Defining parameters
Level: | \( N \) | = | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | = | \( 12 \) |
Nonzero newspaces: | \( 7 \) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(4608\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(80))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2168 | 1102 | 1066 |
Cusp forms | 2056 | 1076 | 980 |
Eisenstein series | 112 | 26 | 86 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(80))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
80.12.a | \(\chi_{80}(1, \cdot)\) | 80.12.a.a | 1 | 1 |
80.12.a.b | 1 | |||
80.12.a.c | 1 | |||
80.12.a.d | 1 | |||
80.12.a.e | 1 | |||
80.12.a.f | 1 | |||
80.12.a.g | 2 | |||
80.12.a.h | 2 | |||
80.12.a.i | 2 | |||
80.12.a.j | 2 | |||
80.12.a.k | 2 | |||
80.12.a.l | 3 | |||
80.12.a.m | 3 | |||
80.12.c | \(\chi_{80}(49, \cdot)\) | 80.12.c.a | 4 | 1 |
80.12.c.b | 6 | |||
80.12.c.c | 6 | |||
80.12.c.d | 16 | |||
80.12.d | \(\chi_{80}(41, \cdot)\) | None | 0 | 1 |
80.12.f | \(\chi_{80}(9, \cdot)\) | None | 0 | 1 |
80.12.j | \(\chi_{80}(43, \cdot)\) | 80.12.j.a | 260 | 2 |
80.12.l | \(\chi_{80}(21, \cdot)\) | 80.12.l.a | 176 | 2 |
80.12.n | \(\chi_{80}(47, \cdot)\) | 80.12.n.a | 2 | 2 |
80.12.n.b | 20 | |||
80.12.n.c | 44 | |||
80.12.o | \(\chi_{80}(7, \cdot)\) | None | 0 | 2 |
80.12.q | \(\chi_{80}(29, \cdot)\) | 80.12.q.a | 260 | 2 |
80.12.s | \(\chi_{80}(3, \cdot)\) | 80.12.s.a | 260 | 2 |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)