Properties

Label 8.6
Level 8
Weight 6
Dimension 5
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 24
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(8))\).

Total New Old
Modular forms 13 7 6
Cusp forms 7 5 2
Eisenstein series 6 2 4

Trace form

\( 5 q - 2 q^{2} + 20 q^{3} + 20 q^{4} - 74 q^{5} - 116 q^{6} + 72 q^{7} - 248 q^{8} - 7 q^{9} + 632 q^{10} + 124 q^{11} + 1576 q^{12} + 478 q^{13} - 2384 q^{14} - 1896 q^{15} - 3312 q^{16} - 998 q^{17} + 4754 q^{18}+ \cdots + 19468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.6.a \(\chi_{8}(1, \cdot)\) 8.6.a.a 1 1
8.6.b \(\chi_{8}(5, \cdot)\) 8.6.b.a 4 1

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(8))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(8)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)