Properties

Label 80.2.j.b.43.3
Level $80$
Weight $2$
Character 80.43
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.3
Root \(-0.635486 + 1.26339i\) of defining polynomial
Character \(\chi\) \(=\) 80.43
Dual form 80.2.j.b.67.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.14628 - 0.828280i) q^{2} +0.692712i q^{3} +(0.627905 + 1.89888i) q^{4} +(2.22257 - 0.245325i) q^{5} +(0.573759 - 0.794040i) q^{6} +(-0.343872 + 0.343872i) q^{7} +(0.853049 - 2.69672i) q^{8} +2.52015 q^{9} +O(q^{10})\) \(q+(-1.14628 - 0.828280i) q^{2} +0.692712i q^{3} +(0.627905 + 1.89888i) q^{4} +(2.22257 - 0.245325i) q^{5} +(0.573759 - 0.794040i) q^{6} +(-0.343872 + 0.343872i) q^{7} +(0.853049 - 2.69672i) q^{8} +2.52015 q^{9} +(-2.75088 - 1.55970i) q^{10} +(0.843672 - 0.843672i) q^{11} +(-1.31538 + 0.434957i) q^{12} -3.68390 q^{13} +(0.678995 - 0.109350i) q^{14} +(0.169939 + 1.53960i) q^{15} +(-3.21147 + 2.38463i) q^{16} +(0.412137 - 0.412137i) q^{17} +(-2.88879 - 2.08739i) q^{18} +(-5.37721 + 5.37721i) q^{19} +(1.86140 + 4.06635i) q^{20} +(-0.238204 - 0.238204i) q^{21} +(-1.66588 + 0.268286i) q^{22} +(-3.08788 - 3.08788i) q^{23} +(1.86805 + 0.590917i) q^{24} +(4.87963 - 1.09050i) q^{25} +(4.22278 + 3.05130i) q^{26} +3.82387i q^{27} +(-0.868890 - 0.437052i) q^{28} +(-4.22969 - 4.22969i) q^{29} +(1.08042 - 1.90557i) q^{30} -8.75966i q^{31} +(5.65638 - 0.0734474i) q^{32} +(0.584422 + 0.584422i) q^{33} +(-0.813788 + 0.131059i) q^{34} +(-0.679919 + 0.848640i) q^{35} +(1.58241 + 4.78546i) q^{36} -5.41752 q^{37} +(10.6176 - 1.70994i) q^{38} -2.55188i q^{39} +(1.23439 - 6.20293i) q^{40} -2.54777i q^{41} +(0.0757484 + 0.470348i) q^{42} +4.30732 q^{43} +(2.13178 + 1.07228i) q^{44} +(5.60121 - 0.618255i) q^{45} +(0.981939 + 6.09720i) q^{46} +(4.56972 + 4.56972i) q^{47} +(-1.65186 - 2.22462i) q^{48} +6.76350i q^{49} +(-6.49665 - 2.79168i) q^{50} +(0.285492 + 0.285492i) q^{51} +(-2.31314 - 6.99528i) q^{52} +6.07536i q^{53} +(3.16724 - 4.38322i) q^{54} +(1.66815 - 2.08209i) q^{55} +(0.633987 + 1.22067i) q^{56} +(-3.72486 - 3.72486i) q^{57} +(1.34503 + 8.35177i) q^{58} +(-7.33694 - 7.33694i) q^{59} +(-2.81681 + 1.28942i) q^{60} +(-4.81576 + 4.81576i) q^{61} +(-7.25545 + 10.0410i) q^{62} +(-0.866609 + 0.866609i) q^{63} +(-6.54461 - 4.60087i) q^{64} +(-8.18773 + 0.903753i) q^{65} +(-0.185845 - 1.15397i) q^{66} +14.3626 q^{67} +(1.04138 + 0.523815i) q^{68} +(2.13901 - 2.13901i) q^{69} +(1.48229 - 0.409613i) q^{70} -2.97605 q^{71} +(2.14981 - 6.79614i) q^{72} +(-6.87152 + 6.87152i) q^{73} +(6.20998 + 4.48722i) q^{74} +(0.755404 + 3.38018i) q^{75} +(-13.5870 - 6.83429i) q^{76} +0.580231i q^{77} +(-2.11367 + 2.92517i) q^{78} +10.1654 q^{79} +(-6.55271 + 6.08785i) q^{80} +4.91161 q^{81} +(-2.11027 + 2.92046i) q^{82} -7.15276i q^{83} +(0.302751 - 0.601890i) q^{84} +(0.814896 - 1.01711i) q^{85} +(-4.93739 - 3.56767i) q^{86} +(2.92996 - 2.92996i) q^{87} +(-1.55545 - 2.99484i) q^{88} +1.10953 q^{89} +(-6.93263 - 3.93068i) q^{90} +(1.26679 - 1.26679i) q^{91} +(3.92461 - 7.80240i) q^{92} +6.06792 q^{93} +(-1.45316 - 9.02318i) q^{94} +(-10.6321 + 13.2704i) q^{95} +(0.0508779 + 3.91824i) q^{96} +(7.15920 - 7.15920i) q^{97} +(5.60207 - 7.75285i) q^{98} +(2.12618 - 2.12618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10}) \) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14628 0.828280i −0.810541 0.585682i
\(3\) 0.692712i 0.399937i 0.979802 + 0.199969i \(0.0640841\pi\)
−0.979802 + 0.199969i \(0.935916\pi\)
\(4\) 0.627905 + 1.89888i 0.313952 + 0.949439i
\(5\) 2.22257 0.245325i 0.993963 0.109713i
\(6\) 0.573759 0.794040i 0.234236 0.324166i
\(7\) −0.343872 + 0.343872i −0.129971 + 0.129971i −0.769100 0.639129i \(-0.779295\pi\)
0.639129 + 0.769100i \(0.279295\pi\)
\(8\) 0.853049 2.69672i 0.301598 0.953435i
\(9\) 2.52015 0.840050
\(10\) −2.75088 1.55970i −0.869904 0.493220i
\(11\) 0.843672 0.843672i 0.254377 0.254377i −0.568386 0.822762i \(-0.692432\pi\)
0.822762 + 0.568386i \(0.192432\pi\)
\(12\) −1.31538 + 0.434957i −0.379716 + 0.125561i
\(13\) −3.68390 −1.02173 −0.510865 0.859661i \(-0.670675\pi\)
−0.510865 + 0.859661i \(0.670675\pi\)
\(14\) 0.678995 0.109350i 0.181469 0.0292251i
\(15\) 0.169939 + 1.53960i 0.0438782 + 0.397523i
\(16\) −3.21147 + 2.38463i −0.802868 + 0.596157i
\(17\) 0.412137 0.412137i 0.0999579 0.0999579i −0.655359 0.755317i \(-0.727483\pi\)
0.755317 + 0.655359i \(0.227483\pi\)
\(18\) −2.88879 2.08739i −0.680895 0.492003i
\(19\) −5.37721 + 5.37721i −1.23362 + 1.23362i −0.271052 + 0.962565i \(0.587371\pi\)
−0.962565 + 0.271052i \(0.912629\pi\)
\(20\) 1.86140 + 4.06635i 0.416222 + 0.909263i
\(21\) −0.238204 0.238204i −0.0519804 0.0519804i
\(22\) −1.66588 + 0.268286i −0.355167 + 0.0571987i
\(23\) −3.08788 3.08788i −0.643868 0.643868i 0.307636 0.951504i \(-0.400462\pi\)
−0.951504 + 0.307636i \(0.900462\pi\)
\(24\) 1.86805 + 0.590917i 0.381314 + 0.120621i
\(25\) 4.87963 1.09050i 0.975926 0.218101i
\(26\) 4.22278 + 3.05130i 0.828154 + 0.598410i
\(27\) 3.82387i 0.735905i
\(28\) −0.868890 0.437052i −0.164205 0.0825951i
\(29\) −4.22969 4.22969i −0.785434 0.785434i 0.195308 0.980742i \(-0.437429\pi\)
−0.980742 + 0.195308i \(0.937429\pi\)
\(30\) 1.08042 1.90557i 0.197257 0.347907i
\(31\) 8.75966i 1.57328i −0.617411 0.786641i \(-0.711818\pi\)
0.617411 0.786641i \(-0.288182\pi\)
\(32\) 5.65638 0.0734474i 0.999916 0.0129838i
\(33\) 0.584422 + 0.584422i 0.101735 + 0.101735i
\(34\) −0.813788 + 0.131059i −0.139564 + 0.0224764i
\(35\) −0.679919 + 0.848640i −0.114927 + 0.143446i
\(36\) 1.58241 + 4.78546i 0.263736 + 0.797576i
\(37\) −5.41752 −0.890634 −0.445317 0.895373i \(-0.646909\pi\)
−0.445317 + 0.895373i \(0.646909\pi\)
\(38\) 10.6176 1.70994i 1.72240 0.277389i
\(39\) 2.55188i 0.408628i
\(40\) 1.23439 6.20293i 0.195174 0.980769i
\(41\) 2.54777i 0.397895i −0.980010 0.198948i \(-0.936248\pi\)
0.980010 0.198948i \(-0.0637524\pi\)
\(42\) 0.0757484 + 0.470348i 0.0116882 + 0.0725763i
\(43\) 4.30732 0.656861 0.328430 0.944528i \(-0.393480\pi\)
0.328430 + 0.944528i \(0.393480\pi\)
\(44\) 2.13178 + 1.07228i 0.321377 + 0.161653i
\(45\) 5.60121 0.618255i 0.834979 0.0921641i
\(46\) 0.981939 + 6.09720i 0.144779 + 0.898983i
\(47\) 4.56972 + 4.56972i 0.666562 + 0.666562i 0.956919 0.290356i \(-0.0937738\pi\)
−0.290356 + 0.956919i \(0.593774\pi\)
\(48\) −1.65186 2.22462i −0.238425 0.321097i
\(49\) 6.76350i 0.966215i
\(50\) −6.49665 2.79168i −0.918766 0.394803i
\(51\) 0.285492 + 0.285492i 0.0399769 + 0.0399769i
\(52\) −2.31314 6.99528i −0.320775 0.970071i
\(53\) 6.07536i 0.834515i 0.908788 + 0.417257i \(0.137009\pi\)
−0.908788 + 0.417257i \(0.862991\pi\)
\(54\) 3.16724 4.38322i 0.431007 0.596481i
\(55\) 1.66815 2.08209i 0.224933 0.280749i
\(56\) 0.633987 + 1.22067i 0.0847201 + 0.163118i
\(57\) −3.72486 3.72486i −0.493369 0.493369i
\(58\) 1.34503 + 8.35177i 0.176611 + 1.09664i
\(59\) −7.33694 7.33694i −0.955189 0.955189i 0.0438495 0.999038i \(-0.486038\pi\)
−0.999038 + 0.0438495i \(0.986038\pi\)
\(60\) −2.81681 + 1.28942i −0.363648 + 0.166463i
\(61\) −4.81576 + 4.81576i −0.616595 + 0.616595i −0.944656 0.328062i \(-0.893605\pi\)
0.328062 + 0.944656i \(0.393605\pi\)
\(62\) −7.25545 + 10.0410i −0.921444 + 1.27521i
\(63\) −0.866609 + 0.866609i −0.109183 + 0.109183i
\(64\) −6.54461 4.60087i −0.818077 0.575109i
\(65\) −8.18773 + 0.903753i −1.01556 + 0.112097i
\(66\) −0.185845 1.15397i −0.0228759 0.142044i
\(67\) 14.3626 1.75467 0.877334 0.479880i \(-0.159320\pi\)
0.877334 + 0.479880i \(0.159320\pi\)
\(68\) 1.04138 + 0.523815i 0.126286 + 0.0635219i
\(69\) 2.13901 2.13901i 0.257507 0.257507i
\(70\) 1.48229 0.409613i 0.177167 0.0489582i
\(71\) −2.97605 −0.353193 −0.176596 0.984283i \(-0.556509\pi\)
−0.176596 + 0.984283i \(0.556509\pi\)
\(72\) 2.14981 6.79614i 0.253358 0.800933i
\(73\) −6.87152 + 6.87152i −0.804250 + 0.804250i −0.983757 0.179507i \(-0.942550\pi\)
0.179507 + 0.983757i \(0.442550\pi\)
\(74\) 6.20998 + 4.48722i 0.721895 + 0.521629i
\(75\) 0.755404 + 3.38018i 0.0872266 + 0.390309i
\(76\) −13.5870 6.83429i −1.55854 0.783947i
\(77\) 0.580231i 0.0661234i
\(78\) −2.11367 + 2.92517i −0.239326 + 0.331210i
\(79\) 10.1654 1.14369 0.571847 0.820360i \(-0.306227\pi\)
0.571847 + 0.820360i \(0.306227\pi\)
\(80\) −6.55271 + 6.08785i −0.732615 + 0.680643i
\(81\) 4.91161 0.545734
\(82\) −2.11027 + 2.92046i −0.233040 + 0.322510i
\(83\) 7.15276i 0.785118i −0.919727 0.392559i \(-0.871590\pi\)
0.919727 0.392559i \(-0.128410\pi\)
\(84\) 0.302751 0.601890i 0.0330329 0.0656716i
\(85\) 0.814896 1.01711i 0.0883878 0.110321i
\(86\) −4.93739 3.56767i −0.532412 0.384712i
\(87\) 2.92996 2.92996i 0.314124 0.314124i
\(88\) −1.55545 2.99484i −0.165812 0.319251i
\(89\) 1.10953 0.117610 0.0588050 0.998269i \(-0.481271\pi\)
0.0588050 + 0.998269i \(0.481271\pi\)
\(90\) −6.93263 3.93068i −0.730763 0.414330i
\(91\) 1.26679 1.26679i 0.132796 0.132796i
\(92\) 3.92461 7.80240i 0.409169 0.813457i
\(93\) 6.06792 0.629214
\(94\) −1.45316 9.02318i −0.149882 0.930670i
\(95\) −10.6321 + 13.2704i −1.09083 + 1.36151i
\(96\) 0.0508779 + 3.91824i 0.00519270 + 0.399904i
\(97\) 7.15920 7.15920i 0.726906 0.726906i −0.243096 0.970002i \(-0.578163\pi\)
0.970002 + 0.243096i \(0.0781630\pi\)
\(98\) 5.60207 7.75285i 0.565895 0.783156i
\(99\) 2.12618 2.12618i 0.213689 0.213689i
\(100\) 5.13467 + 8.58109i 0.513467 + 0.858109i
\(101\) 0.953394 + 0.953394i 0.0948663 + 0.0948663i 0.752947 0.658081i \(-0.228632\pi\)
−0.658081 + 0.752947i \(0.728632\pi\)
\(102\) −0.0907858 0.563721i −0.00898914 0.0558167i
\(103\) 9.59425 + 9.59425i 0.945350 + 0.945350i 0.998582 0.0532322i \(-0.0169524\pi\)
−0.0532322 + 0.998582i \(0.516952\pi\)
\(104\) −3.14255 + 9.93446i −0.308152 + 0.974154i
\(105\) −0.587863 0.470988i −0.0573696 0.0459637i
\(106\) 5.03210 6.96405i 0.488761 0.676408i
\(107\) 5.28201i 0.510631i 0.966858 + 0.255316i \(0.0821794\pi\)
−0.966858 + 0.255316i \(0.917821\pi\)
\(108\) −7.26107 + 2.40103i −0.698697 + 0.231039i
\(109\) 1.53980 + 1.53980i 0.147486 + 0.147486i 0.776994 0.629508i \(-0.216744\pi\)
−0.629508 + 0.776994i \(0.716744\pi\)
\(110\) −3.63672 + 1.00497i −0.346747 + 0.0958197i
\(111\) 3.75278i 0.356198i
\(112\) 0.284329 1.92434i 0.0268665 0.181833i
\(113\) −2.99656 2.99656i −0.281893 0.281893i 0.551971 0.833863i \(-0.313876\pi\)
−0.833863 + 0.551971i \(0.813876\pi\)
\(114\) 1.18450 + 7.35494i 0.110938 + 0.688854i
\(115\) −7.62056 6.10550i −0.710621 0.569340i
\(116\) 5.37582 10.6875i 0.499133 0.992310i
\(117\) −9.28399 −0.858305
\(118\) 2.33313 + 14.4872i 0.214782 + 1.33366i
\(119\) 0.283445i 0.0259833i
\(120\) 4.29684 + 0.855076i 0.392246 + 0.0780574i
\(121\) 9.57643i 0.870585i
\(122\) 9.50899 1.53140i 0.860904 0.138646i
\(123\) 1.76487 0.159133
\(124\) 16.6335 5.50023i 1.49373 0.493935i
\(125\) 10.5778 3.62081i 0.946107 0.323855i
\(126\) 1.71117 0.275580i 0.152443 0.0245506i
\(127\) −10.5522 10.5522i −0.936360 0.936360i 0.0617330 0.998093i \(-0.480337\pi\)
−0.998093 + 0.0617330i \(0.980337\pi\)
\(128\) 3.69113 + 10.6947i 0.326253 + 0.945282i
\(129\) 2.98373i 0.262703i
\(130\) 10.1340 + 5.74578i 0.888808 + 0.503938i
\(131\) −0.850513 0.850513i −0.0743096 0.0743096i 0.668975 0.743285i \(-0.266733\pi\)
−0.743285 + 0.668975i \(0.766733\pi\)
\(132\) −0.742784 + 1.47671i −0.0646511 + 0.128531i
\(133\) 3.69814i 0.320670i
\(134\) −16.4635 11.8962i −1.42223 1.02768i
\(135\) 0.938091 + 8.49883i 0.0807380 + 0.731463i
\(136\) −0.759845 1.46299i −0.0651562 0.125451i
\(137\) −5.50145 5.50145i −0.470021 0.470021i 0.431901 0.901921i \(-0.357843\pi\)
−0.901921 + 0.431901i \(0.857843\pi\)
\(138\) −4.22360 + 0.680201i −0.359537 + 0.0579025i
\(139\) 3.03517 + 3.03517i 0.257440 + 0.257440i 0.824012 0.566572i \(-0.191731\pi\)
−0.566572 + 0.824012i \(0.691731\pi\)
\(140\) −2.03839 0.758219i −0.172275 0.0640812i
\(141\) −3.16550 + 3.16550i −0.266583 + 0.266583i
\(142\) 3.41138 + 2.46501i 0.286277 + 0.206859i
\(143\) −3.10801 + 3.10801i −0.259905 + 0.259905i
\(144\) −8.09339 + 6.00962i −0.674449 + 0.500802i
\(145\) −10.4384 8.36313i −0.866864 0.694520i
\(146\) 13.5682 2.18513i 1.12291 0.180842i
\(147\) −4.68516 −0.386425
\(148\) −3.40168 10.2872i −0.279617 0.845603i
\(149\) 11.1571 11.1571i 0.914023 0.914023i −0.0825625 0.996586i \(-0.526310\pi\)
0.996586 + 0.0825625i \(0.0263104\pi\)
\(150\) 1.93383 4.50031i 0.157897 0.367449i
\(151\) 3.18265 0.259000 0.129500 0.991579i \(-0.458663\pi\)
0.129500 + 0.991579i \(0.458663\pi\)
\(152\) 9.91381 + 19.0879i 0.804116 + 1.54823i
\(153\) 1.03865 1.03865i 0.0839696 0.0839696i
\(154\) 0.480593 0.665105i 0.0387273 0.0535957i
\(155\) −2.14896 19.4690i −0.172609 1.56378i
\(156\) 4.84571 1.60234i 0.387968 0.128290i
\(157\) 7.05454i 0.563014i 0.959559 + 0.281507i \(0.0908342\pi\)
−0.959559 + 0.281507i \(0.909166\pi\)
\(158\) −11.6523 8.41978i −0.927011 0.669842i
\(159\) −4.20847 −0.333754
\(160\) 12.5537 1.55089i 0.992455 0.122609i
\(161\) 2.12367 0.167369
\(162\) −5.63007 4.06819i −0.442340 0.319627i
\(163\) 16.0208i 1.25484i −0.778680 0.627422i \(-0.784110\pi\)
0.778680 0.627422i \(-0.215890\pi\)
\(164\) 4.83791 1.59976i 0.377777 0.124920i
\(165\) 1.44229 + 1.15554i 0.112282 + 0.0899591i
\(166\) −5.92449 + 8.19905i −0.459830 + 0.636370i
\(167\) −16.6023 + 16.6023i −1.28473 + 1.28473i −0.346780 + 0.937946i \(0.612725\pi\)
−0.937946 + 0.346780i \(0.887275\pi\)
\(168\) −0.845571 + 0.439171i −0.0652372 + 0.0338827i
\(169\) 0.571141 0.0439339
\(170\) −1.77655 + 0.490929i −0.136255 + 0.0376525i
\(171\) −13.5514 + 13.5514i −1.03630 + 1.03630i
\(172\) 2.70459 + 8.17908i 0.206223 + 0.623649i
\(173\) 14.9958 1.14011 0.570054 0.821607i \(-0.306922\pi\)
0.570054 + 0.821607i \(0.306922\pi\)
\(174\) −5.78537 + 0.931719i −0.438588 + 0.0706335i
\(175\) −1.30298 + 2.05296i −0.0984957 + 0.155189i
\(176\) −0.697585 + 4.72127i −0.0525825 + 0.355879i
\(177\) 5.08239 5.08239i 0.382016 0.382016i
\(178\) −1.27183 0.919002i −0.0953277 0.0688821i
\(179\) −9.91310 + 9.91310i −0.740940 + 0.740940i −0.972759 0.231819i \(-0.925532\pi\)
0.231819 + 0.972759i \(0.425532\pi\)
\(180\) 4.69102 + 10.2478i 0.349648 + 0.763826i
\(181\) 1.04015 + 1.04015i 0.0773139 + 0.0773139i 0.744706 0.667392i \(-0.232590\pi\)
−0.667392 + 0.744706i \(0.732590\pi\)
\(182\) −2.50135 + 0.402837i −0.185413 + 0.0298602i
\(183\) −3.33593 3.33593i −0.246599 0.246599i
\(184\) −10.9613 + 5.69304i −0.808075 + 0.419696i
\(185\) −12.0408 + 1.32905i −0.885258 + 0.0977138i
\(186\) −6.95552 5.02594i −0.510004 0.368520i
\(187\) 0.695417i 0.0508539i
\(188\) −5.80799 + 11.5467i −0.423591 + 0.842129i
\(189\) −1.31492 1.31492i −0.0956466 0.0956466i
\(190\) 23.1789 6.40522i 1.68157 0.464684i
\(191\) 3.08419i 0.223164i 0.993755 + 0.111582i \(0.0355918\pi\)
−0.993755 + 0.111582i \(0.964408\pi\)
\(192\) 3.18708 4.53353i 0.230008 0.327179i
\(193\) −12.0915 12.0915i −0.870368 0.870368i 0.122144 0.992512i \(-0.461023\pi\)
−0.992512 + 0.122144i \(0.961023\pi\)
\(194\) −14.1362 + 2.27661i −1.01492 + 0.163451i
\(195\) −0.626040 5.67174i −0.0448317 0.406162i
\(196\) −12.8431 + 4.24683i −0.917362 + 0.303345i
\(197\) 13.0186 0.927540 0.463770 0.885956i \(-0.346496\pi\)
0.463770 + 0.885956i \(0.346496\pi\)
\(198\) −4.19827 + 0.676120i −0.298358 + 0.0480498i
\(199\) 10.6279i 0.753395i 0.926336 + 0.376697i \(0.122940\pi\)
−0.926336 + 0.376697i \(0.877060\pi\)
\(200\) 1.22178 14.0893i 0.0863932 0.996261i
\(201\) 9.94913i 0.701758i
\(202\) −0.303177 1.88253i −0.0213315 0.132455i
\(203\) 2.90894 0.204168
\(204\) −0.362853 + 0.721377i −0.0254048 + 0.0505065i
\(205\) −0.625032 5.66260i −0.0436541 0.395493i
\(206\) −3.05095 18.9444i −0.212570 1.31992i
\(207\) −7.78192 7.78192i −0.540881 0.540881i
\(208\) 11.8308 8.78474i 0.820315 0.609112i
\(209\) 9.07320i 0.627607i
\(210\) 0.283744 + 1.02680i 0.0195802 + 0.0708558i
\(211\) 11.4801 + 11.4801i 0.790321 + 0.790321i 0.981546 0.191225i \(-0.0612460\pi\)
−0.191225 + 0.981546i \(0.561246\pi\)
\(212\) −11.5364 + 3.81475i −0.792321 + 0.261998i
\(213\) 2.06155i 0.141255i
\(214\) 4.37499 6.05465i 0.299068 0.413888i
\(215\) 9.57332 1.05669i 0.652895 0.0720659i
\(216\) 10.3119 + 3.26195i 0.701638 + 0.221948i
\(217\) 3.01220 + 3.01220i 0.204482 + 0.204482i
\(218\) −0.489652 3.04042i −0.0331634 0.205923i
\(219\) −4.75998 4.75998i −0.321650 0.321650i
\(220\) 5.00108 + 1.86025i 0.337173 + 0.125418i
\(221\) −1.51827 + 1.51827i −0.102130 + 0.102130i
\(222\) −3.10835 + 4.30173i −0.208619 + 0.288713i
\(223\) 2.17863 2.17863i 0.145892 0.145892i −0.630388 0.776280i \(-0.717104\pi\)
0.776280 + 0.630388i \(0.217104\pi\)
\(224\) −1.91981 + 1.97033i −0.128273 + 0.131648i
\(225\) 12.2974 2.74823i 0.819827 0.183215i
\(226\) 0.952898 + 5.91688i 0.0633859 + 0.393585i
\(227\) 9.32318 0.618801 0.309401 0.950932i \(-0.399872\pi\)
0.309401 + 0.950932i \(0.399872\pi\)
\(228\) 4.73419 9.41190i 0.313530 0.623318i
\(229\) −2.72259 + 2.72259i −0.179914 + 0.179914i −0.791318 0.611404i \(-0.790605\pi\)
0.611404 + 0.791318i \(0.290605\pi\)
\(230\) 3.67822 + 13.3106i 0.242535 + 0.877672i
\(231\) −0.401933 −0.0264452
\(232\) −15.0144 + 7.79816i −0.985746 + 0.511974i
\(233\) 12.3897 12.3897i 0.811679 0.811679i −0.173206 0.984886i \(-0.555413\pi\)
0.984886 + 0.173206i \(0.0554127\pi\)
\(234\) 10.6420 + 7.68974i 0.695691 + 0.502694i
\(235\) 11.2776 + 9.03546i 0.735669 + 0.589408i
\(236\) 9.32506 18.5389i 0.607010 1.20678i
\(237\) 7.04168i 0.457406i
\(238\) 0.234772 0.324906i 0.0152180 0.0210606i
\(239\) 25.2180 1.63122 0.815609 0.578604i \(-0.196402\pi\)
0.815609 + 0.578604i \(0.196402\pi\)
\(240\) −4.21713 4.53914i −0.272215 0.293000i
\(241\) 12.0218 0.774391 0.387195 0.921998i \(-0.373444\pi\)
0.387195 + 0.921998i \(0.373444\pi\)
\(242\) 7.93197 10.9773i 0.509886 0.705645i
\(243\) 14.8740i 0.954164i
\(244\) −12.1684 6.12070i −0.779000 0.391838i
\(245\) 1.65926 + 15.0324i 0.106006 + 0.960382i
\(246\) −2.02303 1.46181i −0.128984 0.0932015i
\(247\) 19.8091 19.8091i 1.26042 1.26042i
\(248\) −23.6224 7.47242i −1.50002 0.474499i
\(249\) 4.95480 0.313998
\(250\) −15.1241 4.61092i −0.956534 0.291620i
\(251\) 7.48911 7.48911i 0.472709 0.472709i −0.430081 0.902790i \(-0.641515\pi\)
0.902790 + 0.430081i \(0.141515\pi\)
\(252\) −2.18973 1.10144i −0.137940 0.0693840i
\(253\) −5.21032 −0.327570
\(254\) 3.35559 + 20.8360i 0.210548 + 1.30737i
\(255\) 0.704565 + 0.564488i 0.0441215 + 0.0353496i
\(256\) 4.62710 15.3163i 0.289194 0.957271i
\(257\) −10.0809 + 10.0809i −0.628832 + 0.628832i −0.947774 0.318942i \(-0.896672\pi\)
0.318942 + 0.947774i \(0.396672\pi\)
\(258\) 2.47137 3.42019i 0.153861 0.212932i
\(259\) 1.86293 1.86293i 0.115757 0.115757i
\(260\) −6.85723 14.9800i −0.425267 0.929022i
\(261\) −10.6595 10.6595i −0.659804 0.659804i
\(262\) 0.270461 + 1.67939i 0.0167091 + 0.103753i
\(263\) −3.83599 3.83599i −0.236537 0.236537i 0.578877 0.815415i \(-0.303491\pi\)
−0.815415 + 0.578877i \(0.803491\pi\)
\(264\) 2.07456 1.07748i 0.127681 0.0663144i
\(265\) 1.49044 + 13.5029i 0.0915568 + 0.829477i
\(266\) −3.06310 + 4.23910i −0.187811 + 0.259916i
\(267\) 0.768585i 0.0470367i
\(268\) 9.01833 + 27.2728i 0.550882 + 1.66595i
\(269\) −13.4250 13.4250i −0.818539 0.818539i 0.167357 0.985896i \(-0.446477\pi\)
−0.985896 + 0.167357i \(0.946477\pi\)
\(270\) 5.96409 10.5190i 0.362963 0.640167i
\(271\) 12.3519i 0.750326i 0.926959 + 0.375163i \(0.122413\pi\)
−0.926959 + 0.375163i \(0.877587\pi\)
\(272\) −0.340773 + 2.30636i −0.0206624 + 0.139844i
\(273\) 0.877522 + 0.877522i 0.0531100 + 0.0531100i
\(274\) 1.74945 + 10.8629i 0.105688 + 0.656253i
\(275\) 3.19678 5.03684i 0.192773 0.303733i
\(276\) 5.40482 + 2.71863i 0.325332 + 0.163642i
\(277\) −6.78804 −0.407854 −0.203927 0.978986i \(-0.565370\pi\)
−0.203927 + 0.978986i \(0.565370\pi\)
\(278\) −0.965177 5.99312i −0.0578875 0.359443i
\(279\) 22.0757i 1.32164i
\(280\) 1.70854 + 2.55748i 0.102105 + 0.152839i
\(281\) 21.5509i 1.28562i −0.766026 0.642810i \(-0.777768\pi\)
0.766026 0.642810i \(-0.222232\pi\)
\(282\) 6.25046 1.00662i 0.372210 0.0599434i
\(283\) −9.86809 −0.586597 −0.293299 0.956021i \(-0.594753\pi\)
−0.293299 + 0.956021i \(0.594753\pi\)
\(284\) −1.86868 5.65116i −0.110886 0.335335i
\(285\) −9.19255 7.36495i −0.544520 0.436262i
\(286\) 6.13694 0.988339i 0.362885 0.0584417i
\(287\) 0.876108 + 0.876108i 0.0517150 + 0.0517150i
\(288\) 14.2549 0.185099i 0.839979 0.0109070i
\(289\) 16.6603i 0.980017i
\(290\) 5.03832 + 18.2324i 0.295860 + 1.07064i
\(291\) 4.95926 + 4.95926i 0.290717 + 0.290717i
\(292\) −17.3628 8.73351i −1.01608 0.511090i
\(293\) 14.1972i 0.829410i 0.909956 + 0.414705i \(0.136115\pi\)
−0.909956 + 0.414705i \(0.863885\pi\)
\(294\) 5.37049 + 3.88062i 0.313214 + 0.226323i
\(295\) −18.1068 14.5069i −1.05422 0.844626i
\(296\) −4.62141 + 14.6095i −0.268614 + 0.849162i
\(297\) 3.22610 + 3.22610i 0.187197 + 0.187197i
\(298\) −22.0303 + 3.54792i −1.27618 + 0.205526i
\(299\) 11.3755 + 11.3755i 0.657859 + 0.657859i
\(300\) −5.94422 + 3.55685i −0.343190 + 0.205355i
\(301\) −1.48117 + 1.48117i −0.0853731 + 0.0853731i
\(302\) −3.64820 2.63612i −0.209930 0.151692i
\(303\) −0.660428 + 0.660428i −0.0379406 + 0.0379406i
\(304\) 4.44611 30.0914i 0.255002 1.72586i
\(305\) −9.52194 + 11.8848i −0.545224 + 0.680521i
\(306\) −2.05087 + 0.330287i −0.117240 + 0.0188813i
\(307\) −20.4161 −1.16521 −0.582604 0.812756i \(-0.697966\pi\)
−0.582604 + 0.812756i \(0.697966\pi\)
\(308\) −1.10179 + 0.364329i −0.0627801 + 0.0207596i
\(309\) −6.64605 + 6.64605i −0.378081 + 0.378081i
\(310\) −13.6624 + 24.0968i −0.775975 + 1.36860i
\(311\) −6.81074 −0.386202 −0.193101 0.981179i \(-0.561854\pi\)
−0.193101 + 0.981179i \(0.561854\pi\)
\(312\) −6.88172 2.17688i −0.389601 0.123242i
\(313\) −1.20933 + 1.20933i −0.0683555 + 0.0683555i −0.740458 0.672103i \(-0.765391\pi\)
0.672103 + 0.740458i \(0.265391\pi\)
\(314\) 5.84314 8.08646i 0.329747 0.456345i
\(315\) −1.71350 + 2.13870i −0.0965447 + 0.120502i
\(316\) 6.38289 + 19.3028i 0.359065 + 1.08587i
\(317\) 3.44178i 0.193310i 0.995318 + 0.0966548i \(0.0308143\pi\)
−0.995318 + 0.0966548i \(0.969186\pi\)
\(318\) 4.82408 + 3.48580i 0.270521 + 0.195474i
\(319\) −7.13694 −0.399592
\(320\) −15.6746 8.62020i −0.876235 0.481884i
\(321\) −3.65891 −0.204221
\(322\) −2.43432 1.75899i −0.135659 0.0980249i
\(323\) 4.43229i 0.246619i
\(324\) 3.08402 + 9.32654i 0.171334 + 0.518141i
\(325\) −17.9761 + 4.01731i −0.997134 + 0.222840i
\(326\) −13.2697 + 18.3643i −0.734940 + 1.01710i
\(327\) −1.06664 + 1.06664i −0.0589852 + 0.0589852i
\(328\) −6.87063 2.17338i −0.379367 0.120005i
\(329\) −3.14280 −0.173268
\(330\) −0.696151 2.51920i −0.0383219 0.138677i
\(331\) −1.48462 + 1.48462i −0.0816019 + 0.0816019i −0.746730 0.665128i \(-0.768377\pi\)
0.665128 + 0.746730i \(0.268377\pi\)
\(332\) 13.5822 4.49125i 0.745421 0.246489i
\(333\) −13.6530 −0.748177
\(334\) 32.7822 5.27950i 1.79376 0.288881i
\(335\) 31.9218 3.52350i 1.74408 0.192509i
\(336\) 1.33301 + 0.196958i 0.0727219 + 0.0107449i
\(337\) 6.21211 6.21211i 0.338395 0.338395i −0.517368 0.855763i \(-0.673088\pi\)
0.855763 + 0.517368i \(0.173088\pi\)
\(338\) −0.654686 0.473065i −0.0356102 0.0257313i
\(339\) 2.07575 2.07575i 0.112739 0.112739i
\(340\) 2.44304 + 0.908739i 0.132493 + 0.0492833i
\(341\) −7.39028 7.39028i −0.400206 0.400206i
\(342\) 26.7580 4.30930i 1.44691 0.233020i
\(343\) −4.73288 4.73288i −0.255552 0.255552i
\(344\) 3.67436 11.6156i 0.198108 0.626274i
\(345\) 4.22935 5.27886i 0.227701 0.284204i
\(346\) −17.1893 12.4207i −0.924104 0.667741i
\(347\) 10.1502i 0.544889i −0.962171 0.272445i \(-0.912168\pi\)
0.962171 0.272445i \(-0.0878321\pi\)
\(348\) 7.40336 + 3.72390i 0.396862 + 0.199622i
\(349\) −3.99595 3.99595i −0.213898 0.213898i 0.592023 0.805921i \(-0.298329\pi\)
−0.805921 + 0.592023i \(0.798329\pi\)
\(350\) 3.19400 1.27404i 0.170726 0.0681001i
\(351\) 14.0868i 0.751897i
\(352\) 4.71016 4.83409i 0.251053 0.257658i
\(353\) 22.6637 + 22.6637i 1.20627 + 1.20627i 0.972226 + 0.234043i \(0.0751957\pi\)
0.234043 + 0.972226i \(0.424804\pi\)
\(354\) −10.0355 + 1.61619i −0.533379 + 0.0858994i
\(355\) −6.61449 + 0.730100i −0.351061 + 0.0387497i
\(356\) 0.696680 + 2.10686i 0.0369239 + 0.111664i
\(357\) −0.196346 −0.0103917
\(358\) 19.5740 3.15234i 1.03452 0.166606i
\(359\) 4.31874i 0.227934i −0.993485 0.113967i \(-0.963644\pi\)
0.993485 0.113967i \(-0.0363559\pi\)
\(360\) 3.11085 15.6323i 0.163956 0.823895i
\(361\) 38.8288i 2.04362i
\(362\) −0.330766 2.05384i −0.0173847 0.107947i
\(363\) −6.63371 −0.348180
\(364\) 3.20091 + 1.61006i 0.167773 + 0.0843899i
\(365\) −13.5867 + 16.9582i −0.711159 + 0.887632i
\(366\) 1.06082 + 6.58699i 0.0554499 + 0.344308i
\(367\) −6.46940 6.46940i −0.337700 0.337700i 0.517801 0.855501i \(-0.326751\pi\)
−0.855501 + 0.517801i \(0.826751\pi\)
\(368\) 17.2801 + 2.55320i 0.900787 + 0.133095i
\(369\) 6.42077i 0.334252i
\(370\) 14.9029 + 8.44970i 0.774767 + 0.439279i
\(371\) −2.08915 2.08915i −0.108463 0.108463i
\(372\) 3.81008 + 11.5222i 0.197543 + 0.597400i
\(373\) 16.7831i 0.868995i −0.900673 0.434497i \(-0.856926\pi\)
0.900673 0.434497i \(-0.143074\pi\)
\(374\) −0.576000 + 0.797141i −0.0297842 + 0.0412192i
\(375\) 2.50818 + 7.32736i 0.129522 + 0.378383i
\(376\) 16.2215 8.42507i 0.836558 0.434490i
\(377\) 15.5818 + 15.5818i 0.802502 + 0.802502i
\(378\) 0.418142 + 2.59639i 0.0215069 + 0.133544i
\(379\) −7.31046 7.31046i −0.375513 0.375513i 0.493967 0.869480i \(-0.335546\pi\)
−0.869480 + 0.493967i \(0.835546\pi\)
\(380\) −31.8748 11.8564i −1.63514 0.608223i
\(381\) 7.30966 7.30966i 0.374485 0.374485i
\(382\) 2.55457 3.53533i 0.130703 0.180883i
\(383\) −5.31492 + 5.31492i −0.271580 + 0.271580i −0.829736 0.558156i \(-0.811509\pi\)
0.558156 + 0.829736i \(0.311509\pi\)
\(384\) −7.40831 + 2.55689i −0.378054 + 0.130481i
\(385\) 0.142345 + 1.28960i 0.00725457 + 0.0657242i
\(386\) 3.84508 + 23.8754i 0.195710 + 1.21523i
\(387\) 10.8551 0.551796
\(388\) 18.0897 + 9.09915i 0.918367 + 0.461939i
\(389\) −1.28845 + 1.28845i −0.0653271 + 0.0653271i −0.739016 0.673688i \(-0.764709\pi\)
0.673688 + 0.739016i \(0.264709\pi\)
\(390\) −3.98017 + 7.01992i −0.201544 + 0.355468i
\(391\) −2.54526 −0.128719
\(392\) 18.2393 + 5.76960i 0.921223 + 0.291409i
\(393\) 0.589160 0.589160i 0.0297192 0.0297192i
\(394\) −14.9230 10.7831i −0.751809 0.543244i
\(395\) 22.5933 2.49382i 1.13679 0.125478i
\(396\) 5.37239 + 2.70232i 0.269973 + 0.135797i
\(397\) 9.53832i 0.478715i −0.970932 0.239357i \(-0.923063\pi\)
0.970932 0.239357i \(-0.0769367\pi\)
\(398\) 8.80291 12.1826i 0.441250 0.610657i
\(399\) 2.56175 0.128248
\(400\) −13.0704 + 15.1382i −0.653518 + 0.756911i
\(401\) −24.6103 −1.22898 −0.614491 0.788924i \(-0.710638\pi\)
−0.614491 + 0.788924i \(0.710638\pi\)
\(402\) 8.24067 11.4045i 0.411007 0.568803i
\(403\) 32.2697i 1.60747i
\(404\) −1.21174 + 2.40902i −0.0602862 + 0.119853i
\(405\) 10.9164 1.20494i 0.542440 0.0598739i
\(406\) −3.33446 2.40942i −0.165486 0.119578i
\(407\) −4.57061 + 4.57061i −0.226557 + 0.226557i
\(408\) 1.01343 0.526354i 0.0501724 0.0260584i
\(409\) −16.9457 −0.837911 −0.418955 0.908007i \(-0.637604\pi\)
−0.418955 + 0.908007i \(0.637604\pi\)
\(410\) −3.97376 + 7.00862i −0.196250 + 0.346131i
\(411\) 3.81092 3.81092i 0.187979 0.187979i
\(412\) −12.1940 + 24.2426i −0.600757 + 1.19435i
\(413\) 5.04594 0.248294
\(414\) 2.47463 + 15.3659i 0.121622 + 0.755190i
\(415\) −1.75475 15.8975i −0.0861373 0.780378i
\(416\) −20.8375 + 0.270573i −1.02164 + 0.0132659i
\(417\) −2.10250 + 2.10250i −0.102960 + 0.102960i
\(418\) 7.51515 10.4004i 0.367578 0.508701i
\(419\) −6.56956 + 6.56956i −0.320944 + 0.320944i −0.849129 0.528185i \(-0.822873\pi\)
0.528185 + 0.849129i \(0.322873\pi\)
\(420\) 0.525227 1.41202i 0.0256285 0.0688993i
\(421\) 13.8805 + 13.8805i 0.676493 + 0.676493i 0.959205 0.282712i \(-0.0912341\pi\)
−0.282712 + 0.959205i \(0.591234\pi\)
\(422\) −3.65064 22.6681i −0.177710 1.10346i
\(423\) 11.5164 + 11.5164i 0.559946 + 0.559946i
\(424\) 16.3836 + 5.18258i 0.795656 + 0.251688i
\(425\) 1.56164 2.46051i 0.0757507 0.119352i
\(426\) −1.70754 + 2.36311i −0.0827305 + 0.114493i
\(427\) 3.31201i 0.160279i
\(428\) −10.0299 + 3.31660i −0.484813 + 0.160314i
\(429\) −2.15295 2.15295i −0.103946 0.103946i
\(430\) −11.8489 6.71813i −0.571406 0.323977i
\(431\) 12.3740i 0.596035i 0.954560 + 0.298017i \(0.0963254\pi\)
−0.954560 + 0.298017i \(0.903675\pi\)
\(432\) −9.11852 12.2803i −0.438715 0.590834i
\(433\) −0.145326 0.145326i −0.00698392 0.00698392i 0.703606 0.710590i \(-0.251572\pi\)
−0.710590 + 0.703606i \(0.751572\pi\)
\(434\) −0.957873 5.94777i −0.0459794 0.285502i
\(435\) 5.79324 7.23082i 0.277765 0.346691i
\(436\) −1.95704 + 3.89074i −0.0937253 + 0.186332i
\(437\) 33.2084 1.58857
\(438\) 1.51366 + 9.39886i 0.0723256 + 0.449095i
\(439\) 3.65842i 0.174607i 0.996182 + 0.0873035i \(0.0278250\pi\)
−0.996182 + 0.0873035i \(0.972175\pi\)
\(440\) −4.19182 6.27465i −0.199837 0.299132i
\(441\) 17.0450i 0.811669i
\(442\) 2.99792 0.482807i 0.142596 0.0229648i
\(443\) 3.94027 0.187208 0.0936039 0.995610i \(-0.470161\pi\)
0.0936039 + 0.995610i \(0.470161\pi\)
\(444\) 7.12607 2.35639i 0.338188 0.111829i
\(445\) 2.46601 0.272195i 0.116900 0.0129033i
\(446\) −4.30184 + 0.692800i −0.203698 + 0.0328050i
\(447\) 7.72864 + 7.72864i 0.365552 + 0.365552i
\(448\) 3.83262 0.668398i 0.181074 0.0315788i
\(449\) 38.0014i 1.79340i −0.442642 0.896698i \(-0.645959\pi\)
0.442642 0.896698i \(-0.354041\pi\)
\(450\) −16.3725 7.03546i −0.771809 0.331655i
\(451\) −2.14949 2.14949i −0.101215 0.101215i
\(452\) 3.80855 7.57165i 0.179139 0.356140i
\(453\) 2.20466i 0.103584i
\(454\) −10.6870 7.72221i −0.501564 0.362421i
\(455\) 2.50476 3.12631i 0.117425 0.146564i
\(456\) −13.2224 + 6.86742i −0.619195 + 0.321596i
\(457\) 18.1142 + 18.1142i 0.847348 + 0.847348i 0.989801 0.142454i \(-0.0454993\pi\)
−0.142454 + 0.989801i \(0.545499\pi\)
\(458\) 5.37592 0.865778i 0.251200 0.0404551i
\(459\) 1.57596 + 1.57596i 0.0735595 + 0.0735595i
\(460\) 6.80860 18.3042i 0.317453 0.853437i
\(461\) 12.4144 12.4144i 0.578197 0.578197i −0.356209 0.934406i \(-0.615931\pi\)
0.934406 + 0.356209i \(0.115931\pi\)
\(462\) 0.460726 + 0.332913i 0.0214349 + 0.0154885i
\(463\) −8.56578 + 8.56578i −0.398085 + 0.398085i −0.877557 0.479472i \(-0.840828\pi\)
0.479472 + 0.877557i \(0.340828\pi\)
\(464\) 23.6698 + 3.49729i 1.09884 + 0.162358i
\(465\) 13.4864 1.48861i 0.625416 0.0690327i
\(466\) −24.4643 + 3.93991i −1.13329 + 0.182513i
\(467\) −34.3465 −1.58937 −0.794684 0.607023i \(-0.792364\pi\)
−0.794684 + 0.607023i \(0.792364\pi\)
\(468\) −5.82946 17.6292i −0.269467 0.814908i
\(469\) −4.93889 + 4.93889i −0.228057 + 0.228057i
\(470\) −5.44336 19.6981i −0.251083 0.908608i
\(471\) −4.88677 −0.225170
\(472\) −26.0445 + 13.5269i −1.19879 + 0.622627i
\(473\) 3.63397 3.63397i 0.167090 0.167090i
\(474\) 5.83248 8.07172i 0.267895 0.370746i
\(475\) −20.3749 + 32.1027i −0.934866 + 1.47297i
\(476\) −0.538227 + 0.177976i −0.0246696 + 0.00815753i
\(477\) 15.3108i 0.701034i
\(478\) −28.9068 20.8876i −1.32217 0.955375i
\(479\) −23.4504 −1.07148 −0.535738 0.844384i \(-0.679966\pi\)
−0.535738 + 0.844384i \(0.679966\pi\)
\(480\) 1.07432 + 8.69608i 0.0490358 + 0.396920i
\(481\) 19.9576 0.909988
\(482\) −13.7803 9.95740i −0.627675 0.453547i
\(483\) 1.47109i 0.0669370i
\(484\) −18.1845 + 6.01309i −0.826567 + 0.273322i
\(485\) 14.1555 17.6681i 0.642767 0.802269i
\(486\) 12.3198 17.0497i 0.558837 0.773389i
\(487\) −5.31215 + 5.31215i −0.240716 + 0.240716i −0.817146 0.576430i \(-0.804445\pi\)
0.576430 + 0.817146i \(0.304445\pi\)
\(488\) 8.87868 + 17.0948i 0.401919 + 0.773847i
\(489\) 11.0978 0.501859
\(490\) 10.5490 18.6056i 0.476557 0.840515i
\(491\) −3.71980 + 3.71980i −0.167872 + 0.167872i −0.786044 0.618171i \(-0.787874\pi\)
0.618171 + 0.786044i \(0.287874\pi\)
\(492\) 1.10817 + 3.35128i 0.0499602 + 0.151087i
\(493\) −3.48642 −0.157021
\(494\) −39.1142 + 6.29925i −1.75983 + 0.283417i
\(495\) 4.20398 5.24719i 0.188955 0.235844i
\(496\) 20.8885 + 28.1314i 0.937923 + 1.26314i
\(497\) 1.02338 1.02338i 0.0459050 0.0459050i
\(498\) −5.67958 4.10396i −0.254508 0.183903i
\(499\) 13.6065 13.6065i 0.609111 0.609111i −0.333603 0.942714i \(-0.608264\pi\)
0.942714 + 0.333603i \(0.108264\pi\)
\(500\) 13.5173 + 17.8124i 0.604513 + 0.796595i
\(501\) −11.5006 11.5006i −0.513810 0.513810i
\(502\) −14.7877 + 2.38152i −0.660007 + 0.106292i
\(503\) −9.31208 9.31208i −0.415205 0.415205i 0.468342 0.883547i \(-0.344852\pi\)
−0.883547 + 0.468342i \(0.844852\pi\)
\(504\) 1.59774 + 3.07626i 0.0711691 + 0.137028i
\(505\) 2.35288 + 1.88509i 0.104702 + 0.0838856i
\(506\) 5.97247 + 4.31560i 0.265509 + 0.191852i
\(507\) 0.395636i 0.0175708i
\(508\) 13.4116 26.6632i 0.595044 1.18299i
\(509\) 7.94836 + 7.94836i 0.352305 + 0.352305i 0.860966 0.508662i \(-0.169860\pi\)
−0.508662 + 0.860966i \(0.669860\pi\)
\(510\) −0.340073 1.23064i −0.0150587 0.0544935i
\(511\) 4.72585i 0.209059i
\(512\) −17.9902 + 13.7242i −0.795060 + 0.606531i
\(513\) −20.5618 20.5618i −0.907824 0.907824i
\(514\) 19.9054 3.20571i 0.877989 0.141398i
\(515\) 23.6776 + 18.9702i 1.04336 + 0.835926i
\(516\) −5.66575 + 1.87350i −0.249421 + 0.0824762i
\(517\) 7.71069 0.339116
\(518\) −3.67847 + 0.592408i −0.161623 + 0.0260289i
\(519\) 10.3878i 0.455972i
\(520\) −4.54737 + 22.8510i −0.199415 + 1.00208i
\(521\) 29.3979i 1.28795i 0.765048 + 0.643974i \(0.222715\pi\)
−0.765048 + 0.643974i \(0.777285\pi\)
\(522\) 3.38968 + 21.0477i 0.148362 + 0.921233i
\(523\) −19.5121 −0.853205 −0.426602 0.904439i \(-0.640290\pi\)
−0.426602 + 0.904439i \(0.640290\pi\)
\(524\) 1.08098 2.14906i 0.0472228 0.0938821i
\(525\) −1.42211 0.902587i −0.0620660 0.0393921i
\(526\) 1.21984 + 7.57438i 0.0531874 + 0.330259i
\(527\) −3.61018 3.61018i −0.157262 0.157262i
\(528\) −3.27048 0.483226i −0.142329 0.0210297i
\(529\) 3.92999i 0.170869i
\(530\) 9.47574 16.7126i 0.411600 0.725948i
\(531\) −18.4902 18.4902i −0.802406 0.802406i
\(532\) 7.02232 2.32208i 0.304456 0.100675i
\(533\) 9.38575i 0.406542i
\(534\) 0.636604 0.881012i 0.0275485 0.0381251i
\(535\) 1.29581 + 11.7396i 0.0560227 + 0.507549i
\(536\) 12.2520 38.7319i 0.529205 1.67296i
\(537\) −6.86692 6.86692i −0.296329 0.296329i
\(538\) 4.26913 + 26.5085i 0.184055 + 1.14286i
\(539\) 5.70618 + 5.70618i 0.245783 + 0.245783i
\(540\) −15.5492 + 7.11777i −0.669131 + 0.306300i
\(541\) 8.47183 8.47183i 0.364232 0.364232i −0.501136 0.865369i \(-0.667084\pi\)
0.865369 + 0.501136i \(0.167084\pi\)
\(542\) 10.2309 14.1587i 0.439453 0.608170i
\(543\) −0.720526 + 0.720526i −0.0309207 + 0.0309207i
\(544\) 2.30093 2.36147i 0.0986516 0.101247i
\(545\) 3.80006 + 3.04456i 0.162777 + 0.130415i
\(546\) −0.279050 1.73272i −0.0119422 0.0741534i
\(547\) 9.97988 0.426709 0.213355 0.976975i \(-0.431561\pi\)
0.213355 + 0.976975i \(0.431561\pi\)
\(548\) 6.99219 13.9010i 0.298692 0.593820i
\(549\) −12.1364 + 12.1364i −0.517971 + 0.517971i
\(550\) −7.83631 + 3.12578i −0.334141 + 0.133284i
\(551\) 45.4879 1.93785
\(552\) −3.94364 7.59300i −0.167852 0.323180i
\(553\) −3.49559 + 3.49559i −0.148648 + 0.148648i
\(554\) 7.78098 + 5.62240i 0.330582 + 0.238873i
\(555\) −0.920650 8.34081i −0.0390794 0.354048i
\(556\) −3.85762 + 7.66922i −0.163600 + 0.325247i
\(557\) 13.4866i 0.571445i −0.958312 0.285722i \(-0.907766\pi\)
0.958312 0.285722i \(-0.0922335\pi\)
\(558\) −18.2848 + 25.3048i −0.774059 + 1.07124i
\(559\) −15.8678 −0.671135
\(560\) 0.159851 4.34674i 0.00675495 0.183683i
\(561\) 0.481724 0.0203384
\(562\) −17.8502 + 24.7033i −0.752965 + 1.04205i
\(563\) 20.3451i 0.857445i −0.903436 0.428723i \(-0.858964\pi\)
0.903436 0.428723i \(-0.141036\pi\)
\(564\) −7.99853 4.02327i −0.336799 0.169410i
\(565\) −7.39519 5.92493i −0.311118 0.249264i
\(566\) 11.3116 + 8.17354i 0.475461 + 0.343560i
\(567\) −1.68896 + 1.68896i −0.0709298 + 0.0709298i
\(568\) −2.53872 + 8.02559i −0.106522 + 0.336746i
\(569\) −17.1460 −0.718797 −0.359399 0.933184i \(-0.617018\pi\)
−0.359399 + 0.933184i \(0.617018\pi\)
\(570\) 4.43697 + 16.0563i 0.185844 + 0.672524i
\(571\) 6.24329 6.24329i 0.261274 0.261274i −0.564298 0.825571i \(-0.690853\pi\)
0.825571 + 0.564298i \(0.190853\pi\)
\(572\) −7.85325 3.95019i −0.328361 0.165166i
\(573\) −2.13645 −0.0892516
\(574\) −0.278600 1.72993i −0.0116285 0.0722057i
\(575\) −18.4351 11.7004i −0.768795 0.487939i
\(576\) −16.4934 11.5949i −0.687225 0.483120i
\(577\) −10.0373 + 10.0373i −0.417859 + 0.417859i −0.884465 0.466606i \(-0.845477\pi\)
0.466606 + 0.884465i \(0.345477\pi\)
\(578\) 13.7994 19.0973i 0.573979 0.794343i
\(579\) 8.37596 8.37596i 0.348093 0.348093i
\(580\) 9.32623 25.0725i 0.387251 1.04108i
\(581\) 2.45963 + 2.45963i 0.102043 + 0.102043i
\(582\) −1.57703 9.79235i −0.0653701 0.405906i
\(583\) 5.12561 + 5.12561i 0.212281 + 0.212281i
\(584\) 12.6688 + 24.3923i 0.524240 + 1.00936i
\(585\) −20.6343 + 2.27759i −0.853124 + 0.0941669i
\(586\) 11.7593 16.2739i 0.485771 0.672270i
\(587\) 30.6857i 1.26654i −0.773933 0.633268i \(-0.781713\pi\)
0.773933 0.633268i \(-0.218287\pi\)
\(588\) −2.94183 8.89655i −0.121319 0.366887i
\(589\) 47.1025 + 47.1025i 1.94083 + 1.94083i
\(590\) 8.73962 + 31.6265i 0.359804 + 1.30204i
\(591\) 9.01817i 0.370958i
\(592\) 17.3982 12.9188i 0.715062 0.530958i
\(593\) −2.10671 2.10671i −0.0865123 0.0865123i 0.662526 0.749039i \(-0.269484\pi\)
−0.749039 + 0.662526i \(0.769484\pi\)
\(594\) −1.02589 6.37011i −0.0420928 0.261369i
\(595\) 0.0695360 + 0.629976i 0.00285070 + 0.0258265i
\(596\) 28.1915 + 14.1803i 1.15477 + 0.580850i
\(597\) −7.36210 −0.301311
\(598\) −3.61737 22.4615i −0.147925 0.918518i
\(599\) 32.1322i 1.31289i 0.754375 + 0.656444i \(0.227940\pi\)
−0.754375 + 0.656444i \(0.772060\pi\)
\(600\) 9.75980 + 0.846344i 0.398442 + 0.0345519i
\(601\) 14.9811i 0.611091i −0.952177 0.305546i \(-0.901161\pi\)
0.952177 0.305546i \(-0.0988388\pi\)
\(602\) 2.92465 0.471008i 0.119200 0.0191968i
\(603\) 36.1959 1.47401
\(604\) 1.99840 + 6.04345i 0.0813136 + 0.245905i
\(605\) 2.34934 + 21.2843i 0.0955141 + 0.865330i
\(606\) 1.30405 0.210014i 0.0529735 0.00853125i
\(607\) 27.3357 + 27.3357i 1.10952 + 1.10952i 0.993213 + 0.116310i \(0.0371067\pi\)
0.116310 + 0.993213i \(0.462893\pi\)
\(608\) −30.0206 + 30.8105i −1.21750 + 1.24953i
\(609\) 2.01506i 0.0816544i
\(610\) 20.7587 5.73644i 0.840496 0.232261i
\(611\) −16.8344 16.8344i −0.681047 0.681047i
\(612\) 2.62443 + 1.32009i 0.106086 + 0.0533616i
\(613\) 48.3829i 1.95417i −0.212859 0.977083i \(-0.568277\pi\)
0.212859 0.977083i \(-0.431723\pi\)
\(614\) 23.4025 + 16.9103i 0.944449 + 0.682442i
\(615\) 3.92255 0.432967i 0.158173 0.0174589i
\(616\) 1.56472 + 0.494965i 0.0630444 + 0.0199427i
\(617\) −31.1565 31.1565i −1.25432 1.25432i −0.953766 0.300549i \(-0.902830\pi\)
−0.300549 0.953766i \(-0.597170\pi\)
\(618\) 13.1230 2.11343i 0.527885 0.0850146i
\(619\) 0.198272 + 0.198272i 0.00796922 + 0.00796922i 0.711080 0.703111i \(-0.248206\pi\)
−0.703111 + 0.711080i \(0.748206\pi\)
\(620\) 35.6198 16.3053i 1.43053 0.654835i
\(621\) 11.8077 11.8077i 0.473825 0.473825i
\(622\) 7.80700 + 5.64120i 0.313032 + 0.226191i
\(623\) −0.381537 + 0.381537i −0.0152859 + 0.0152859i
\(624\) 6.08529 + 8.19530i 0.243607 + 0.328075i
\(625\) 22.6216 10.6425i 0.904864 0.425700i
\(626\) 2.38790 0.384565i 0.0954395 0.0153703i
\(627\) −6.28512 −0.251003
\(628\) −13.3957 + 4.42958i −0.534547 + 0.176759i
\(629\) −2.23276 + 2.23276i −0.0890259 + 0.0890259i
\(630\) 3.73559 1.03229i 0.148829 0.0411273i
\(631\) −32.3314 −1.28709 −0.643547 0.765407i \(-0.722538\pi\)
−0.643547 + 0.765407i \(0.722538\pi\)
\(632\) 8.67157 27.4132i 0.344936 1.09044i
\(633\) −7.95239 + 7.95239i −0.316079 + 0.316079i
\(634\) 2.85076 3.94523i 0.113218 0.156685i
\(635\) −26.0418 20.8644i −1.03344 0.827977i
\(636\) −2.64252 7.99138i −0.104783 0.316879i
\(637\) 24.9161i 0.987212i
\(638\) 8.18092 + 5.91139i 0.323886 + 0.234034i
\(639\) −7.50010 −0.296700
\(640\) 10.8275 + 22.8641i 0.427993 + 0.903782i
\(641\) −46.5662 −1.83926 −0.919628 0.392790i \(-0.871510\pi\)
−0.919628 + 0.392790i \(0.871510\pi\)
\(642\) 4.19413 + 3.03060i 0.165529 + 0.119608i
\(643\) 40.2247i 1.58631i −0.609021 0.793154i \(-0.708437\pi\)
0.609021 0.793154i \(-0.291563\pi\)
\(644\) 1.33346 + 4.03259i 0.0525458 + 0.158906i
\(645\) 0.731984 + 6.63156i 0.0288218 + 0.261117i
\(646\) 3.67118 5.08064i 0.144441 0.199895i
\(647\) −10.7938 + 10.7938i −0.424349 + 0.424349i −0.886698 0.462349i \(-0.847007\pi\)
0.462349 + 0.886698i \(0.347007\pi\)
\(648\) 4.18984 13.2452i 0.164593 0.520322i
\(649\) −12.3799 −0.485956
\(650\) 23.9330 + 10.2843i 0.938731 + 0.403383i
\(651\) −2.08659 + 2.08659i −0.0817799 + 0.0817799i
\(652\) 30.4215 10.0595i 1.19140 0.393961i
\(653\) −3.92443 −0.153575 −0.0767875 0.997047i \(-0.524466\pi\)
−0.0767875 + 0.997047i \(0.524466\pi\)
\(654\) 2.10614 0.339188i 0.0823564 0.0132633i
\(655\) −2.09898 1.68167i −0.0820138 0.0657084i
\(656\) 6.07549 + 8.18210i 0.237208 + 0.319457i
\(657\) −17.3173 + 17.3173i −0.675610 + 0.675610i
\(658\) 3.60252 + 2.60312i 0.140441 + 0.101480i
\(659\) 34.6142 34.6142i 1.34838 1.34838i 0.460952 0.887425i \(-0.347508\pi\)
0.887425 0.460952i \(-0.152492\pi\)
\(660\) −1.28862 + 3.46431i −0.0501594 + 0.134848i
\(661\) 21.7641 + 21.7641i 0.846525 + 0.846525i 0.989698 0.143173i \(-0.0457304\pi\)
−0.143173 + 0.989698i \(0.545730\pi\)
\(662\) 2.93146 0.472104i 0.113934 0.0183489i
\(663\) −1.05173 1.05173i −0.0408456 0.0408456i
\(664\) −19.2890 6.10166i −0.748559 0.236790i
\(665\) −0.907246 8.21938i −0.0351815 0.318734i
\(666\) 15.6501 + 11.3085i 0.606428 + 0.438194i
\(667\) 26.1216i 1.01143i
\(668\) −41.9505 21.1011i −1.62311 0.816426i
\(669\) 1.50917 + 1.50917i 0.0583477 + 0.0583477i
\(670\) −39.5097 22.4013i −1.52639 0.865438i
\(671\) 8.12584i 0.313695i
\(672\) −1.36487 1.32988i −0.0526510 0.0513012i
\(673\) 29.4450 + 29.4450i 1.13502 + 1.13502i 0.989330 + 0.145691i \(0.0465405\pi\)
0.145691 + 0.989330i \(0.453459\pi\)
\(674\) −12.2662 + 1.97544i −0.472475 + 0.0760910i
\(675\) 4.16995 + 18.6591i 0.160501 + 0.718189i
\(676\) 0.358622 + 1.08453i 0.0137932 + 0.0417126i
\(677\) −34.7351 −1.33498 −0.667490 0.744619i \(-0.732631\pi\)
−0.667490 + 0.744619i \(0.732631\pi\)
\(678\) −4.09869 + 0.660084i −0.157409 + 0.0253504i
\(679\) 4.92370i 0.188954i
\(680\) −2.04772 3.06519i −0.0785264 0.117545i
\(681\) 6.45828i 0.247482i
\(682\) 2.35009 + 14.5925i 0.0899897 + 0.558777i
\(683\) −22.2693 −0.852110 −0.426055 0.904697i \(-0.640097\pi\)
−0.426055 + 0.904697i \(0.640097\pi\)
\(684\) −34.2414 17.2234i −1.30925 0.658554i
\(685\) −13.5770 10.8777i −0.518750 0.415616i
\(686\) 1.50505 + 9.34535i 0.0574629 + 0.356807i
\(687\) −1.88597 1.88597i −0.0719543 0.0719543i
\(688\) −13.8328 + 10.2714i −0.527372 + 0.391592i
\(689\) 22.3810i 0.852650i
\(690\) −9.22038 + 2.54795i −0.351014 + 0.0969987i
\(691\) 15.7043 + 15.7043i 0.597420 + 0.597420i 0.939625 0.342205i \(-0.111174\pi\)
−0.342205 + 0.939625i \(0.611174\pi\)
\(692\) 9.41591 + 28.4751i 0.357939 + 1.08246i
\(693\) 1.46227i 0.0555470i
\(694\) −8.40717 + 11.6349i −0.319132 + 0.441655i
\(695\) 7.49048 + 6.00128i 0.284130 + 0.227641i
\(696\) −5.40188 10.4007i −0.204758 0.394237i
\(697\) −1.05003 1.05003i −0.0397728 0.0397728i
\(698\) 1.27070 + 7.89023i 0.0480968 + 0.298650i
\(699\) 8.58253 + 8.58253i 0.324621 + 0.324621i
\(700\) −4.71647 1.18513i −0.178266 0.0447936i
\(701\) −21.5588 + 21.5588i −0.814266 + 0.814266i −0.985270 0.171004i \(-0.945299\pi\)
0.171004 + 0.985270i \(0.445299\pi\)
\(702\) −11.6678 + 16.1474i −0.440373 + 0.609443i
\(703\) 29.1311 29.1311i 1.09870 1.09870i
\(704\) −9.40314 + 1.63988i −0.354394 + 0.0618053i
\(705\) −6.25897 + 7.81212i −0.235726 + 0.294221i
\(706\) −7.20702 44.7509i −0.271240 1.68422i
\(707\) −0.655691 −0.0246598
\(708\) 12.8421 + 6.45958i 0.482635 + 0.242766i
\(709\) −2.96687 + 2.96687i −0.111423 + 0.111423i −0.760620 0.649197i \(-0.775105\pi\)
0.649197 + 0.760620i \(0.275105\pi\)
\(710\) 8.18677 + 4.64175i 0.307244 + 0.174202i
\(711\) 25.6183 0.960760
\(712\) 0.946485 2.99210i 0.0354710 0.112134i
\(713\) −27.0488 + 27.0488i −1.01299 + 1.01299i
\(714\) 0.225067 + 0.162629i 0.00842290 + 0.00608624i
\(715\) −6.14529 + 7.67023i −0.229821 + 0.286850i
\(716\) −25.0482 12.5993i −0.936096 0.470857i
\(717\) 17.4688i 0.652385i
\(718\) −3.57712 + 4.95047i −0.133497 + 0.184750i
\(719\) −25.8357 −0.963509 −0.481755 0.876306i \(-0.660000\pi\)
−0.481755 + 0.876306i \(0.660000\pi\)
\(720\) −16.5138 + 15.3423i −0.615434 + 0.571774i
\(721\) −6.59839 −0.245737
\(722\) −32.1611 + 44.5085i −1.19691 + 1.65644i
\(723\) 8.32763i 0.309708i
\(724\) −1.32201 + 2.62824i −0.0491320 + 0.0976777i
\(725\) −25.2518 16.0268i −0.937829 0.595222i
\(726\) 7.60407 + 5.49457i 0.282214 + 0.203923i
\(727\) 28.9620 28.9620i 1.07414 1.07414i 0.0771198 0.997022i \(-0.475428\pi\)
0.997022 0.0771198i \(-0.0245724\pi\)
\(728\) −2.33555 4.49682i −0.0865612 0.166663i
\(729\) 4.43146 0.164128
\(730\) 29.6202 8.18521i 1.09629 0.302948i
\(731\) 1.77521 1.77521i 0.0656584 0.0656584i
\(732\) 4.23988 8.42918i 0.156711 0.311551i
\(733\) 21.1673 0.781832 0.390916 0.920426i \(-0.372158\pi\)
0.390916 + 0.920426i \(0.372158\pi\)
\(734\) 2.05725 + 12.7742i 0.0759346 + 0.471504i
\(735\) −10.4131 + 1.14939i −0.384093 + 0.0423957i
\(736\) −17.6930 17.2394i −0.652173 0.635453i
\(737\) 12.1173 12.1173i 0.446347 0.446347i
\(738\) −5.31820 + 7.35999i −0.195765 + 0.270925i
\(739\) 2.23302 2.23302i 0.0821431 0.0821431i −0.664841 0.746985i \(-0.731501\pi\)
0.746985 + 0.664841i \(0.231501\pi\)
\(740\) −10.0842 22.0295i −0.370702 0.809821i
\(741\) 13.7220 + 13.7220i 0.504091 + 0.504091i
\(742\) 0.664344 + 4.12514i 0.0243888 + 0.151439i
\(743\) −18.4514 18.4514i −0.676915 0.676915i 0.282386 0.959301i \(-0.408874\pi\)
−0.959301 + 0.282386i \(0.908874\pi\)
\(744\) 5.17624 16.3635i 0.189770 0.599915i
\(745\) 22.0603 27.5345i 0.808226 1.00879i
\(746\) −13.9011 + 19.2381i −0.508955 + 0.704356i
\(747\) 18.0260i 0.659538i
\(748\) 1.32051 0.436655i 0.0482827 0.0159657i
\(749\) −1.81634 1.81634i −0.0663675 0.0663675i
\(750\) 3.19404 10.4767i 0.116630 0.382554i
\(751\) 42.4243i 1.54808i 0.633134 + 0.774042i \(0.281768\pi\)
−0.633134 + 0.774042i \(0.718232\pi\)
\(752\) −25.5726 3.77845i −0.932537 0.137786i
\(753\) 5.18780 + 5.18780i 0.189054 + 0.189054i
\(754\) −4.95496 30.7671i −0.180449 1.12047i
\(755\) 7.07365 0.780782i 0.257437 0.0284156i
\(756\) 1.67123 3.32253i 0.0607821 0.120839i
\(757\) −19.7595 −0.718170 −0.359085 0.933305i \(-0.616911\pi\)
−0.359085 + 0.933305i \(0.616911\pi\)
\(758\) 2.32471 + 14.4349i 0.0844372 + 0.524300i
\(759\) 3.60925i 0.131007i
\(760\) 26.7169 + 39.9920i 0.969122 + 1.45066i
\(761\) 48.0351i 1.74127i 0.491928 + 0.870636i \(0.336292\pi\)
−0.491928 + 0.870636i \(0.663708\pi\)
\(762\) −14.4333 + 2.32445i −0.522865 + 0.0842061i
\(763\) −1.05899 −0.0383379
\(764\) −5.85649 + 1.93657i −0.211880 + 0.0700628i
\(765\) 2.05366 2.56327i 0.0742502 0.0926753i
\(766\) 10.4946 1.69013i 0.379186 0.0610669i
\(767\) 27.0286 + 27.0286i 0.975946 + 0.975946i
\(768\) 10.6098 + 3.20525i 0.382848 + 0.115659i
\(769\) 24.0184i 0.866127i −0.901363 0.433064i \(-0.857433\pi\)
0.901363 0.433064i \(-0.142567\pi\)
\(770\) 0.904985 1.59614i 0.0326134 0.0575210i
\(771\) −6.98319 6.98319i −0.251493 0.251493i
\(772\) 15.3680 30.5527i 0.553107 1.09962i
\(773\) 22.4630i 0.807937i 0.914773 + 0.403969i \(0.132370\pi\)
−0.914773 + 0.403969i \(0.867630\pi\)