Properties

Label 80.2.j.a
Level $80$
Weight $2$
Character orbit 80.j
Analytic conductor $0.639$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(43,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i + 1) q^{2} + 2 i q^{3} - 2 i q^{4} + (2 i + 1) q^{5} + (2 i + 2) q^{6} + ( - 3 i - 3) q^{7} + ( - 2 i - 2) q^{8} - q^{9} + (i + 3) q^{10} + ( - i - 1) q^{11} + 4 q^{12} - 2 q^{13} - 6 q^{14} + \cdots + (i + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{5} + 4 q^{6} - 6 q^{7} - 4 q^{8} - 2 q^{9} + 6 q^{10} - 2 q^{11} + 8 q^{12} - 4 q^{13} - 12 q^{14} - 8 q^{15} - 8 q^{16} + 2 q^{17} - 2 q^{18} + 6 q^{19} + 8 q^{20} + 12 q^{21} - 4 q^{22}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(i\) \(-i\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
1.00000i
1.00000i
1.00000 + 1.00000i 2.00000i 2.00000i 1.00000 2.00000i 2.00000 2.00000i −3.00000 + 3.00000i −2.00000 + 2.00000i −1.00000 3.00000 1.00000i
67.1 1.00000 1.00000i 2.00000i 2.00000i 1.00000 + 2.00000i 2.00000 + 2.00000i −3.00000 3.00000i −2.00000 2.00000i −1.00000 3.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.2.j.a 2
3.b odd 2 1 720.2.bd.a 2
4.b odd 2 1 320.2.j.a 2
5.b even 2 1 400.2.j.a 2
5.c odd 4 1 80.2.s.a yes 2
5.c odd 4 1 400.2.s.a 2
8.b even 2 1 640.2.j.a 2
8.d odd 2 1 640.2.j.b 2
15.e even 4 1 720.2.z.d 2
16.e even 4 1 320.2.s.a 2
16.e even 4 1 640.2.s.a 2
16.f odd 4 1 80.2.s.a yes 2
16.f odd 4 1 640.2.s.b 2
20.d odd 2 1 1600.2.j.a 2
20.e even 4 1 320.2.s.a 2
20.e even 4 1 1600.2.s.a 2
40.i odd 4 1 640.2.s.b 2
40.k even 4 1 640.2.s.a 2
48.k even 4 1 720.2.z.d 2
80.i odd 4 1 640.2.j.b 2
80.i odd 4 1 1600.2.j.a 2
80.j even 4 1 inner 80.2.j.a 2
80.k odd 4 1 400.2.s.a 2
80.q even 4 1 1600.2.s.a 2
80.s even 4 1 400.2.j.a 2
80.s even 4 1 640.2.j.a 2
80.t odd 4 1 320.2.j.a 2
240.bd odd 4 1 720.2.bd.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.2.j.a 2 1.a even 1 1 trivial
80.2.j.a 2 80.j even 4 1 inner
80.2.s.a yes 2 5.c odd 4 1
80.2.s.a yes 2 16.f odd 4 1
320.2.j.a 2 4.b odd 2 1
320.2.j.a 2 80.t odd 4 1
320.2.s.a 2 16.e even 4 1
320.2.s.a 2 20.e even 4 1
400.2.j.a 2 5.b even 2 1
400.2.j.a 2 80.s even 4 1
400.2.s.a 2 5.c odd 4 1
400.2.s.a 2 80.k odd 4 1
640.2.j.a 2 8.b even 2 1
640.2.j.a 2 80.s even 4 1
640.2.j.b 2 8.d odd 2 1
640.2.j.b 2 80.i odd 4 1
640.2.s.a 2 16.e even 4 1
640.2.s.a 2 40.k even 4 1
640.2.s.b 2 16.f odd 4 1
640.2.s.b 2 40.i odd 4 1
720.2.z.d 2 15.e even 4 1
720.2.z.d 2 48.k even 4 1
720.2.bd.a 2 3.b odd 2 1
720.2.bd.a 2 240.bd odd 4 1
1600.2.j.a 2 20.d odd 2 1
1600.2.j.a 2 80.i odd 4 1
1600.2.s.a 2 20.e even 4 1
1600.2.s.a 2 80.q even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(80, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 14T + 98 \) Copy content Toggle raw display
$31$ \( T^{2} + 4 \) Copy content Toggle raw display
$37$ \( (T + 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 16 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 14T + 98 \) Copy content Toggle raw display
$53$ \( T^{2} + 64 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 22T + 242 \) Copy content Toggle raw display
show more
show less