Defining parameters
Level: | \( N \) | \(=\) | \( 8 = 2^{3} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 8.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(6\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(8))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7 | 1 | 6 |
Cusp forms | 3 | 1 | 2 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(8))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
8.6.a.a | $1$ | $1.283$ | \(\Q\) | None | \(0\) | \(20\) | \(-74\) | \(-24\) | $-$ | \(q+20q^{3}-74q^{5}-24q^{7}+157q^{9}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(8))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(8)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)