Properties

Label 8.8.b
Level $8$
Weight $8$
Character orbit 8.b
Rep. character $\chi_{8}(5,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 8.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(8, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 6 6 0
Eisenstein series 2 2 0

Trace form

\( 6 q + 6 q^{2} + 116 q^{4} + 268 q^{6} - 688 q^{7} + 1512 q^{8} - 2918 q^{9} - 1656 q^{10} - 4088 q^{12} + 12048 q^{14} + 17872 q^{15} + 35344 q^{16} + 1452 q^{17} - 89062 q^{18} - 114768 q^{20} + 152860 q^{22}+ \cdots - 14983242 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(8, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
8.8.b.a 8.b 8.b $6$ $2.499$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 8.8.b.a \(6\) \(0\) \(0\) \(-688\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{2}+\beta _{4}q^{3}+(19+\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)