i \(-0.762550\pi\)
0.678687 + 0.734428i \(0.262550\pi\)
\(462\) −0.397587 + 1.78286i −0.0184974 + 0.0829459i
\(463\) −21.1815 + 21.1815i −0.984390 + 0.984390i −0.999880 0.0154904i \(-0.995069\pi\)
0.0154904 + 0.999880i \(0.495069\pi\)
\(464\) 2.00096 21.6258i 0.0928921 1.00395i
\(465\) 0.573555 0.685435i 0.0265980 0.0317863i
\(466\) 10.7144 + 16.8647i 0.496334 + 0.781241i
\(467\) 24.8448 1.14968 0.574840 0.818266i \(-0.305064\pi\)
0.574840 + 0.818266i \(0.305064\pi\)
\(468\) 42.2105 + 19.8116i 1.95118 + 0.915792i
\(469\) −1.52664 + 1.52664i −0.0704936 + 0.0704936i
\(470\) 2.41494 18.3598i 0.111393 0.846873i
\(471\) 21.4343 0.987642
\(472\) −14.3838 + 1.83884i −0.662066 + 0.0846394i
\(473\) 3.69537 3.69537i 0.169913 0.169913i
\(474\) 15.2336 + 3.39717i 0.699701 + 0.156037i
\(475\) −23.4749 16.3420i −1.07710 0.749822i
\(476\) −2.43972 + 5.19804i −0.111824 + 0.238252i
\(477\) 14.2210i 0.651135i
\(478\) −8.08825 + 36.2692i −0.369948 + 1.65892i
\(479\) −23.5766 −1.07724 −0.538621 0.842548i \(-0.681054\pi\)
−0.538621 + 0.842548i \(0.681054\pi\)
\(480\) −35.2310 7.99116i −1.60807 0.364745i
\(481\) 26.4181 1.20456
\(482\) 0.0348578 0.156309i 0.00158773 0.00711967i
\(483\) 4.73547i 0.215471i
\(484\) 8.93472 19.0362i 0.406124 0.865284i
\(485\) 1.38719 + 15.6102i 0.0629891 + 0.708821i
\(486\) 17.1417 + 3.82271i 0.777565 + 0.173401i
\(487\) −2.63011 + 2.63011i −0.119182 + 0.119182i −0.764182 0.645001i \(-0.776857\pi\)
0.645001 + 0.764182i \(0.276857\pi\)
\(488\) −1.89089 14.7909i −0.0855964 0.669552i
\(489\) 67.7686 3.06460
\(490\) −16.5035 + 12.6666i −0.745553 + 0.572221i
\(491\) −18.6899 + 18.6899i −0.843465 + 0.843465i −0.989308 0.145843i \(-0.953411\pi\)
0.145843 + 0.989308i \(0.453411\pi\)
\(492\) −23.5606 11.0582i −1.06219 0.498544i
\(493\) 24.0202 1.08182
\(494\) 19.6139 + 30.8727i 0.882472 + 1.38903i
\(495\) −0.711274 8.00403i −0.0319694 0.359754i
\(496\) 0.430623 0.357683i 0.0193355 0.0160605i
\(497\) −0.628940 + 0.628940i −0.0282118 + 0.0282118i
\(498\) 12.7208 57.0424i 0.570032 2.55613i
\(499\) −9.69342 + 9.69342i −0.433937 + 0.433937i −0.889965 0.456028i \(-0.849272\pi\)
0.456028 + 0.889965i \(0.349272\pi\)
\(500\) 12.8548 + 18.2963i 0.574884 + 0.818235i
\(501\) −1.15090 1.15090i −0.0514185 0.0514185i
\(502\) 20.6154 + 32.4491i 0.920110 + 1.44827i
\(503\) −13.0434 13.0434i −0.581577 0.581577i 0.353759 0.935336i \(-0.384903\pi\)
−0.935336 + 0.353759i \(0.884903\pi\)
\(504\) −1.20034 9.38926i −0.0534672 0.418231i
\(505\) −5.81265 + 0.516538i −0.258659 + 0.0229856i
\(506\) −0.548051 + 2.45756i −0.0243638 + 0.109252i
\(507\) 21.2495i 0.943724i
\(508\) 0.591611 + 1.63816i 0.0262485 + 0.0726817i
\(509\) −25.8539 25.8539i −1.14595 1.14595i −0.987341 0.158611i \(-0.949298\pi\)
−0.158611 0.987341i \(-0.550702\pi\)
\(510\) 5.21061 39.6140i 0.230730 1.75414i
\(511\) 2.34062i 0.103543i
\(512\) −20.8063 8.89365i −0.919518 0.393047i
\(513\) −24.9168 24.9168i −1.10010 1.10010i
\(514\) −0.812734 1.27926i −0.0358481 0.0564258i
\(515\) −36.7448 + 3.26531i −1.61917 + 0.143887i
\(516\) −18.2002 + 38.7773i −0.801221 + 1.70707i
\(517\) 4.08080 0.179473
\(518\) −2.87584 4.52664i −0.126357 0.198889i
\(519\) 44.1252i 1.93688i
\(520\) −6.12232 27.9308i −0.268481 1.22485i
\(521\) 25.0528i 1.09758i −0.835959 0.548792i \(-0.815088\pi\)
0.835959 0.548792i \(-0.184912\pi\)
\(522\) −33.4218 + 21.2334i −1.46283 + 0.929361i
\(523\) 40.3434 1.76410 0.882048 0.471160i \(-0.156165\pi\)
0.882048 + 0.471160i \(0.156165\pi\)
\(524\) −9.17898 25.4165i −0.400986 1.11032i
\(525\) −5.29481 + 7.60588i −0.231084 + 0.331948i
\(526\) −9.67325 + 6.14556i −0.421774 + 0.267959i
\(527\) 0.437794 + 0.437794i 0.0190706 + 0.0190706i
\(528\) 0.733479 7.92723i 0.0319206 0.344988i
\(529\) 16.4724i 0.716192i
\(530\) −6.91798 + 5.30963i −0.300498 + 0.230636i
\(531\) 18.6944 + 18.6944i 0.811267 + 0.811267i
\(532\) 3.15477 6.72153i 0.136777 0.291415i
\(533\) 20.6003i 0.892296i
\(534\) 13.2067 + 2.94517i 0.571510 + 0.127450i
\(535\) 26.2560 + 21.9704i 1.13515 + 0.949862i
\(536\) 5.75610 7.44356i 0.248626 0.321513i
\(537\) 14.8639 + 14.8639i 0.641425 + 0.641425i
\(538\) −16.5247 + 10.4984i −0.712430 + 0.452618i
\(539\) −3.24180 3.24180i −0.139634 0.139634i
\(540\) 11.6137 + 24.9796i 0.499775 + 1.07495i
\(541\) −24.7446 + 24.7446i −1.06385 + 1.06385i −0.0660360 + 0.997817i \(0.521035\pi\)
−0.997817 + 0.0660360i \(0.978965\pi\)
\(542\) 5.66146 + 1.26254i 0.243181 + 0.0542307i
\(543\) 25.9590 25.9590i 1.11401 1.11401i
\(544\) 7.67437 23.8201i 0.329036 1.02128i
\(545\) 39.3097 3.49324i 1.68384 0.149634i
\(546\) 10.0028 6.35491i 0.428079 0.271965i
\(547\) 19.0254 0.813465 0.406733 0.913547i \(-0.366668\pi\)
0.406733 + 0.913547i \(0.366668\pi\)
\(548\) 3.55738 + 9.85034i 0.151964 + 0.420786i
\(549\) −19.2235 + 19.2235i −0.820440 + 0.820440i
\(550\) −3.62809 + 3.33444i −0.154702 + 0.142181i
\(551\) −31.0602 −1.32321
\(552\) −2.61717 20.4720i −0.111394 0.871346i
\(553\) 1.77329 1.77329i 0.0754079 0.0754079i
\(554\) −7.59554 + 34.0598i −0.322704 + 1.44706i
\(555\) 28.6189 + 23.9476i 1.21481 + 1.01652i
\(556\) −5.25292 14.5453i −0.222773 0.616856i
\(557\) 30.9517i 1.31146i −0.754993 0.655732i \(-0.772360\pi\)
0.754993 0.655732i \(-0.227640\pi\)
\(558\) −0.996151 0.222148i −0.0421704 0.00940425i
\(559\) −33.9050 −1.43403
\(560\) −4.11936 + 4.08954i −0.174075 + 0.172815i
\(561\) 8.80494 0.371745
\(562\) −32.6702 7.28565i −1.37811 0.307327i
\(563\) 3.50238i 0.147608i 0.997273 + 0.0738039i \(0.0235139\pi\)
−0.997273 + 0.0738039i \(0.976486\pi\)
\(564\) −31.4601 + 11.3616i −1.32471 + 0.478410i
\(565\) 7.98670 0.709734i 0.336003 0.0298587i
\(566\) −4.01676 + 18.0119i −0.168837 + 0.757097i
\(567\) −0.973793 + 0.973793i −0.0408955 + 0.0408955i
\(568\) 2.37138 3.06658i 0.0995011 0.128671i
\(569\) −0.525780 −0.0220418 −0.0110209 0.999939i \(-0.503508\pi\)
−0.0110209 + 0.999939i \(0.503508\pi\)
\(570\) −6.73778 + 51.2244i −0.282214 + 2.14555i
\(571\) −11.2487 + 11.2487i −0.470743 + 0.470743i −0.902155 0.431412i \(-0.858016\pi\)
0.431412 + 0.902155i \(0.358016\pi\)
\(572\) 5.92660 2.14035i 0.247804 0.0894926i
\(573\) 43.1472 1.80250
\(574\) −3.52977 + 2.24252i −0.147330 + 0.0936008i
\(575\) −7.29859 + 10.4843i −0.304372 + 0.437224i
\(576\) 10.3784 + 39.9275i 0.432432 + 1.66364i
\(577\) −2.92884 + 2.92884i −0.121929 + 0.121929i −0.765438 0.643509i \(-0.777478\pi\)
0.643509 + 0.765438i \(0.277478\pi\)
\(578\) 3.54971 + 0.791607i 0.147649 + 0.0329265i
\(579\) −11.9714 + 11.9714i −0.497515 + 0.497515i
\(580\) 22.8078 + 8.33065i 0.947043 + 0.345912i
\(581\) −6.64011 6.64011i −0.275478 0.275478i
\(582\) 23.8935 15.1799i 0.990416 0.629227i
\(583\) −1.35891 1.35891i −0.0562801 0.0562801i
\(584\) 1.29360 + 10.1188i 0.0535295 + 0.418718i
\(585\) −33.4555 + 39.9814i −1.38321 + 1.65303i
\(586\) 43.7186 + 9.74951i 1.80600 + 0.402748i
\(587\) 23.1574i 0.955809i −0.878412 0.477905i \(-0.841396\pi\)
0.878412 0.477905i \(-0.158604\pi\)
\(588\) 34.0178 + 15.9664i 1.40287 + 0.658442i
\(589\) −0.566106 0.566106i −0.0233260 0.0233260i
\(590\) 2.11428 16.0740i 0.0870436 0.661754i
\(591\) 11.5150i 0.473662i
\(592\) 14.9343 + 17.9798i 0.613798 + 0.738964i
\(593\) −13.9325 13.9325i −0.572141 0.572141i 0.360585 0.932726i \(-0.382577\pi\)
−0.932726 + 0.360585i \(0.882577\pi\)
\(594\) −5.12398 + 3.25534i −0.210240 + 0.133568i
\(595\) −4.92354 4.11990i −0.201846 0.168900i
\(596\) −11.2146 + 4.05008i −0.459368 + 0.165898i
\(597\) −15.5097 −0.634769
\(598\) 13.7882 8.75988i 0.563843 0.358218i
\(599\) 33.5311i 1.37004i −0.728523 0.685021i \(-0.759793\pi\)
0.728523 0.685021i \(-0.240207\pi\)
\(600\) 18.6865 35.8074i 0.762873 1.46183i
\(601\) 19.4164i 0.792011i 0.918248 + 0.396005i \(0.129604\pi\)
−0.918248 + 0.396005i \(0.870396\pi\)
\(602\) 3.69085 + 5.80948i 0.150428 + 0.236777i
\(603\) −17.1554 −0.698623
\(604\) −22.5256 10.5725i −0.916554 0.430187i
\(605\) 18.0310 + 15.0879i 0.733063 + 0.613409i
\(606\) 5.65243 + 8.89705i 0.229614 + 0.361418i
\(607\) −9.51495 9.51495i −0.386200 0.386200i 0.487130 0.873330i \(-0.338044\pi\)
−0.873330 + 0.487130i \(0.838044\pi\)
\(608\) −9.92363 + 30.8015i −0.402456 + 1.24917i
\(609\) 10.0635i 0.407794i
\(610\) 16.5289 + 2.17412i 0.669236 + 0.0880277i
\(611\) −18.7206 18.7206i −0.757355 0.757355i
\(612\) −42.9143 + 15.4982i −1.73471 + 0.626478i
\(613\) 9.37947i 0.378833i −0.981897 0.189417i \(-0.939340\pi\)
0.981897 0.189417i \(-0.0606597\pi\)
\(614\) 8.42177 37.7648i 0.339875 1.52406i
\(615\) 18.6738 22.3164i 0.753002 0.899884i
\(616\) −1.01190 0.782503i −0.0407707 0.0315280i
\(617\) −3.54768 3.54768i −0.142824 0.142824i 0.632079 0.774904i \(-0.282202\pi\)
−0.774904 + 0.632079i \(0.782202\pi\)
\(618\) 35.7319 + 56.2428i 1.43735 + 2.26242i
\(619\) 24.6158 + 24.6158i 0.989392 + 0.989392i 0.999944 0.0105527i \(-0.00335910\pi\)
−0.0105527 + 0.999944i \(0.503359\pi\)
\(620\) 0.263862 + 0.567533i 0.0105970 + 0.0227927i
\(621\) −11.1282 + 11.1282i −0.446561 + 0.446561i
\(622\) 4.86585 21.8194i 0.195103 0.874877i
\(623\) 1.53735 1.53735i 0.0615926 0.0615926i
\(624\) −39.7309 + 33.0013i −1.59051 + 1.32111i
\(625\) −23.4453 + 8.67867i −0.937811 + 0.347147i
\(626\) −14.8420 23.3617i −0.593206 0.933720i
\(627\) −11.3856 −0.454695
\(628\) −6.37747 + 13.5878i −0.254489 + 0.542211i
\(629\) −18.2792 + 18.2792i −0.728840 + 0.728840i
\(630\) 10.4926 + 1.38014i 0.418034 + 0.0549859i
\(631\) −28.8921 −1.15018 −0.575088 0.818092i \(-0.695032\pi\)
−0.575088 + 0.818092i \(0.695032\pi\)
\(632\) −6.68608 + 8.64618i −0.265958 + 0.343927i
\(633\) −9.22547 + 9.22547i −0.366679 + 0.366679i
\(634\) −48.3235 10.7764i −1.91917 0.427986i
\(635\) −1.93966 + 0.172367i −0.0769729 + 0.00684016i
\(636\) 14.2596 + 6.69281i 0.565432 + 0.265387i
\(637\) 29.7435i 1.17848i
\(638\) −1.16468 + 5.22265i −0.0461102 + 0.206767i
\(639\) −7.06765 −0.279592
\(640\) 15.5483 19.9562i 0.614600 0.788839i
\(641\) −16.6914 −0.659271 −0.329636 0.944108i \(-0.606926\pi\)
−0.329636 + 0.944108i \(0.606926\pi\)
\(642\) 13.4600 60.3570i 0.531223 2.38210i
\(643\) 5.22468i 0.206041i −0.994679 0.103021i \(-0.967149\pi\)
0.994679 0.103021i \(-0.0328507\pi\)
\(644\) −3.00194 1.40897i −0.118293 0.0555212i
\(645\) −36.7295 30.7343i −1.44622 1.21016i
\(646\) −34.9327 7.79019i −1.37441 0.306501i
\(647\) 21.6797 21.6797i 0.852318 0.852318i −0.138100 0.990418i \(-0.544100\pi\)
0.990418 + 0.138100i \(0.0440996\pi\)
\(648\) 3.67163 4.74801i 0.144235 0.186519i
\(649\) 3.57273 0.140242
\(650\) 31.9406 + 1.34716i 1.25281 + 0.0528399i
\(651\) −0.183418 + 0.183418i −0.00718874 + 0.00718874i
\(652\) −20.1636 + 42.9603i −0.789666 + 1.68245i
\(653\) 22.7642 0.890833 0.445417 0.895323i \(-0.353056\pi\)
0.445417 + 0.895323i \(0.353056\pi\)
\(654\) −38.2261 60.1688i −1.49476 2.35279i
\(655\) 30.0942 2.67431i 1.17588 0.104494i
\(656\) 14.0202 11.6455i 0.547398 0.454679i
\(657\) 13.1513 13.1513i 0.513079 0.513079i
\(658\) −1.16980 + 5.24560i −0.0456036 + 0.204495i
\(659\) −1.66201 + 1.66201i −0.0647427 + 0.0647427i −0.738737 0.673994i \(-0.764577\pi\)
0.673994 + 0.738737i \(0.264577\pi\)
\(660\) 8.36053 + 3.05372i 0.325433 + 0.118866i
\(661\) −5.62818 5.62818i −0.218911 0.218911i 0.589129 0.808039i \(-0.299471\pi\)
−0.808039 + 0.589129i \(0.799471\pi\)
\(662\) 18.0406 + 28.3963i 0.701168 + 1.10365i
\(663\) −40.3926 40.3926i −1.56872 1.56872i
\(664\) 32.3758 + 25.0362i 1.25642 + 0.971591i
\(665\) 6.36657 + 5.32739i 0.246885 + 0.206587i
\(666\) 9.27532 41.5923i 0.359411 1.61167i
\(667\) 13.8720i 0.537125i
\(668\) 1.07202 0.387153i 0.0414777 0.0149794i
\(669\) −23.3427 23.3427i −0.902481 0.902481i
\(670\) 6.40525 + 8.34548i 0.247456 + 0.322414i
\(671\) 3.67386i 0.141828i
\(672\) 9.97969 + 3.21526i 0.384975 + 0.124031i
\(673\) 0.278251 + 0.278251i 0.0107258 + 0.0107258i 0.712449 0.701724i \(-0.247586\pi\)
−0.701724 + 0.712449i \(0.747586\pi\)
\(674\) 15.5494 + 24.4751i 0.598940 + 0.942744i
\(675\) −30.3163 + 5.43097i −1.16687 + 0.209038i
\(676\) −13.4706 6.32248i −0.518101 0.243172i
\(677\) 26.3591 1.01306 0.506531 0.862222i \(-0.330928\pi\)
0.506531 + 0.862222i \(0.330928\pi\)
\(678\) −7.76655 12.2247i −0.298273 0.469488i
\(679\) 4.54840i 0.174551i
\(680\) 23.5620 + 15.0897i 0.903562 + 0.578664i
\(681\) 4.40019i 0.168616i
\(682\) −0.116416 + 0.0739609i −0.00445780 + 0.00283211i
\(683\) −2.83023 −0.108296 −0.0541479 0.998533i \(-0.517244\pi\)
−0.0541479 + 0.998533i \(0.517244\pi\)
\(684\) 55.4919 20.0405i 2.12179 0.766269i
\(685\) −11.6632 + 1.03645i −0.445629 + 0.0396006i
\(686\) 10.5191 6.68296i 0.401622 0.255157i
\(687\) −50.1646 50.1646i −1.91390 1.91390i
\(688\) −19.1667 23.0752i −0.730724 0.879734i
\(689\) 12.4679i 0.474991i
\(690\) 22.8776 + 3.00920i 0.870935 + 0.114558i
\(691\) 22.1815 + 22.1815i 0.843825 + 0.843825i 0.989354 0.145529i \(-0.0464884\pi\)
−0.145529 + 0.989354i \(0.546488\pi\)
\(692\) 27.9721 + 13.1288i 1.06334 + 0.499083i
\(693\) 2.33217i 0.0885917i
\(694\) −23.1484 5.16223i −0.878702 0.195956i
\(695\) 17.2222 1.53044i 0.653276 0.0580531i
\(696\) −5.56183 43.5057i −0.210821 1.64908i
\(697\) 14.2537 + 14.2537i 0.539898 + 0.539898i
\(698\) −3.14560 + 1.99845i −0.119063 + 0.0756423i
\(699\) 28.5320 + 28.5320i 1.07918 + 1.07918i
\(700\) −3.24618 5.61953i −0.122694 0.212398i
\(701\) 16.2264 16.2264i 0.612864 0.612864i −0.330828 0.943691i \(-0.607328\pi\)
0.943691 + 0.330828i \(0.107328\pi\)
\(702\) 38.4401 + 8.57237i 1.45083 + 0.323543i
\(703\) 23.6366 23.6366i 0.891472 0.891472i
\(704\) 4.80704 + 2.82360i 0.181172 + 0.106418i
\(705\) −3.31022 37.2502i −0.124670 1.40292i
\(706\) −40.7449 + 25.8858i −1.53345 + 0.974226i
\(707\) 1.69365 0.0636965
\(708\) −27.5433 + 9.94708i −1.03514 + 0.373834i
\(709\) 25.3577 25.3577i 0.952329 0.952329i −0.0465856 0.998914i \(-0.514834\pi\)
0.998914 + 0.0465856i \(0.0148340\pi\)
\(710\) 2.63882 + 3.43815i 0.0990331 + 0.129031i
\(711\) 19.9271 0.747326
\(712\) −5.79648 + 7.49579i −0.217232 + 0.280916i
\(713\) −0.252832 + 0.252832i −0.00946863 + 0.00946863i
\(714\) −2.52402 + 11.3182i −0.0944592 + 0.423573i
\(715\) 0.623594 + 7.01735i 0.0233211 + 0.262434i
\(716\) −13.8452 + 5.00009i −0.517418 + 0.186862i
\(717\) 75.0450i 2.80261i
\(718\) 16.9088 + 3.77076i 0.631031 + 0.140724i
\(719\) 41.3374 1.54163 0.770813 0.637061i \(-0.219850\pi\)
0.770813 + 0.637061i \(0.219850\pi\)
\(720\) −46.1233 0.167529i −1.71892 0.00624342i
\(721\) 10.7065 0.398730
\(722\) 18.9452 + 4.22489i 0.705067 + 0.157234i
\(723\) 0.323420i 0.0120281i
\(724\) 8.73236 + 24.1798i 0.324536 + 0.898635i
\(725\) −15.5105 + 22.2805i −0.576045 + 0.827477i
\(726\) 9.24346 41.4494i 0.343057 1.53833i
\(727\) −23.4630 + 23.4630i −0.870193 + 0.870193i −0.992493 0.122300i \(-0.960973\pi\)
0.122300 + 0.992493i \(0.460973\pi\)
\(728\) 1.05237 + 8.23182i 0.0390033 + 0.305092i
\(729\) 41.8342 1.54942
\(730\) −11.3078 1.48737i −0.418521 0.0550500i
\(731\) 23.4595 23.4595i 0.867681 0.867681i
\(732\) −10.2286 28.3229i −0.378061 1.04684i
\(733\) −15.1628 −0.560051 −0.280025 0.959993i \(-0.590343\pi\)
−0.280025 + 0.959993i \(0.590343\pi\)
\(734\) −4.58000 + 2.90975i −0.169051 + 0.107401i
\(735\) −26.9621 + 32.2214i −0.994511 + 1.18850i
\(736\) 13.7564 + 4.43205i 0.507069 + 0.163368i
\(737\) −1.63931 + 1.63931i −0.0603848 + 0.0603848i
\(738\) −32.4327 7.23269i −1.19387 0.266239i
\(739\) −0.974343 + 0.974343i −0.0358418 + 0.0358418i −0.724801 0.688959i \(-0.758068\pi\)
0.688959 + 0.724801i \(0.258068\pi\)
\(740\) −23.6962 + 11.0170i −0.871089 + 0.404994i
\(741\) 52.2312 + 52.2312i 1.91876 + 1.91876i
\(742\) 2.13633 1.35724i 0.0784272 0.0498260i
\(743\) 29.0897 + 29.0897i 1.06720 + 1.06720i 0.997573 + 0.0696259i \(0.0221806\pi\)
0.0696259 + 0.997573i \(0.477819\pi\)
\(744\) 0.691569 0.894310i 0.0253541 0.0327870i
\(745\) −1.18000 13.2786i −0.0432317 0.486490i
\(746\) −22.7538 5.07424i −0.833078 0.185781i
\(747\) 74.6176i 2.73011i
\(748\) −2.61978 + 5.58168i −0.0957887 + 0.204087i
\(749\) −7.02596 7.02596i −0.256723 0.256723i
\(750\) 33.3803 + 30.4130i 1.21887 + 1.11053i
\(751\) 7.77705i 0.283789i 0.989882 + 0.141894i \(0.0453193\pi\)
−0.989882 + 0.141894i \(0.954681\pi\)
\(752\) 2.15808 23.3239i 0.0786970 0.850534i
\(753\) 54.8981 + 54.8981i 2.00060 + 2.00060i
\(754\) 29.3019 18.6159i 1.06711 0.677952i
\(755\) 17.8535 21.3361i 0.649755 0.776498i
\(756\) −2.71570 7.51973i −0.0987690 0.273490i
\(757\) 1.42073 0.0516372 0.0258186 0.999667i \(-0.491781\pi\)
0.0258186 + 0.999667i \(0.491781\pi\)
\(758\) 23.2482 14.7699i 0.844413 0.536469i
\(759\) 5.08497i 0.184573i
\(760\) −30.4677 19.5123i −1.10518 0.707786i
\(761\) 26.6737i 0.966921i 0.875366 + 0.483460i \(0.160620\pi\)
−0.875366 + 0.483460i \(0.839380\pi\)
\(762\) 1.88619 + 2.96891i 0.0683295 + 0.107552i
\(763\) −11.4538 −0.414656
\(764\) −12.8378 + 27.3521i −0.464456 + 0.989565i
\(765\) −4.51542 50.8124i −0.163255 1.83713i
\(766\) 12.3905 + 19.5029i 0.447687 + 0.704669i
\(767\) −16.3899 16.3899i −0.591805