Properties

Label 8.8.a
Level $8$
Weight $8$
Character orbit 8.a
Rep. character $\chi_{8}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $8$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 8.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(8))\).

Total New Old
Modular forms 9 2 7
Cusp forms 5 2 3
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(1\)
\(-\)\(1\)

Trace form

\( 2 q - 40 q^{3} + 348 q^{5} - 1680 q^{7} + 4618 q^{9} - 5688 q^{11} - 4660 q^{13} + 25808 q^{15} - 27420 q^{17} - 1352 q^{19} - 15552 q^{21} + 83280 q^{23} + 35374 q^{25} - 332560 q^{27} + 222636 q^{29}+ \cdots - 11495192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(8))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
8.8.a.a 8.a 1.a $1$ $2.499$ \(\Q\) None 8.8.a.a \(0\) \(-84\) \(-82\) \(-456\) $-$ $\mathrm{SU}(2)$ \(q-84q^{3}-82q^{5}-456q^{7}+4869q^{9}+\cdots\)
8.8.a.b 8.a 1.a $1$ $2.499$ \(\Q\) None 8.8.a.b \(0\) \(44\) \(430\) \(-1224\) $+$ $\mathrm{SU}(2)$ \(q+44q^{3}+430q^{5}-1224q^{7}-251q^{9}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(8))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(8)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 3}\)