Properties

Label 80.18.a.g
Level $80$
Weight $18$
Character orbit 80.a
Self dual yes
Analytic conductor $146.578$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,18,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.577669876\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 50686x + 2014936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{9}\cdot 5 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 5315) q^{3} + 390625 q^{5} + (261 \beta_{2} + 371 \beta_1 - 712892) q^{7} + (3812 \beta_{2} + 5544 \beta_1 + 107967265) q^{9} + (17430 \beta_{2} - 16115 \beta_1 - 596582067) q^{11}+ \cdots + ( - 2673007356274 \beta_{2} + \cdots - 97\!\cdots\!15) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 15944 q^{3} + 1171875 q^{5} - 2139308 q^{7} + 323892439 q^{9} - 1789747516 q^{11} + 5414696794 q^{13} - 6228125000 q^{15} - 27402303962 q^{17} + 29956565300 q^{19} - 224495442624 q^{21} - 16254077844 q^{23}+ \cdots - 29\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 50686x + 2014936 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 128\nu - 43 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{2} + 162\nu - 67637 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 43 ) / 128 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 192\beta_{2} - 81\beta _1 + 4325285 ) / 128 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
202.308
−242.397
41.0886
0 −20979.7 0 390625. 0 1.29668e7 0 3.11007e8 0
1.2 0 −8850.68 0 390625. 0 −1.13170e7 0 −5.08056e7 0
1.3 0 13886.4 0 390625. 0 −3.78919e6 0 6.36910e7 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.18.a.g 3
4.b odd 2 1 5.18.a.b 3
12.b even 2 1 45.18.a.c 3
20.d odd 2 1 25.18.a.c 3
20.e even 4 2 25.18.b.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.18.a.b 3 4.b odd 2 1
25.18.a.c 3 20.d odd 2 1
25.18.b.c 6 20.e even 4 2
45.18.a.c 3 12.b even 2 1
80.18.a.g 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 15944T_{3}^{2} - 228550896T_{3} - 2578483943424 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + \cdots - 2578483943424 \) Copy content Toggle raw display
$5$ \( (T - 390625)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 55\!\cdots\!12 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 25\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 13\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 37\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 46\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 29\!\cdots\!28 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 72\!\cdots\!48 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 65\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 13\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 11\!\cdots\!32 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 57\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 35\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 20\!\cdots\!08 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 16\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 48\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 54\!\cdots\!32 \) Copy content Toggle raw display
show more
show less