Properties

Label 80.12
Level 80
Weight 12
Dimension 1076
Nonzero newspaces 7
Newform subspaces 24
Sturm bound 4608
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 24 \)
Sturm bound: \(4608\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(80))\).

Total New Old
Modular forms 2168 1102 1066
Cusp forms 2056 1076 980
Eisenstein series 112 26 86

Trace form

\( 1076 q - 4 q^{2} - 490 q^{3} - 6168 q^{4} + 1314 q^{5} - 60720 q^{6} + 136298 q^{7} - 149680 q^{8} - 679638 q^{9} + 988940 q^{10} + 656216 q^{11} - 4600528 q^{12} - 738142 q^{13} + 3659904 q^{14} + 12476754 q^{15}+ \cdots + 1341415094208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(80))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
80.12.a \(\chi_{80}(1, \cdot)\) 80.12.a.a 1 1
80.12.a.b 1
80.12.a.c 1
80.12.a.d 1
80.12.a.e 1
80.12.a.f 1
80.12.a.g 2
80.12.a.h 2
80.12.a.i 2
80.12.a.j 2
80.12.a.k 2
80.12.a.l 3
80.12.a.m 3
80.12.c \(\chi_{80}(49, \cdot)\) 80.12.c.a 4 1
80.12.c.b 6
80.12.c.c 6
80.12.c.d 16
80.12.d \(\chi_{80}(41, \cdot)\) None 0 1
80.12.f \(\chi_{80}(9, \cdot)\) None 0 1
80.12.j \(\chi_{80}(43, \cdot)\) 80.12.j.a 260 2
80.12.l \(\chi_{80}(21, \cdot)\) 80.12.l.a 176 2
80.12.n \(\chi_{80}(47, \cdot)\) 80.12.n.a 2 2
80.12.n.b 20
80.12.n.c 44
80.12.o \(\chi_{80}(7, \cdot)\) None 0 2
80.12.q \(\chi_{80}(29, \cdot)\) 80.12.q.a 260 2
80.12.s \(\chi_{80}(3, \cdot)\) 80.12.s.a 260 2

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)