Newspace parameters
| Level: | \( N \) | = | \( 8 = 2^{3} \) |
| Weight: | \( k \) | = | \( 14 \) |
| Character orbit: | \([\chi]\) | = | 8.b (of order \(2\) and degree \(1\)) |
Newform invariants
| Self dual: | No |
| Analytic conductor: | \(8.57847431615\) |
| Analytic rank: | \(1\) |
| Dimension: | \(2\) |
| Coefficient field: | \(\Q(\sqrt{-79}) \) |
| Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
| Coefficient ring index: | \( 2^{2} \) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-79}\). We also show the integral \(q\)-expansion of the trace form.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\).
| \(n\) | \(5\) | \(7\) |
| \(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.1 |
|
−56.0000 | − | 71.1056i | 2293.15i | −1920.00 | + | 7963.82i | − | 22576.0i | 163056. | − | 128417.i | −175832. | 673792. | − | 309451.i | −3.66423e6 | −1.60528e6 | + | 1.26426e6i | |||||||||||||
| 5.2 | −56.0000 | + | 71.1056i | − | 2293.15i | −1920.00 | − | 7963.82i | 22576.0i | 163056. | + | 128417.i | −175832. | 673792. | + | 309451.i | −3.66423e6 | −1.60528e6 | − | 1.26426e6i | ||||||||||||||
Inner twists
| Char. orbit | Parity | Mult. | Self Twist | Proved |
|---|---|---|---|---|
| 1.a | Even | 1 | trivial | yes |
| 8.b | Even | 1 | yes |
Hecke kernels
This newform can be constructed as the kernel of the linear operator \( T_{3}^{2} + 5258556 \) acting on \(S_{14}^{\mathrm{new}}(8, [\chi])\).