Properties

Label 80.12.a.g.1.1
Level $80$
Weight $12$
Character 80.1
Self dual yes
Analytic conductor $61.467$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,12,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.4674544448\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(22.6867\) of defining polynomial
Character \(\chi\) \(=\) 80.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-745.734 q^{3} +3125.00 q^{5} +71494.9 q^{7} +378972. q^{9} +345651. q^{11} +1.50956e6 q^{13} -2.33042e6 q^{15} -5.39291e6 q^{17} +1.11633e7 q^{19} -5.33162e7 q^{21} +5.27646e6 q^{23} +9.76562e6 q^{25} -1.50508e8 q^{27} -1.86291e7 q^{29} -7.10448e7 q^{31} -2.57763e8 q^{33} +2.23422e8 q^{35} +3.23164e8 q^{37} -1.12573e9 q^{39} -9.11277e8 q^{41} +1.16431e9 q^{43} +1.18429e9 q^{45} -2.81949e8 q^{47} +3.13420e9 q^{49} +4.02168e9 q^{51} +4.05957e9 q^{53} +1.08016e9 q^{55} -8.32485e9 q^{57} -4.89828e9 q^{59} +1.07565e10 q^{61} +2.70946e10 q^{63} +4.71739e9 q^{65} -3.70812e9 q^{67} -3.93484e9 q^{69} -3.45274e9 q^{71} -2.21136e10 q^{73} -7.28256e9 q^{75} +2.47123e10 q^{77} -7.02672e9 q^{79} +4.51052e10 q^{81} -5.55656e10 q^{83} -1.68528e10 q^{85} +1.38924e10 q^{87} -9.29706e9 q^{89} +1.07926e11 q^{91} +5.29805e10 q^{93} +3.48853e10 q^{95} +4.71888e10 q^{97} +1.30992e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 604 q^{3} + 6250 q^{5} - 14092 q^{7} + 221914 q^{9} - 421584 q^{11} + 1730524 q^{13} - 1887500 q^{15} - 6323628 q^{17} + 28897400 q^{19} - 65446816 q^{21} + 45236076 q^{23} + 19531250 q^{25} - 197876440 q^{27}+ \cdots + 251492724912 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −745.734 −1.77181 −0.885905 0.463867i \(-0.846462\pi\)
−0.885905 + 0.463867i \(0.846462\pi\)
\(4\) 0 0
\(5\) 3125.00 0.447214
\(6\) 0 0
\(7\) 71494.9 1.60782 0.803908 0.594754i \(-0.202751\pi\)
0.803908 + 0.594754i \(0.202751\pi\)
\(8\) 0 0
\(9\) 378972. 2.13931
\(10\) 0 0
\(11\) 345651. 0.647109 0.323555 0.946209i \(-0.395122\pi\)
0.323555 + 0.946209i \(0.395122\pi\)
\(12\) 0 0
\(13\) 1.50956e6 1.12762 0.563810 0.825904i \(-0.309335\pi\)
0.563810 + 0.825904i \(0.309335\pi\)
\(14\) 0 0
\(15\) −2.33042e6 −0.792377
\(16\) 0 0
\(17\) −5.39291e6 −0.921200 −0.460600 0.887608i \(-0.652366\pi\)
−0.460600 + 0.887608i \(0.652366\pi\)
\(18\) 0 0
\(19\) 1.11633e7 1.03430 0.517151 0.855894i \(-0.326993\pi\)
0.517151 + 0.855894i \(0.326993\pi\)
\(20\) 0 0
\(21\) −5.33162e7 −2.84874
\(22\) 0 0
\(23\) 5.27646e6 0.170938 0.0854692 0.996341i \(-0.472761\pi\)
0.0854692 + 0.996341i \(0.472761\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) 0 0
\(27\) −1.50508e8 −2.01864
\(28\) 0 0
\(29\) −1.86291e7 −0.168657 −0.0843284 0.996438i \(-0.526874\pi\)
−0.0843284 + 0.996438i \(0.526874\pi\)
\(30\) 0 0
\(31\) −7.10448e7 −0.445700 −0.222850 0.974853i \(-0.571536\pi\)
−0.222850 + 0.974853i \(0.571536\pi\)
\(32\) 0 0
\(33\) −2.57763e8 −1.14655
\(34\) 0 0
\(35\) 2.23422e8 0.719037
\(36\) 0 0
\(37\) 3.23164e8 0.766150 0.383075 0.923717i \(-0.374865\pi\)
0.383075 + 0.923717i \(0.374865\pi\)
\(38\) 0 0
\(39\) −1.12573e9 −1.99793
\(40\) 0 0
\(41\) −9.11277e8 −1.22840 −0.614199 0.789151i \(-0.710521\pi\)
−0.614199 + 0.789151i \(0.710521\pi\)
\(42\) 0 0
\(43\) 1.16431e9 1.20779 0.603897 0.797063i \(-0.293614\pi\)
0.603897 + 0.797063i \(0.293614\pi\)
\(44\) 0 0
\(45\) 1.18429e9 0.956729
\(46\) 0 0
\(47\) −2.81949e8 −0.179321 −0.0896606 0.995972i \(-0.528578\pi\)
−0.0896606 + 0.995972i \(0.528578\pi\)
\(48\) 0 0
\(49\) 3.13420e9 1.58507
\(50\) 0 0
\(51\) 4.02168e9 1.63219
\(52\) 0 0
\(53\) 4.05957e9 1.33341 0.666704 0.745323i \(-0.267705\pi\)
0.666704 + 0.745323i \(0.267705\pi\)
\(54\) 0 0
\(55\) 1.08016e9 0.289396
\(56\) 0 0
\(57\) −8.32485e9 −1.83259
\(58\) 0 0
\(59\) −4.89828e9 −0.891986 −0.445993 0.895036i \(-0.647149\pi\)
−0.445993 + 0.895036i \(0.647149\pi\)
\(60\) 0 0
\(61\) 1.07565e10 1.63064 0.815320 0.579011i \(-0.196561\pi\)
0.815320 + 0.579011i \(0.196561\pi\)
\(62\) 0 0
\(63\) 2.70946e10 3.43962
\(64\) 0 0
\(65\) 4.71739e9 0.504287
\(66\) 0 0
\(67\) −3.70812e9 −0.335539 −0.167769 0.985826i \(-0.553656\pi\)
−0.167769 + 0.985826i \(0.553656\pi\)
\(68\) 0 0
\(69\) −3.93484e9 −0.302870
\(70\) 0 0
\(71\) −3.45274e9 −0.227113 −0.113557 0.993532i \(-0.536224\pi\)
−0.113557 + 0.993532i \(0.536224\pi\)
\(72\) 0 0
\(73\) −2.21136e10 −1.24848 −0.624242 0.781231i \(-0.714592\pi\)
−0.624242 + 0.781231i \(0.714592\pi\)
\(74\) 0 0
\(75\) −7.28256e9 −0.354362
\(76\) 0 0
\(77\) 2.47123e10 1.04043
\(78\) 0 0
\(79\) −7.02672e9 −0.256923 −0.128462 0.991714i \(-0.541004\pi\)
−0.128462 + 0.991714i \(0.541004\pi\)
\(80\) 0 0
\(81\) 4.51052e10 1.43734
\(82\) 0 0
\(83\) −5.55656e10 −1.54838 −0.774188 0.632956i \(-0.781841\pi\)
−0.774188 + 0.632956i \(0.781841\pi\)
\(84\) 0 0
\(85\) −1.68528e10 −0.411973
\(86\) 0 0
\(87\) 1.38924e10 0.298828
\(88\) 0 0
\(89\) −9.29706e9 −0.176482 −0.0882410 0.996099i \(-0.528125\pi\)
−0.0882410 + 0.996099i \(0.528125\pi\)
\(90\) 0 0
\(91\) 1.07926e11 1.81301
\(92\) 0 0
\(93\) 5.29805e10 0.789696
\(94\) 0 0
\(95\) 3.48853e10 0.462554
\(96\) 0 0
\(97\) 4.71888e10 0.557949 0.278975 0.960298i \(-0.410005\pi\)
0.278975 + 0.960298i \(0.410005\pi\)
\(98\) 0 0
\(99\) 1.30992e11 1.38437
\(100\) 0 0
\(101\) 1.61228e11 1.52642 0.763209 0.646151i \(-0.223622\pi\)
0.763209 + 0.646151i \(0.223622\pi\)
\(102\) 0 0
\(103\) 1.85579e11 1.57733 0.788666 0.614822i \(-0.210772\pi\)
0.788666 + 0.614822i \(0.210772\pi\)
\(104\) 0 0
\(105\) −1.66613e11 −1.27400
\(106\) 0 0
\(107\) 5.45807e10 0.376208 0.188104 0.982149i \(-0.439766\pi\)
0.188104 + 0.982149i \(0.439766\pi\)
\(108\) 0 0
\(109\) −3.54035e10 −0.220394 −0.110197 0.993910i \(-0.535148\pi\)
−0.110197 + 0.993910i \(0.535148\pi\)
\(110\) 0 0
\(111\) −2.40995e11 −1.35747
\(112\) 0 0
\(113\) 1.20314e11 0.614308 0.307154 0.951660i \(-0.400623\pi\)
0.307154 + 0.951660i \(0.400623\pi\)
\(114\) 0 0
\(115\) 1.64889e10 0.0764460
\(116\) 0 0
\(117\) 5.72083e11 2.41233
\(118\) 0 0
\(119\) −3.85566e11 −1.48112
\(120\) 0 0
\(121\) −1.65837e11 −0.581250
\(122\) 0 0
\(123\) 6.79571e11 2.17649
\(124\) 0 0
\(125\) 3.05176e10 0.0894427
\(126\) 0 0
\(127\) 5.60687e11 1.50591 0.752957 0.658070i \(-0.228627\pi\)
0.752957 + 0.658070i \(0.228627\pi\)
\(128\) 0 0
\(129\) −8.68267e11 −2.13998
\(130\) 0 0
\(131\) −4.11999e11 −0.933048 −0.466524 0.884508i \(-0.654494\pi\)
−0.466524 + 0.884508i \(0.654494\pi\)
\(132\) 0 0
\(133\) 7.98119e11 1.66297
\(134\) 0 0
\(135\) −4.70338e11 −0.902764
\(136\) 0 0
\(137\) −7.86259e11 −1.39188 −0.695941 0.718099i \(-0.745013\pi\)
−0.695941 + 0.718099i \(0.745013\pi\)
\(138\) 0 0
\(139\) −8.57152e11 −1.40112 −0.700562 0.713592i \(-0.747067\pi\)
−0.700562 + 0.713592i \(0.747067\pi\)
\(140\) 0 0
\(141\) 2.10259e11 0.317723
\(142\) 0 0
\(143\) 5.21782e11 0.729694
\(144\) 0 0
\(145\) −5.82160e10 −0.0754256
\(146\) 0 0
\(147\) −2.33728e12 −2.80844
\(148\) 0 0
\(149\) −2.38606e11 −0.266168 −0.133084 0.991105i \(-0.542488\pi\)
−0.133084 + 0.991105i \(0.542488\pi\)
\(150\) 0 0
\(151\) 9.57309e10 0.0992382 0.0496191 0.998768i \(-0.484199\pi\)
0.0496191 + 0.998768i \(0.484199\pi\)
\(152\) 0 0
\(153\) −2.04376e12 −1.97073
\(154\) 0 0
\(155\) −2.22015e11 −0.199323
\(156\) 0 0
\(157\) −1.79935e12 −1.50545 −0.752727 0.658333i \(-0.771262\pi\)
−0.752727 + 0.658333i \(0.771262\pi\)
\(158\) 0 0
\(159\) −3.02736e12 −2.36254
\(160\) 0 0
\(161\) 3.77240e11 0.274837
\(162\) 0 0
\(163\) 2.50619e12 1.70601 0.853005 0.521903i \(-0.174778\pi\)
0.853005 + 0.521903i \(0.174778\pi\)
\(164\) 0 0
\(165\) −8.05511e11 −0.512755
\(166\) 0 0
\(167\) 2.69855e12 1.60764 0.803822 0.594871i \(-0.202797\pi\)
0.803822 + 0.594871i \(0.202797\pi\)
\(168\) 0 0
\(169\) 4.86623e11 0.271529
\(170\) 0 0
\(171\) 4.23058e12 2.21269
\(172\) 0 0
\(173\) 3.07796e12 1.51011 0.755057 0.655659i \(-0.227609\pi\)
0.755057 + 0.655659i \(0.227609\pi\)
\(174\) 0 0
\(175\) 6.98193e11 0.321563
\(176\) 0 0
\(177\) 3.65282e12 1.58043
\(178\) 0 0
\(179\) −3.51154e11 −0.142826 −0.0714128 0.997447i \(-0.522751\pi\)
−0.0714128 + 0.997447i \(0.522751\pi\)
\(180\) 0 0
\(181\) 6.34106e11 0.242622 0.121311 0.992615i \(-0.461290\pi\)
0.121311 + 0.992615i \(0.461290\pi\)
\(182\) 0 0
\(183\) −8.02151e12 −2.88918
\(184\) 0 0
\(185\) 1.00989e12 0.342633
\(186\) 0 0
\(187\) −1.86406e12 −0.596117
\(188\) 0 0
\(189\) −1.07606e13 −3.24560
\(190\) 0 0
\(191\) 2.61584e12 0.744609 0.372304 0.928111i \(-0.378568\pi\)
0.372304 + 0.928111i \(0.378568\pi\)
\(192\) 0 0
\(193\) 1.59819e12 0.429598 0.214799 0.976658i \(-0.431090\pi\)
0.214799 + 0.976658i \(0.431090\pi\)
\(194\) 0 0
\(195\) −3.51792e12 −0.893501
\(196\) 0 0
\(197\) −6.16281e10 −0.0147984 −0.00739920 0.999973i \(-0.502355\pi\)
−0.00739920 + 0.999973i \(0.502355\pi\)
\(198\) 0 0
\(199\) −2.36544e12 −0.537303 −0.268652 0.963237i \(-0.586578\pi\)
−0.268652 + 0.963237i \(0.586578\pi\)
\(200\) 0 0
\(201\) 2.76527e12 0.594510
\(202\) 0 0
\(203\) −1.33189e12 −0.271169
\(204\) 0 0
\(205\) −2.84774e12 −0.549357
\(206\) 0 0
\(207\) 1.99963e12 0.365690
\(208\) 0 0
\(209\) 3.85860e12 0.669307
\(210\) 0 0
\(211\) −5.39734e12 −0.888436 −0.444218 0.895919i \(-0.646518\pi\)
−0.444218 + 0.895919i \(0.646518\pi\)
\(212\) 0 0
\(213\) 2.57482e12 0.402402
\(214\) 0 0
\(215\) 3.63847e12 0.540142
\(216\) 0 0
\(217\) −5.07934e12 −0.716604
\(218\) 0 0
\(219\) 1.64908e13 2.21208
\(220\) 0 0
\(221\) −8.14094e12 −1.03876
\(222\) 0 0
\(223\) 9.37124e12 1.13794 0.568971 0.822357i \(-0.307342\pi\)
0.568971 + 0.822357i \(0.307342\pi\)
\(224\) 0 0
\(225\) 3.70090e12 0.427862
\(226\) 0 0
\(227\) 6.51561e12 0.717485 0.358742 0.933437i \(-0.383206\pi\)
0.358742 + 0.933437i \(0.383206\pi\)
\(228\) 0 0
\(229\) −1.74808e12 −0.183429 −0.0917144 0.995785i \(-0.529235\pi\)
−0.0917144 + 0.995785i \(0.529235\pi\)
\(230\) 0 0
\(231\) −1.84288e13 −1.84345
\(232\) 0 0
\(233\) 8.64493e12 0.824715 0.412358 0.911022i \(-0.364705\pi\)
0.412358 + 0.911022i \(0.364705\pi\)
\(234\) 0 0
\(235\) −8.81089e11 −0.0801949
\(236\) 0 0
\(237\) 5.24006e12 0.455219
\(238\) 0 0
\(239\) −6.71025e12 −0.556609 −0.278304 0.960493i \(-0.589772\pi\)
−0.278304 + 0.960493i \(0.589772\pi\)
\(240\) 0 0
\(241\) −1.20329e13 −0.953404 −0.476702 0.879065i \(-0.658168\pi\)
−0.476702 + 0.879065i \(0.658168\pi\)
\(242\) 0 0
\(243\) −6.97444e12 −0.528050
\(244\) 0 0
\(245\) 9.79438e12 0.708865
\(246\) 0 0
\(247\) 1.68517e13 1.16630
\(248\) 0 0
\(249\) 4.14371e13 2.74343
\(250\) 0 0
\(251\) 2.23212e13 1.41420 0.707101 0.707113i \(-0.250003\pi\)
0.707101 + 0.707113i \(0.250003\pi\)
\(252\) 0 0
\(253\) 1.82381e12 0.110616
\(254\) 0 0
\(255\) 1.25677e13 0.729938
\(256\) 0 0
\(257\) 1.80055e13 1.00178 0.500890 0.865511i \(-0.333006\pi\)
0.500890 + 0.865511i \(0.333006\pi\)
\(258\) 0 0
\(259\) 2.31046e13 1.23183
\(260\) 0 0
\(261\) −7.05993e12 −0.360809
\(262\) 0 0
\(263\) −1.38894e13 −0.680653 −0.340326 0.940307i \(-0.610538\pi\)
−0.340326 + 0.940307i \(0.610538\pi\)
\(264\) 0 0
\(265\) 1.26862e13 0.596318
\(266\) 0 0
\(267\) 6.93313e12 0.312693
\(268\) 0 0
\(269\) 2.71611e13 1.17574 0.587868 0.808957i \(-0.299967\pi\)
0.587868 + 0.808957i \(0.299967\pi\)
\(270\) 0 0
\(271\) 7.24542e12 0.301115 0.150558 0.988601i \(-0.451893\pi\)
0.150558 + 0.988601i \(0.451893\pi\)
\(272\) 0 0
\(273\) −8.04842e13 −3.21230
\(274\) 0 0
\(275\) 3.37549e12 0.129422
\(276\) 0 0
\(277\) 3.97300e13 1.46380 0.731898 0.681415i \(-0.238635\pi\)
0.731898 + 0.681415i \(0.238635\pi\)
\(278\) 0 0
\(279\) −2.69240e13 −0.953491
\(280\) 0 0
\(281\) 5.95255e12 0.202683 0.101342 0.994852i \(-0.467686\pi\)
0.101342 + 0.994852i \(0.467686\pi\)
\(282\) 0 0
\(283\) 3.85782e13 1.26333 0.631665 0.775241i \(-0.282372\pi\)
0.631665 + 0.775241i \(0.282372\pi\)
\(284\) 0 0
\(285\) −2.60152e13 −0.819558
\(286\) 0 0
\(287\) −6.51517e13 −1.97504
\(288\) 0 0
\(289\) −5.18843e12 −0.151390
\(290\) 0 0
\(291\) −3.51903e13 −0.988580
\(292\) 0 0
\(293\) −5.32529e13 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(294\) 0 0
\(295\) −1.53071e13 −0.398908
\(296\) 0 0
\(297\) −5.20232e13 −1.30628
\(298\) 0 0
\(299\) 7.96516e12 0.192754
\(300\) 0 0
\(301\) 8.32424e13 1.94191
\(302\) 0 0
\(303\) −1.20233e14 −2.70452
\(304\) 0 0
\(305\) 3.36142e13 0.729244
\(306\) 0 0
\(307\) 5.74336e13 1.20200 0.601001 0.799249i \(-0.294769\pi\)
0.601001 + 0.799249i \(0.294769\pi\)
\(308\) 0 0
\(309\) −1.38392e14 −2.79473
\(310\) 0 0
\(311\) 2.58616e13 0.504050 0.252025 0.967721i \(-0.418903\pi\)
0.252025 + 0.967721i \(0.418903\pi\)
\(312\) 0 0
\(313\) −3.57307e13 −0.672277 −0.336138 0.941813i \(-0.609121\pi\)
−0.336138 + 0.941813i \(0.609121\pi\)
\(314\) 0 0
\(315\) 8.46707e13 1.53824
\(316\) 0 0
\(317\) −1.78631e13 −0.313422 −0.156711 0.987644i \(-0.550089\pi\)
−0.156711 + 0.987644i \(0.550089\pi\)
\(318\) 0 0
\(319\) −6.43917e12 −0.109139
\(320\) 0 0
\(321\) −4.07027e13 −0.666570
\(322\) 0 0
\(323\) −6.02026e13 −0.952800
\(324\) 0 0
\(325\) 1.47418e13 0.225524
\(326\) 0 0
\(327\) 2.64016e13 0.390496
\(328\) 0 0
\(329\) −2.01579e13 −0.288315
\(330\) 0 0
\(331\) −7.78278e13 −1.07667 −0.538333 0.842732i \(-0.680946\pi\)
−0.538333 + 0.842732i \(0.680946\pi\)
\(332\) 0 0
\(333\) 1.22470e14 1.63903
\(334\) 0 0
\(335\) −1.15879e13 −0.150057
\(336\) 0 0
\(337\) 4.95598e12 0.0621105 0.0310552 0.999518i \(-0.490113\pi\)
0.0310552 + 0.999518i \(0.490113\pi\)
\(338\) 0 0
\(339\) −8.97226e13 −1.08844
\(340\) 0 0
\(341\) −2.45567e13 −0.288417
\(342\) 0 0
\(343\) 8.27106e13 0.940684
\(344\) 0 0
\(345\) −1.22964e13 −0.135448
\(346\) 0 0
\(347\) 6.55706e13 0.699676 0.349838 0.936810i \(-0.386237\pi\)
0.349838 + 0.936810i \(0.386237\pi\)
\(348\) 0 0
\(349\) 1.14750e14 1.18635 0.593177 0.805072i \(-0.297873\pi\)
0.593177 + 0.805072i \(0.297873\pi\)
\(350\) 0 0
\(351\) −2.27202e14 −2.27626
\(352\) 0 0
\(353\) −5.10272e13 −0.495497 −0.247749 0.968824i \(-0.579691\pi\)
−0.247749 + 0.968824i \(0.579691\pi\)
\(354\) 0 0
\(355\) −1.07898e13 −0.101568
\(356\) 0 0
\(357\) 2.87530e14 2.62426
\(358\) 0 0
\(359\) 1.16657e14 1.03251 0.516253 0.856436i \(-0.327326\pi\)
0.516253 + 0.856436i \(0.327326\pi\)
\(360\) 0 0
\(361\) 8.12884e12 0.0697813
\(362\) 0 0
\(363\) 1.23671e14 1.02986
\(364\) 0 0
\(365\) −6.91049e13 −0.558339
\(366\) 0 0
\(367\) −1.44058e14 −1.12947 −0.564733 0.825274i \(-0.691021\pi\)
−0.564733 + 0.825274i \(0.691021\pi\)
\(368\) 0 0
\(369\) −3.45349e14 −2.62793
\(370\) 0 0
\(371\) 2.90239e14 2.14387
\(372\) 0 0
\(373\) 6.90594e13 0.495250 0.247625 0.968856i \(-0.420350\pi\)
0.247625 + 0.968856i \(0.420350\pi\)
\(374\) 0 0
\(375\) −2.27580e13 −0.158475
\(376\) 0 0
\(377\) −2.81219e13 −0.190181
\(378\) 0 0
\(379\) −2.28579e14 −1.50149 −0.750743 0.660595i \(-0.770304\pi\)
−0.750743 + 0.660595i \(0.770304\pi\)
\(380\) 0 0
\(381\) −4.18123e14 −2.66819
\(382\) 0 0
\(383\) 7.16725e13 0.444385 0.222192 0.975003i \(-0.428679\pi\)
0.222192 + 0.975003i \(0.428679\pi\)
\(384\) 0 0
\(385\) 7.72259e13 0.465295
\(386\) 0 0
\(387\) 4.41242e14 2.58385
\(388\) 0 0
\(389\) 5.31179e13 0.302356 0.151178 0.988507i \(-0.451693\pi\)
0.151178 + 0.988507i \(0.451693\pi\)
\(390\) 0 0
\(391\) −2.84555e13 −0.157469
\(392\) 0 0
\(393\) 3.07242e14 1.65318
\(394\) 0 0
\(395\) −2.19585e13 −0.114900
\(396\) 0 0
\(397\) 9.39721e12 0.0478246 0.0239123 0.999714i \(-0.492388\pi\)
0.0239123 + 0.999714i \(0.492388\pi\)
\(398\) 0 0
\(399\) −5.95185e14 −2.94646
\(400\) 0 0
\(401\) 2.20216e14 1.06061 0.530303 0.847808i \(-0.322078\pi\)
0.530303 + 0.847808i \(0.322078\pi\)
\(402\) 0 0
\(403\) −1.07247e14 −0.502581
\(404\) 0 0
\(405\) 1.40954e14 0.642797
\(406\) 0 0
\(407\) 1.11702e14 0.495783
\(408\) 0 0
\(409\) −3.05103e14 −1.31816 −0.659080 0.752072i \(-0.729054\pi\)
−0.659080 + 0.752072i \(0.729054\pi\)
\(410\) 0 0
\(411\) 5.86340e14 2.46615
\(412\) 0 0
\(413\) −3.50203e14 −1.43415
\(414\) 0 0
\(415\) −1.73642e14 −0.692455
\(416\) 0 0
\(417\) 6.39208e14 2.48253
\(418\) 0 0
\(419\) −4.21440e14 −1.59426 −0.797130 0.603808i \(-0.793649\pi\)
−0.797130 + 0.603808i \(0.793649\pi\)
\(420\) 0 0
\(421\) 1.11120e12 0.00409487 0.00204744 0.999998i \(-0.499348\pi\)
0.00204744 + 0.999998i \(0.499348\pi\)
\(422\) 0 0
\(423\) −1.06851e14 −0.383624
\(424\) 0 0
\(425\) −5.26651e13 −0.184240
\(426\) 0 0
\(427\) 7.69037e14 2.62177
\(428\) 0 0
\(429\) −3.89110e14 −1.29288
\(430\) 0 0
\(431\) −2.29204e14 −0.742332 −0.371166 0.928567i \(-0.621042\pi\)
−0.371166 + 0.928567i \(0.621042\pi\)
\(432\) 0 0
\(433\) 1.54032e14 0.486325 0.243162 0.969986i \(-0.421815\pi\)
0.243162 + 0.969986i \(0.421815\pi\)
\(434\) 0 0
\(435\) 4.34137e13 0.133640
\(436\) 0 0
\(437\) 5.89027e13 0.176802
\(438\) 0 0
\(439\) 1.25797e14 0.368227 0.184114 0.982905i \(-0.441059\pi\)
0.184114 + 0.982905i \(0.441059\pi\)
\(440\) 0 0
\(441\) 1.18778e15 3.39096
\(442\) 0 0
\(443\) 1.34623e14 0.374885 0.187443 0.982276i \(-0.439980\pi\)
0.187443 + 0.982276i \(0.439980\pi\)
\(444\) 0 0
\(445\) −2.90533e13 −0.0789252
\(446\) 0 0
\(447\) 1.77937e14 0.471600
\(448\) 0 0
\(449\) 4.28972e14 1.10937 0.554683 0.832062i \(-0.312840\pi\)
0.554683 + 0.832062i \(0.312840\pi\)
\(450\) 0 0
\(451\) −3.14984e14 −0.794908
\(452\) 0 0
\(453\) −7.13898e13 −0.175831
\(454\) 0 0
\(455\) 3.37269e14 0.810801
\(456\) 0 0
\(457\) −7.89196e14 −1.85202 −0.926011 0.377497i \(-0.876785\pi\)
−0.926011 + 0.377497i \(0.876785\pi\)
\(458\) 0 0
\(459\) 8.11677e14 1.85957
\(460\) 0 0
\(461\) −6.01739e14 −1.34602 −0.673012 0.739632i \(-0.735000\pi\)
−0.673012 + 0.739632i \(0.735000\pi\)
\(462\) 0 0
\(463\) −2.36873e14 −0.517393 −0.258696 0.965959i \(-0.583293\pi\)
−0.258696 + 0.965959i \(0.583293\pi\)
\(464\) 0 0
\(465\) 1.65564e14 0.353163
\(466\) 0 0
\(467\) −8.17060e14 −1.70220 −0.851101 0.525002i \(-0.824064\pi\)
−0.851101 + 0.525002i \(0.824064\pi\)
\(468\) 0 0
\(469\) −2.65112e14 −0.539484
\(470\) 0 0
\(471\) 1.34184e15 2.66738
\(472\) 0 0
\(473\) 4.02445e14 0.781574
\(474\) 0 0
\(475\) 1.09017e14 0.206860
\(476\) 0 0
\(477\) 1.53847e15 2.85257
\(478\) 0 0
\(479\) −2.80917e14 −0.509018 −0.254509 0.967070i \(-0.581914\pi\)
−0.254509 + 0.967070i \(0.581914\pi\)
\(480\) 0 0
\(481\) 4.87837e14 0.863927
\(482\) 0 0
\(483\) −2.81321e14 −0.486960
\(484\) 0 0
\(485\) 1.47465e14 0.249522
\(486\) 0 0
\(487\) 4.06414e14 0.672294 0.336147 0.941810i \(-0.390876\pi\)
0.336147 + 0.941810i \(0.390876\pi\)
\(488\) 0 0
\(489\) −1.86895e15 −3.02273
\(490\) 0 0
\(491\) −1.02479e15 −1.62065 −0.810324 0.585982i \(-0.800709\pi\)
−0.810324 + 0.585982i \(0.800709\pi\)
\(492\) 0 0
\(493\) 1.00465e14 0.155367
\(494\) 0 0
\(495\) 4.09350e14 0.619108
\(496\) 0 0
\(497\) −2.46853e14 −0.365156
\(498\) 0 0
\(499\) −1.01593e14 −0.146997 −0.0734987 0.997295i \(-0.523416\pi\)
−0.0734987 + 0.997295i \(0.523416\pi\)
\(500\) 0 0
\(501\) −2.01240e15 −2.84844
\(502\) 0 0
\(503\) −9.67924e14 −1.34035 −0.670174 0.742204i \(-0.733780\pi\)
−0.670174 + 0.742204i \(0.733780\pi\)
\(504\) 0 0
\(505\) 5.03838e14 0.682635
\(506\) 0 0
\(507\) −3.62891e14 −0.481097
\(508\) 0 0
\(509\) 9.40088e14 1.21961 0.609805 0.792552i \(-0.291248\pi\)
0.609805 + 0.792552i \(0.291248\pi\)
\(510\) 0 0
\(511\) −1.58101e15 −2.00733
\(512\) 0 0
\(513\) −1.68017e15 −2.08789
\(514\) 0 0
\(515\) 5.79933e14 0.705404
\(516\) 0 0
\(517\) −9.74557e13 −0.116040
\(518\) 0 0
\(519\) −2.29534e15 −2.67564
\(520\) 0 0
\(521\) −1.00574e15 −1.14783 −0.573916 0.818914i \(-0.694576\pi\)
−0.573916 + 0.818914i \(0.694576\pi\)
\(522\) 0 0
\(523\) 1.24911e15 1.39586 0.697931 0.716165i \(-0.254104\pi\)
0.697931 + 0.716165i \(0.254104\pi\)
\(524\) 0 0
\(525\) −5.20666e14 −0.569749
\(526\) 0 0
\(527\) 3.83138e14 0.410579
\(528\) 0 0
\(529\) −9.24969e14 −0.970780
\(530\) 0 0
\(531\) −1.85631e15 −1.90823
\(532\) 0 0
\(533\) −1.37563e15 −1.38517
\(534\) 0 0
\(535\) 1.70565e14 0.168246
\(536\) 0 0
\(537\) 2.61868e14 0.253060
\(538\) 0 0
\(539\) 1.08334e15 1.02571
\(540\) 0 0
\(541\) 1.47684e15 1.37009 0.685046 0.728500i \(-0.259782\pi\)
0.685046 + 0.728500i \(0.259782\pi\)
\(542\) 0 0
\(543\) −4.72874e14 −0.429880
\(544\) 0 0
\(545\) −1.10636e14 −0.0985632
\(546\) 0 0
\(547\) 2.32000e14 0.202562 0.101281 0.994858i \(-0.467706\pi\)
0.101281 + 0.994858i \(0.467706\pi\)
\(548\) 0 0
\(549\) 4.07643e15 3.48844
\(550\) 0 0
\(551\) −2.07962e14 −0.174442
\(552\) 0 0
\(553\) −5.02375e14 −0.413085
\(554\) 0 0
\(555\) −7.53108e14 −0.607080
\(556\) 0 0
\(557\) 2.34238e15 1.85120 0.925602 0.378498i \(-0.123559\pi\)
0.925602 + 0.378498i \(0.123559\pi\)
\(558\) 0 0
\(559\) 1.75760e15 1.36193
\(560\) 0 0
\(561\) 1.39010e15 1.05621
\(562\) 0 0
\(563\) −2.32309e15 −1.73089 −0.865446 0.501002i \(-0.832965\pi\)
−0.865446 + 0.501002i \(0.832965\pi\)
\(564\) 0 0
\(565\) 3.75983e14 0.274727
\(566\) 0 0
\(567\) 3.22479e15 2.31098
\(568\) 0 0
\(569\) −2.48598e14 −0.174735 −0.0873676 0.996176i \(-0.527845\pi\)
−0.0873676 + 0.996176i \(0.527845\pi\)
\(570\) 0 0
\(571\) 2.44700e15 1.68708 0.843540 0.537066i \(-0.180467\pi\)
0.843540 + 0.537066i \(0.180467\pi\)
\(572\) 0 0
\(573\) −1.95072e15 −1.31931
\(574\) 0 0
\(575\) 5.15280e13 0.0341877
\(576\) 0 0
\(577\) −2.05338e15 −1.33660 −0.668302 0.743890i \(-0.732979\pi\)
−0.668302 + 0.743890i \(0.732979\pi\)
\(578\) 0 0
\(579\) −1.19182e15 −0.761166
\(580\) 0 0
\(581\) −3.97266e15 −2.48950
\(582\) 0 0
\(583\) 1.40319e15 0.862860
\(584\) 0 0
\(585\) 1.78776e15 1.07883
\(586\) 0 0
\(587\) −3.00291e14 −0.177841 −0.0889207 0.996039i \(-0.528342\pi\)
−0.0889207 + 0.996039i \(0.528342\pi\)
\(588\) 0 0
\(589\) −7.93094e14 −0.460989
\(590\) 0 0
\(591\) 4.59582e13 0.0262200
\(592\) 0 0
\(593\) −2.71460e15 −1.52022 −0.760108 0.649796i \(-0.774854\pi\)
−0.760108 + 0.649796i \(0.774854\pi\)
\(594\) 0 0
\(595\) −1.20489e15 −0.662377
\(596\) 0 0
\(597\) 1.76399e15 0.951999
\(598\) 0 0
\(599\) 2.10006e15 1.11272 0.556358 0.830943i \(-0.312198\pi\)
0.556358 + 0.830943i \(0.312198\pi\)
\(600\) 0 0
\(601\) 2.84187e15 1.47841 0.739204 0.673481i \(-0.235202\pi\)
0.739204 + 0.673481i \(0.235202\pi\)
\(602\) 0 0
\(603\) −1.40528e15 −0.717821
\(604\) 0 0
\(605\) −5.18242e14 −0.259943
\(606\) 0 0
\(607\) 3.78069e14 0.186223 0.0931114 0.995656i \(-0.470319\pi\)
0.0931114 + 0.995656i \(0.470319\pi\)
\(608\) 0 0
\(609\) 9.93235e14 0.480460
\(610\) 0 0
\(611\) −4.25619e14 −0.202206
\(612\) 0 0
\(613\) 2.97141e15 1.38653 0.693267 0.720681i \(-0.256171\pi\)
0.693267 + 0.720681i \(0.256171\pi\)
\(614\) 0 0
\(615\) 2.12366e15 0.973355
\(616\) 0 0
\(617\) −1.19545e15 −0.538222 −0.269111 0.963109i \(-0.586730\pi\)
−0.269111 + 0.963109i \(0.586730\pi\)
\(618\) 0 0
\(619\) −3.17735e14 −0.140529 −0.0702645 0.997528i \(-0.522384\pi\)
−0.0702645 + 0.997528i \(0.522384\pi\)
\(620\) 0 0
\(621\) −7.94151e14 −0.345064
\(622\) 0 0
\(623\) −6.64693e14 −0.283750
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 0 0
\(627\) −2.87749e15 −1.18588
\(628\) 0 0
\(629\) −1.74280e15 −0.705778
\(630\) 0 0
\(631\) 7.14141e14 0.284199 0.142099 0.989852i \(-0.454615\pi\)
0.142099 + 0.989852i \(0.454615\pi\)
\(632\) 0 0
\(633\) 4.02498e15 1.57414
\(634\) 0 0
\(635\) 1.75215e15 0.673465
\(636\) 0 0
\(637\) 4.73128e15 1.78736
\(638\) 0 0
\(639\) −1.30849e15 −0.485866
\(640\) 0 0
\(641\) 3.74739e15 1.36776 0.683880 0.729594i \(-0.260291\pi\)
0.683880 + 0.729594i \(0.260291\pi\)
\(642\) 0 0
\(643\) −3.72691e14 −0.133718 −0.0668588 0.997762i \(-0.521298\pi\)
−0.0668588 + 0.997762i \(0.521298\pi\)
\(644\) 0 0
\(645\) −2.71333e15 −0.957028
\(646\) 0 0
\(647\) −3.55565e15 −1.23295 −0.616475 0.787374i \(-0.711440\pi\)
−0.616475 + 0.787374i \(0.711440\pi\)
\(648\) 0 0
\(649\) −1.69310e15 −0.577212
\(650\) 0 0
\(651\) 3.78784e15 1.26969
\(652\) 0 0
\(653\) 5.07282e15 1.67196 0.835982 0.548757i \(-0.184899\pi\)
0.835982 + 0.548757i \(0.184899\pi\)
\(654\) 0 0
\(655\) −1.28750e15 −0.417272
\(656\) 0 0
\(657\) −8.38043e15 −2.67090
\(658\) 0 0
\(659\) −1.66566e15 −0.522054 −0.261027 0.965331i \(-0.584061\pi\)
−0.261027 + 0.965331i \(0.584061\pi\)
\(660\) 0 0
\(661\) 3.06978e14 0.0946235 0.0473118 0.998880i \(-0.484935\pi\)
0.0473118 + 0.998880i \(0.484935\pi\)
\(662\) 0 0
\(663\) 6.07098e15 1.84049
\(664\) 0 0
\(665\) 2.49412e15 0.743701
\(666\) 0 0
\(667\) −9.82960e13 −0.0288299
\(668\) 0 0
\(669\) −6.98845e15 −2.01622
\(670\) 0 0
\(671\) 3.71800e15 1.05520
\(672\) 0 0
\(673\) 3.20107e15 0.893742 0.446871 0.894599i \(-0.352538\pi\)
0.446871 + 0.894599i \(0.352538\pi\)
\(674\) 0 0
\(675\) −1.46981e15 −0.403728
\(676\) 0 0
\(677\) −4.88443e15 −1.32001 −0.660004 0.751262i \(-0.729445\pi\)
−0.660004 + 0.751262i \(0.729445\pi\)
\(678\) 0 0
\(679\) 3.37376e15 0.897079
\(680\) 0 0
\(681\) −4.85891e15 −1.27125
\(682\) 0 0
\(683\) −3.43048e15 −0.883163 −0.441582 0.897221i \(-0.645582\pi\)
−0.441582 + 0.897221i \(0.645582\pi\)
\(684\) 0 0
\(685\) −2.45706e15 −0.622469
\(686\) 0 0
\(687\) 1.30361e15 0.325001
\(688\) 0 0
\(689\) 6.12818e15 1.50358
\(690\) 0 0
\(691\) −1.26067e15 −0.304420 −0.152210 0.988348i \(-0.548639\pi\)
−0.152210 + 0.988348i \(0.548639\pi\)
\(692\) 0 0
\(693\) 9.36527e15 2.22581
\(694\) 0 0
\(695\) −2.67860e15 −0.626602
\(696\) 0 0
\(697\) 4.91444e15 1.13160
\(698\) 0 0
\(699\) −6.44682e15 −1.46124
\(700\) 0 0
\(701\) −1.46416e15 −0.326693 −0.163347 0.986569i \(-0.552229\pi\)
−0.163347 + 0.986569i \(0.552229\pi\)
\(702\) 0 0
\(703\) 3.60758e15 0.792431
\(704\) 0 0
\(705\) 6.57058e14 0.142090
\(706\) 0 0
\(707\) 1.15270e16 2.45420
\(708\) 0 0
\(709\) −2.00407e15 −0.420105 −0.210053 0.977690i \(-0.567364\pi\)
−0.210053 + 0.977690i \(0.567364\pi\)
\(710\) 0 0
\(711\) −2.66293e15 −0.549639
\(712\) 0 0
\(713\) −3.74865e14 −0.0761873
\(714\) 0 0
\(715\) 1.63057e15 0.326329
\(716\) 0 0
\(717\) 5.00406e15 0.986205
\(718\) 0 0
\(719\) 6.94101e15 1.34714 0.673571 0.739122i \(-0.264759\pi\)
0.673571 + 0.739122i \(0.264759\pi\)
\(720\) 0 0
\(721\) 1.32679e16 2.53606
\(722\) 0 0
\(723\) 8.97336e15 1.68925
\(724\) 0 0
\(725\) −1.81925e14 −0.0337313
\(726\) 0 0
\(727\) 8.96895e14 0.163796 0.0818978 0.996641i \(-0.473902\pi\)
0.0818978 + 0.996641i \(0.473902\pi\)
\(728\) 0 0
\(729\) −2.78918e15 −0.501735
\(730\) 0 0
\(731\) −6.27903e15 −1.11262
\(732\) 0 0
\(733\) −1.11078e16 −1.93890 −0.969451 0.245286i \(-0.921118\pi\)
−0.969451 + 0.245286i \(0.921118\pi\)
\(734\) 0 0
\(735\) −7.30400e15 −1.25597
\(736\) 0 0
\(737\) −1.28171e15 −0.217130
\(738\) 0 0
\(739\) −5.03625e15 −0.840548 −0.420274 0.907397i \(-0.638066\pi\)
−0.420274 + 0.907397i \(0.638066\pi\)
\(740\) 0 0
\(741\) −1.25669e16 −2.06646
\(742\) 0 0
\(743\) −1.36645e15 −0.221389 −0.110695 0.993854i \(-0.535308\pi\)
−0.110695 + 0.993854i \(0.535308\pi\)
\(744\) 0 0
\(745\) −7.45643e14 −0.119034
\(746\) 0 0
\(747\) −2.10578e16 −3.31246
\(748\) 0 0
\(749\) 3.90225e15 0.604874
\(750\) 0 0
\(751\) 9.78301e15 1.49435 0.747176 0.664627i \(-0.231409\pi\)
0.747176 + 0.664627i \(0.231409\pi\)
\(752\) 0 0
\(753\) −1.66456e16 −2.50570
\(754\) 0 0
\(755\) 2.99159e14 0.0443807
\(756\) 0 0
\(757\) −1.39502e15 −0.203964 −0.101982 0.994786i \(-0.532518\pi\)
−0.101982 + 0.994786i \(0.532518\pi\)
\(758\) 0 0
\(759\) −1.36008e15 −0.195990
\(760\) 0 0
\(761\) 6.09995e15 0.866385 0.433192 0.901301i \(-0.357387\pi\)
0.433192 + 0.901301i \(0.357387\pi\)
\(762\) 0 0
\(763\) −2.53117e15 −0.354353
\(764\) 0 0
\(765\) −6.38676e15 −0.881339
\(766\) 0 0
\(767\) −7.39427e15 −1.00582
\(768\) 0 0
\(769\) 6.60626e15 0.885851 0.442925 0.896558i \(-0.353941\pi\)
0.442925 + 0.896558i \(0.353941\pi\)
\(770\) 0 0
\(771\) −1.34273e16 −1.77496
\(772\) 0 0
\(773\) 3.74520e15 0.488076 0.244038 0.969766i \(-0.421528\pi\)
0.244038 + 0.969766i \(0.421528\pi\)
\(774\) 0 0
\(775\) −6.93797e14 −0.0891400
\(776\) 0 0
\(777\) −1.72299e16 −2.18257
\(778\) 0 0
\(779\) −1.01729e16 −1.27054
\(780\) 0 0
\(781\) −1.19344e15 −0.146967
\(782\) 0 0
\(783\) 2.80384e15 0.340458
\(784\) 0 0
\(785\) −5.62297e15 −0.673259
\(786\) 0 0
\(787\) 1.01107e16 1.19377 0.596885 0.802326i \(-0.296405\pi\)
0.596885 + 0.802326i \(0.296405\pi\)
\(788\) 0 0
\(789\) 1.03578e16 1.20599
\(790\) 0 0
\(791\) 8.60188e15 0.987694
\(792\) 0 0
\(793\) 1.62377e16 1.83874
\(794\) 0 0
\(795\) −9.46050e15 −1.05656
\(796\) 0 0
\(797\) −1.40032e16 −1.54244 −0.771219 0.636570i \(-0.780353\pi\)
−0.771219 + 0.636570i \(0.780353\pi\)
\(798\) 0 0
\(799\) 1.52052e15 0.165191
\(800\) 0 0
\(801\) −3.52333e15 −0.377550
\(802\) 0 0
\(803\) −7.64357e15 −0.807906
\(804\) 0 0
\(805\) 1.17888e15 0.122911
\(806\) 0 0
\(807\) −2.02550e16 −2.08318
\(808\) 0 0
\(809\) 2.05016e15 0.208004 0.104002 0.994577i \(-0.466835\pi\)
0.104002 + 0.994577i \(0.466835\pi\)
\(810\) 0 0
\(811\) 1.45631e16 1.45760 0.728801 0.684725i \(-0.240078\pi\)
0.728801 + 0.684725i \(0.240078\pi\)
\(812\) 0 0
\(813\) −5.40316e15 −0.533519
\(814\) 0 0
\(815\) 7.83183e15 0.762951
\(816\) 0 0
\(817\) 1.29975e16 1.24922
\(818\) 0 0
\(819\) 4.09011e16 3.87858
\(820\) 0 0
\(821\) −5.13429e15 −0.480389 −0.240195 0.970725i \(-0.577211\pi\)
−0.240195 + 0.970725i \(0.577211\pi\)
\(822\) 0 0
\(823\) 6.16638e15 0.569287 0.284643 0.958633i \(-0.408125\pi\)
0.284643 + 0.958633i \(0.408125\pi\)
\(824\) 0 0
\(825\) −2.51722e15 −0.229311
\(826\) 0 0
\(827\) 2.77673e15 0.249605 0.124803 0.992182i \(-0.460170\pi\)
0.124803 + 0.992182i \(0.460170\pi\)
\(828\) 0 0
\(829\) 1.33865e16 1.18745 0.593726 0.804667i \(-0.297656\pi\)
0.593726 + 0.804667i \(0.297656\pi\)
\(830\) 0 0
\(831\) −2.96281e16 −2.59357
\(832\) 0 0
\(833\) −1.69025e16 −1.46017
\(834\) 0 0
\(835\) 8.43296e15 0.718960
\(836\) 0 0
\(837\) 1.06928e16 0.899709
\(838\) 0 0
\(839\) −1.47887e16 −1.22812 −0.614059 0.789260i \(-0.710464\pi\)
−0.614059 + 0.789260i \(0.710464\pi\)
\(840\) 0 0
\(841\) −1.18535e16 −0.971555
\(842\) 0 0
\(843\) −4.43902e15 −0.359116
\(844\) 0 0
\(845\) 1.52070e15 0.121431
\(846\) 0 0
\(847\) −1.18565e16 −0.934542
\(848\) 0 0
\(849\) −2.87691e16 −2.23838
\(850\) 0 0
\(851\) 1.70517e15 0.130965
\(852\) 0 0
\(853\) 1.97554e16 1.49784 0.748922 0.662658i \(-0.230572\pi\)
0.748922 + 0.662658i \(0.230572\pi\)
\(854\) 0 0
\(855\) 1.32206e16 0.989547
\(856\) 0 0
\(857\) −2.32233e16 −1.71605 −0.858023 0.513612i \(-0.828307\pi\)
−0.858023 + 0.513612i \(0.828307\pi\)
\(858\) 0 0
\(859\) 1.67344e16 1.22081 0.610405 0.792089i \(-0.291007\pi\)
0.610405 + 0.792089i \(0.291007\pi\)
\(860\) 0 0
\(861\) 4.85859e16 3.49939
\(862\) 0 0
\(863\) 2.46024e16 1.74951 0.874757 0.484563i \(-0.161021\pi\)
0.874757 + 0.484563i \(0.161021\pi\)
\(864\) 0 0
\(865\) 9.61864e15 0.675344
\(866\) 0 0
\(867\) 3.86919e15 0.268234
\(868\) 0 0
\(869\) −2.42879e15 −0.166257
\(870\) 0 0
\(871\) −5.59764e15 −0.378360
\(872\) 0 0
\(873\) 1.78833e16 1.19363
\(874\) 0 0
\(875\) 2.18185e15 0.143807
\(876\) 0 0
\(877\) −4.55865e15 −0.296714 −0.148357 0.988934i \(-0.547399\pi\)
−0.148357 + 0.988934i \(0.547399\pi\)
\(878\) 0 0
\(879\) 3.97125e16 2.55263
\(880\) 0 0
\(881\) 1.67834e16 1.06540 0.532701 0.846304i \(-0.321177\pi\)
0.532701 + 0.846304i \(0.321177\pi\)
\(882\) 0 0
\(883\) 1.13628e16 0.712362 0.356181 0.934417i \(-0.384079\pi\)
0.356181 + 0.934417i \(0.384079\pi\)
\(884\) 0 0
\(885\) 1.14151e16 0.706789
\(886\) 0 0
\(887\) −1.55603e16 −0.951563 −0.475782 0.879563i \(-0.657835\pi\)
−0.475782 + 0.879563i \(0.657835\pi\)
\(888\) 0 0
\(889\) 4.00863e16 2.42123
\(890\) 0 0
\(891\) 1.55906e16 0.930115
\(892\) 0 0
\(893\) −3.14747e15 −0.185472
\(894\) 0 0
\(895\) −1.09736e15 −0.0638736
\(896\) 0 0
\(897\) −5.93989e15 −0.341523
\(898\) 0 0
\(899\) 1.32350e15 0.0751704
\(900\) 0 0
\(901\) −2.18929e16 −1.22834
\(902\) 0 0
\(903\) −6.20767e16 −3.44069
\(904\) 0 0
\(905\) 1.98158e15 0.108504
\(906\) 0 0
\(907\) −3.40764e16 −1.84338 −0.921688 0.387932i \(-0.873189\pi\)
−0.921688 + 0.387932i \(0.873189\pi\)
\(908\) 0 0
\(909\) 6.11011e16 3.26548
\(910\) 0 0
\(911\) −1.60732e16 −0.848697 −0.424348 0.905499i \(-0.639497\pi\)
−0.424348 + 0.905499i \(0.639497\pi\)
\(912\) 0 0
\(913\) −1.92063e16 −1.00197
\(914\) 0 0
\(915\) −2.50672e16 −1.29208
\(916\) 0 0
\(917\) −2.94559e16 −1.50017
\(918\) 0 0
\(919\) 7.32080e15 0.368403 0.184201 0.982889i \(-0.441030\pi\)
0.184201 + 0.982889i \(0.441030\pi\)
\(920\) 0 0
\(921\) −4.28302e16 −2.12972
\(922\) 0 0
\(923\) −5.21213e15 −0.256098
\(924\) 0 0
\(925\) 3.15590e15 0.153230
\(926\) 0 0
\(927\) 7.03292e16 3.37440
\(928\) 0 0
\(929\) −1.41658e16 −0.671666 −0.335833 0.941922i \(-0.609018\pi\)
−0.335833 + 0.941922i \(0.609018\pi\)
\(930\) 0 0
\(931\) 3.49880e16 1.63944
\(932\) 0 0
\(933\) −1.92859e16 −0.893081
\(934\) 0 0
\(935\) −5.82520e15 −0.266592
\(936\) 0 0
\(937\) 1.51385e16 0.684721 0.342361 0.939569i \(-0.388774\pi\)
0.342361 + 0.939569i \(0.388774\pi\)
\(938\) 0 0
\(939\) 2.66456e16 1.19115
\(940\) 0 0
\(941\) 8.81297e15 0.389385 0.194693 0.980864i \(-0.437629\pi\)
0.194693 + 0.980864i \(0.437629\pi\)
\(942\) 0 0
\(943\) −4.80832e15 −0.209981
\(944\) 0 0
\(945\) −3.36268e16 −1.45148
\(946\) 0 0
\(947\) −6.85225e15 −0.292353 −0.146177 0.989258i \(-0.546697\pi\)
−0.146177 + 0.989258i \(0.546697\pi\)
\(948\) 0 0
\(949\) −3.33818e16 −1.40782
\(950\) 0 0
\(951\) 1.33211e16 0.555325
\(952\) 0 0
\(953\) 3.21185e16 1.32356 0.661781 0.749697i \(-0.269801\pi\)
0.661781 + 0.749697i \(0.269801\pi\)
\(954\) 0 0
\(955\) 8.17451e15 0.332999
\(956\) 0 0
\(957\) 4.80191e15 0.193374
\(958\) 0 0
\(959\) −5.62135e16 −2.23789
\(960\) 0 0
\(961\) −2.03611e16 −0.801351
\(962\) 0 0
\(963\) 2.06846e16 0.804827
\(964\) 0 0
\(965\) 4.99433e15 0.192122
\(966\) 0 0
\(967\) −2.01801e16 −0.767500 −0.383750 0.923437i \(-0.625367\pi\)
−0.383750 + 0.923437i \(0.625367\pi\)
\(968\) 0 0
\(969\) 4.48952e16 1.68818
\(970\) 0 0
\(971\) −7.19924e15 −0.267658 −0.133829 0.991004i \(-0.542727\pi\)
−0.133829 + 0.991004i \(0.542727\pi\)
\(972\) 0 0
\(973\) −6.12821e16 −2.25275
\(974\) 0 0
\(975\) −1.09935e16 −0.399586
\(976\) 0 0
\(977\) 3.14860e16 1.13161 0.565806 0.824538i \(-0.308565\pi\)
0.565806 + 0.824538i \(0.308565\pi\)
\(978\) 0 0
\(979\) −3.21353e15 −0.114203
\(980\) 0 0
\(981\) −1.34169e16 −0.471491
\(982\) 0 0
\(983\) 1.68059e15 0.0584006 0.0292003 0.999574i \(-0.490704\pi\)
0.0292003 + 0.999574i \(0.490704\pi\)
\(984\) 0 0
\(985\) −1.92588e14 −0.00661805
\(986\) 0 0
\(987\) 1.50324e16 0.510840
\(988\) 0 0
\(989\) 6.14345e15 0.206458
\(990\) 0 0
\(991\) 2.21678e15 0.0736746 0.0368373 0.999321i \(-0.488272\pi\)
0.0368373 + 0.999321i \(0.488272\pi\)
\(992\) 0 0
\(993\) 5.80389e16 1.90765
\(994\) 0 0
\(995\) −7.39199e15 −0.240289
\(996\) 0 0
\(997\) 2.59411e14 0.00833999 0.00416999 0.999991i \(-0.498673\pi\)
0.00416999 + 0.999991i \(0.498673\pi\)
\(998\) 0 0
\(999\) −4.86389e16 −1.54658
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.12.a.g.1.1 2
4.3 odd 2 10.12.a.d.1.2 2
12.11 even 2 90.12.a.l.1.1 2
20.3 even 4 50.12.b.f.49.2 4
20.7 even 4 50.12.b.f.49.3 4
20.19 odd 2 50.12.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.12.a.d.1.2 2 4.3 odd 2
50.12.a.f.1.1 2 20.19 odd 2
50.12.b.f.49.2 4 20.3 even 4
50.12.b.f.49.3 4 20.7 even 4
80.12.a.g.1.1 2 1.1 even 1 trivial
90.12.a.l.1.1 2 12.11 even 2