Properties

Label 8.20.a.a
Level $8$
Weight $20$
Character orbit 8.a
Self dual yes
Analytic conductor $18.305$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 8.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.3053357245\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1453}) \)
Defining polynomial: \(x^{2} - x - 363\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 960\sqrt{1453}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -13956 - \beta ) q^{3} + ( 613310 + 44 \beta ) q^{5} + ( 44255256 + 3190 \beta ) q^{7} + ( 371593269 + 27912 \beta ) q^{9} +O(q^{10})\) \( q + ( -13956 - \beta ) q^{3} + ( 613310 + 44 \beta ) q^{5} + ( 44255256 + 3190 \beta ) q^{7} + ( 371593269 + 27912 \beta ) q^{9} + ( -3581893804 - 223467 \beta ) q^{11} + ( -5063461802 + 71660 \beta ) q^{13} + ( -67479085560 - 1227374 \beta ) q^{15} + ( -36022539470 + 17338504 \beta ) q^{17} + ( -1560240236116 - 26137813 \beta ) q^{19} + ( -4889306864736 - 88774896 \beta ) q^{21} + ( -7379603545144 + 184291330 \beta ) q^{23} + ( -16104868999225 + 53971280 \beta ) q^{25} + ( -26341969566312 + 401128326 \beta ) q^{27} + ( -15124769622522 - 893092484 \beta ) q^{29} + ( -61694781388960 - 3864337064 \beta ) q^{31} + ( 349230172930224 + 6700599256 \beta ) q^{33} + ( 215096133585360 + 3903690164 \beta ) q^{35} + ( 1007696585087262 - 3072429508 \beta ) q^{37} + ( -25293143859288 + 4063374842 \beta ) q^{39} + ( 1270392479752122 - 47315480368 \beta ) q^{41} + ( -2816827546694732 + 16432445197 \beta ) q^{43} + ( 1872469405064790 + 33468812556 \beta ) q^{45} + ( -10974169793565168 + 13905445988 \beta ) q^{47} + ( 4186293331532393 + 282348533280 \beta ) q^{49} + ( -22714996600295880 - 205953622354 \beta ) q^{51} + ( -4709062533452338 - 810595524548 \beta ) q^{53} + ( -15363426861001640 - 294657873146 \beta ) q^{55} + ( 56775460828777296 + 1925019554344 \beta ) q^{57} + ( 49271224795203812 + 1148874921753 \beta ) q^{59} + ( 5146072688919910 - 3405518362868 \beta ) q^{61} + ( 135676101698415864 + 2420635233582 \beta ) q^{63} + ( 1116716180007380 - 178842524688 \beta ) q^{65} + ( 37876814001992252 - 6468769570097 \beta ) q^{67} + ( -143791971698754336 + 4807633743664 \beta ) q^{69} + ( 8703526283356888 - 4032598137882 \beta ) q^{71} + ( -428754127529916134 + 10723507910184 \beta ) q^{73} + ( 152487431068640100 + 15351645815545 \beta ) q^{75} + ( -1113097256235937824 - 21315830527312 \beta ) q^{77} + ( -113145960722427536 - 8826033368644 \beta ) q^{79} + ( -601404854883860151 - 11697219418248 \beta ) q^{81} + ( 383757850730492524 + 1875501918907 \beta ) q^{83} + ( 999487011407779100 + 9048886151560 \beta ) q^{85} + ( 1407007855170560232 + 27588768329226 \beta ) q^{87} + ( 3046272947217587274 + 7105196196264 \beta ) q^{89} + ( 82023827196188688 - 12981111503420 \beta ) q^{91} + ( 6035687393543352960 + 115625469454144 \beta ) q^{93} + ( -2496943855328169560 - 84681152480134 \beta ) q^{95} + ( 774074124761173538 - 186089076998104 \beta ) q^{97} + ( -9683429760739864476 - 183016652900871 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 27912q^{3} + 1226620q^{5} + 88510512q^{7} + 743186538q^{9} + O(q^{10}) \) \( 2q - 27912q^{3} + 1226620q^{5} + 88510512q^{7} + 743186538q^{9} - 7163787608q^{11} - 10126923604q^{13} - 134958171120q^{15} - 72045078940q^{17} - 3120480472232q^{19} - 9778613729472q^{21} - 14759207090288q^{23} - 32209737998450q^{25} - 52683939132624q^{27} - 30249539245044q^{29} - 123389562777920q^{31} + 698460345860448q^{33} + 430192267170720q^{35} + 2015393170174524q^{37} - 50586287718576q^{39} + 2540784959504244q^{41} - 5633655093389464q^{43} + 3744938810129580q^{45} - 21948339587130336q^{47} + 8372586663064786q^{49} - 45429993200591760q^{51} - 9418125066904676q^{53} - 30726853722003280q^{55} + 113550921657554592q^{57} + 98542449590407624q^{59} + 10292145377839820q^{61} + 271352203396831728q^{63} + 2233432360014760q^{65} + 75753628003984504q^{67} - 287583943397508672q^{69} + 17407052566713776q^{71} - 857508255059832268q^{73} + 304974862137280200q^{75} - 2226194512471875648q^{77} - 226291921444855072q^{79} - 1202809709767720302q^{81} + 767515701460985048q^{83} + 1998974022815558200q^{85} + 2814015710341120464q^{87} + 6092545894435174548q^{89} + 164047654392377376q^{91} + 12071374787086705920q^{93} - 4993887710656339120q^{95} + 1548148249522347076q^{97} - 19366859521479728952q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.5591
−18.5591
0 −50549.5 0 2.22342e6 0 1.60989e8 0 1.39299e9 0
1.2 0 22637.5 0 −996804. 0 −7.24780e7 0 −6.49805e8 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.20.a.a 2
3.b odd 2 1 72.20.a.a 2
4.b odd 2 1 16.20.a.e 2
8.b even 2 1 64.20.a.k 2
8.d odd 2 1 64.20.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.20.a.a 2 1.a even 1 1 trivial
16.20.a.e 2 4.b odd 2 1
64.20.a.j 2 8.d odd 2 1
64.20.a.k 2 8.b even 2 1
72.20.a.a 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 27912 T_{3} - 1144314864 \) acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(8))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( -1144314864 + 27912 T + T^{2} \)
$5$ \( -2216319016700 - 1226620 T + T^{2} \)
$7$ \( -11668133149654464 - 88510512 T + T^{2} \)
$11$ \( -54040584096044956784 + 7163787608 T + T^{2} \)
$13$ \( 18762236610718207204 + 10126923604 T + T^{2} \)
$17$ \( -\)\(40\!\cdots\!00\)\( + 72045078940 T + T^{2} \)
$19$ \( \)\(15\!\cdots\!56\)\( + 3120480472232 T + T^{2} \)
$23$ \( \)\(89\!\cdots\!36\)\( + 14759207090288 T + T^{2} \)
$29$ \( -\)\(83\!\cdots\!16\)\( + 30249539245044 T + T^{2} \)
$31$ \( -\)\(16\!\cdots\!00\)\( + 123389562777920 T + T^{2} \)
$37$ \( \)\(10\!\cdots\!44\)\( - 2015393170174524 T + T^{2} \)
$41$ \( -\)\(13\!\cdots\!16\)\( - 2540784959504244 T + T^{2} \)
$43$ \( \)\(75\!\cdots\!24\)\( + 5633655093389464 T + T^{2} \)
$47$ \( \)\(12\!\cdots\!24\)\( + 21948339587130336 T + T^{2} \)
$53$ \( -\)\(85\!\cdots\!56\)\( + 9418125066904676 T + T^{2} \)
$59$ \( \)\(66\!\cdots\!44\)\( - 98542449590407624 T + T^{2} \)
$61$ \( -\)\(15\!\cdots\!00\)\( - 10292145377839820 T + T^{2} \)
$67$ \( -\)\(54\!\cdots\!96\)\( - 75753628003984504 T + T^{2} \)
$71$ \( -\)\(21\!\cdots\!56\)\( - 17407052566713776 T + T^{2} \)
$73$ \( \)\(29\!\cdots\!56\)\( + 857508255059832268 T + T^{2} \)
$79$ \( -\)\(91\!\cdots\!04\)\( + 226291921444855072 T + T^{2} \)
$83$ \( \)\(14\!\cdots\!76\)\( - 767515701460985048 T + T^{2} \)
$89$ \( \)\(92\!\cdots\!76\)\( - 6092545894435174548 T + T^{2} \)
$97$ \( -\)\(45\!\cdots\!56\)\( - 1548148249522347076 T + T^{2} \)
show more
show less