Properties

Label 8.15.d.a
Level $8$
Weight $15$
Character orbit 8.d
Self dual yes
Analytic conductor $9.946$
Analytic rank $0$
Dimension $1$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8,15,Mod(3,8)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 15, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8.3");
 
S:= CuspForms(chi, 15);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 8.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.94631745215\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 128 q^{2} + 3022 q^{3} + 16384 q^{4} - 386816 q^{6} - 2097152 q^{8} + 4349515 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 128 q^{2} + 3022 q^{3} + 16384 q^{4} - 386816 q^{6} - 2097152 q^{8} + 4349515 q^{9} + 38712254 q^{11} + 49512448 q^{12} + 268435456 q^{16} - 328636222 q^{17} - 556737920 q^{18} + 1778973806 q^{19} - 4955168512 q^{22} - 6337593344 q^{24} + 6103515625 q^{25} - 1309897988 q^{27} - 34359738368 q^{32} + 116988431588 q^{33} + 42065436416 q^{34} + 71262453760 q^{36} - 227708647168 q^{38} - 333393570766 q^{41} - 495012562114 q^{43} + 634261569536 q^{44} + 811211948032 q^{48} + 678223072849 q^{49} - 781250000000 q^{50} - 993138662884 q^{51} + 167666942464 q^{54} + 5376058841732 q^{57} - 3914494552162 q^{59} + 4398046511104 q^{64} - 14974519243264 q^{66} + 2711103884558 q^{67} - 5384375861248 q^{68} - 9121594081280 q^{72} + 1579402558802 q^{73} + 18444824218750 q^{75} + 29146706837504 q^{76} - 24762107129771 q^{81} + 42674377058048 q^{82} - 31146255762898 q^{83} + 63361607950592 q^{86} - 81185480900608 q^{88} - 38433671549134 q^{89} - 103835129348096 q^{96} - 62815034524126 q^{97} - 86812553324672 q^{98} + 168379529456810 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0
−128.000 3022.00 16384.0 0 −386816. 0 −2.09715e6 4.34952e6 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.15.d.a 1
3.b odd 2 1 72.15.b.a 1
4.b odd 2 1 32.15.d.a 1
8.b even 2 1 32.15.d.a 1
8.d odd 2 1 CM 8.15.d.a 1
24.f even 2 1 72.15.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.15.d.a 1 1.a even 1 1 trivial
8.15.d.a 1 8.d odd 2 1 CM
32.15.d.a 1 4.b odd 2 1
32.15.d.a 1 8.b even 2 1
72.15.b.a 1 3.b odd 2 1
72.15.b.a 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 3022 \) acting on \(S_{15}^{\mathrm{new}}(8, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 128 \) Copy content Toggle raw display
$3$ \( T - 3022 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 38712254 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 328636222 \) Copy content Toggle raw display
$19$ \( T - 1778973806 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 333393570766 \) Copy content Toggle raw display
$43$ \( T + 495012562114 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 3914494552162 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 2711103884558 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1579402558802 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T + 31146255762898 \) Copy content Toggle raw display
$89$ \( T + 38433671549134 \) Copy content Toggle raw display
$97$ \( T + 62815034524126 \) Copy content Toggle raw display
show more
show less