Properties

Label 8.4
Level 8
Weight 4
Dimension 3
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 16
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(8))\).

Total New Old
Modular forms 9 5 4
Cusp forms 3 3 0
Eisenstein series 6 2 4

Trace form

\( 3 q - 2 q^{2} - 4 q^{3} - 12 q^{4} - 2 q^{5} + 28 q^{6} + 8 q^{7} + 40 q^{8} - 13 q^{9} - 56 q^{10} - 44 q^{11} - 56 q^{12} + 22 q^{13} + 16 q^{14} + 120 q^{15} + 16 q^{16} + 22 q^{17} + 2 q^{18} + 44 q^{19}+ \cdots + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.4.a \(\chi_{8}(1, \cdot)\) 8.4.a.a 1 1
8.4.b \(\chi_{8}(5, \cdot)\) 8.4.b.a 2 1