Properties

Label 80.14.a.g
Level $80$
Weight $14$
Character orbit 80.a
Self dual yes
Analytic conductor $85.785$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,14,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-416] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.7847431615\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4466x - 18720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 5 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 139) q^{3} + 15625 q^{5} + ( - 17 \beta_{2} + 65 \beta_1 - 149458) q^{7} + (48 \beta_{2} - 1172 \beta_1 + 429113) q^{9} + ( - 55 \beta_{2} + 220 \beta_1 + 2201243) q^{11} + (244 \beta_{2} + 10868 \beta_1 - 11170866) q^{13}+ \cdots + (147907749 \beta_{2} + \cdots - 41492327041) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 416 q^{3} + 46875 q^{5} - 448292 q^{7} + 1286119 q^{9} + 6604004 q^{11} - 33501974 q^{13} - 6500000 q^{15} + 83129542 q^{17} - 97491100 q^{19} + 438200736 q^{21} - 316255836 q^{23} + 732421875 q^{25}+ \cdots - 126787366508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4466x - 18720 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} + 2\nu - 5955 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{2} + 764\nu + 11655 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 85 ) / 256 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 382\beta _1 + 762155 ) / 256 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.21238
−64.1084
69.3208
0 −2114.98 0 15625.0 0 −325303. 0 2.87881e6 0
1.2 0 573.185 0 15625.0 0 201493. 0 −1.26578e6 0
1.3 0 1125.79 0 15625.0 0 −324482. 0 −326912. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.14.a.g 3
4.b odd 2 1 5.14.a.b 3
12.b even 2 1 45.14.a.e 3
20.d odd 2 1 25.14.a.b 3
20.e even 4 2 25.14.b.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.14.a.b 3 4.b odd 2 1
25.14.a.b 3 20.d odd 2 1
25.14.b.b 6 20.e even 4 2
45.14.a.e 3 12.b even 2 1
80.14.a.g 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 416T_{3}^{2} - 2948016T_{3} + 1364770944 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + \cdots + 1364770944 \) Copy content Toggle raw display
$5$ \( (T - 15625)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 21\!\cdots\!88 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 88\!\cdots\!32 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 15\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 55\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 61\!\cdots\!12 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 46\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 82\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 34\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 18\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 33\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 83\!\cdots\!32 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 78\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 40\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 23\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 18\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 56\!\cdots\!92 \) Copy content Toggle raw display
show more
show less