Properties

Label 80.11.p.a
Level $80$
Weight $11$
Character orbit 80.p
Analytic conductor $50.829$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,11,Mod(17,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.17");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.8285802139\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (57 i - 57) q^{3} + (1100 i + 2925) q^{5} + ( - 6953 i - 6953) q^{7} + 52551 i q^{9} - 75242 q^{11} + ( - 109857 i + 109857) q^{13} + (104025 i - 229425) q^{15} + ( - 1528927 i - 1528927) q^{17} + 4038680 i q^{19}+ \cdots - 3954042342 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 114 q^{3} + 5850 q^{5} - 13906 q^{7} - 150484 q^{11} + 219714 q^{13} - 458850 q^{15} - 3057854 q^{17} + 1585284 q^{21} + 1424846 q^{23} + 14691250 q^{25} - 12722400 q^{27} + 58161436 q^{31} + 8577588 q^{33}+ \cdots - 1053125694 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(i\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.00000i
1.00000i
0 −57.0000 + 57.0000i 0 2925.00 + 1100.00i 0 −6953.00 6953.00i 0 52551.0i 0
33.1 0 −57.0000 57.0000i 0 2925.00 1100.00i 0 −6953.00 + 6953.00i 0 52551.0i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.11.p.a 2
4.b odd 2 1 10.11.c.b 2
5.c odd 4 1 inner 80.11.p.a 2
12.b even 2 1 90.11.g.a 2
20.d odd 2 1 50.11.c.b 2
20.e even 4 1 10.11.c.b 2
20.e even 4 1 50.11.c.b 2
60.l odd 4 1 90.11.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.11.c.b 2 4.b odd 2 1
10.11.c.b 2 20.e even 4 1
50.11.c.b 2 20.d odd 2 1
50.11.c.b 2 20.e even 4 1
80.11.p.a 2 1.a even 1 1 trivial
80.11.p.a 2 5.c odd 4 1 inner
90.11.g.a 2 12.b even 2 1
90.11.g.a 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 114T_{3} + 6498 \) acting on \(S_{11}^{\mathrm{new}}(80, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 114T + 6498 \) Copy content Toggle raw display
$5$ \( T^{2} - 5850 T + 9765625 \) Copy content Toggle raw display
$7$ \( T^{2} + 13906 T + 96688418 \) Copy content Toggle raw display
$11$ \( (T + 75242)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 24137120898 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 4675235542658 \) Copy content Toggle raw display
$19$ \( T^{2} + 16310936142400 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1015093061858 \) Copy content Toggle raw display
$29$ \( T^{2} + 199023054400 \) Copy content Toggle raw display
$31$ \( (T - 29080718)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 1662929902818 \) Copy content Toggle raw display
$41$ \( (T + 163945678)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 28\!\cdots\!58 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 15\!\cdots\!38 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 19\!\cdots\!18 \) Copy content Toggle raw display
$59$ \( T^{2} + 88\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T + 1353610038)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!38 \) Copy content Toggle raw display
$71$ \( (T + 2827014562)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 15\!\cdots\!78 \) Copy content Toggle raw display
$79$ \( T^{2} + 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 36\!\cdots\!18 \) Copy content Toggle raw display
$89$ \( T^{2} + 71\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 55\!\cdots\!18 \) Copy content Toggle raw display
show more
show less