Properties

Label 80.18.a.i
Level $80$
Weight $18$
Character orbit 80.a
Self dual yes
Analytic conductor $146.578$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,18,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.577669876\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 10129161x^{2} - 14868432888x - 5637012379920 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1186) q^{3} + 390625 q^{5} + ( - \beta_{3} - 317 \beta_1 + 2989678) q^{7} + ( - 3 \beta_{3} + 7 \beta_{2} + \cdots - 2893115) q^{9} + (5 \beta_{3} + 44 \beta_{2} + \cdots - 99884248) q^{11}+ \cdots + ( - 1588349631 \beta_{3} + \cdots + 67\!\cdots\!96) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4744 q^{3} + 1562500 q^{5} + 11958712 q^{7} - 11572460 q^{9} - 399536992 q^{11} - 1639294440 q^{13} - 1853125000 q^{15} - 23369532632 q^{17} + 106257464208 q^{19} - 172457604288 q^{21} + 476477099528 q^{23}+ \cdots + 26\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 10129161x^{2} - 14868432888x - 5637012379920 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 1358\nu^{2} - 8287713\nu - 4284672876 ) / 113568 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 401\nu^{3} - 282478\nu^{2} - 4252708593\nu - 3045014674956 ) / 56784 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -1525\nu^{3} + 1197350\nu^{2} + 13992143445\nu + 10957867843740 ) / 113568 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -3\beta_{3} - 5\beta_{2} - 565\beta _1 + 23040 ) / 46080 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -1773\beta_{3} - 1291\beta_{2} - 1668443\beta _1 + 38895985920 ) / 7680 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -13103181\beta_{3} - 17319211\beta_{2} - 4347939323\beta _1 + 171517722769920 ) / 15360 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2055.85
3799.99
−678.208
−1063.93
0 −15935.5 0 390625. 0 3.23095e6 0 1.24801e8 0
1.2 0 −5728.07 0 390625. 0 2.43425e7 0 −9.63293e7 0
1.3 0 2332.02 0 390625. 0 −2.00926e7 0 −1.23702e8 0
1.4 0 14587.6 0 390625. 0 4.47785e6 0 8.36577e7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.18.a.i 4
4.b odd 2 1 40.18.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.18.a.c 4 4.b odd 2 1
80.18.a.i 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4744T_{3}^{3} - 241241328T_{3}^{2} - 807457102848T_{3} + 3105205562327040 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 31\!\cdots\!40 \) Copy content Toggle raw display
$5$ \( (T - 390625)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 70\!\cdots\!12 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 84\!\cdots\!32 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 26\!\cdots\!32 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 59\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 51\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 15\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 11\!\cdots\!92 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 18\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 13\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 31\!\cdots\!72 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 84\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 11\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 80\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 76\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 57\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 18\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 19\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 48\!\cdots\!56 \) Copy content Toggle raw display
show more
show less