Properties

Label 8.13.d.a.3.1
Level 8
Weight 13
Character 8.3
Self dual Yes
Analytic conductor 7.312
Analytic rank 0
Dimension 1
CM disc. -8
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 13 \)
Character orbit: \([\chi]\) = 8.d (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(7.31195053821\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 3.1
Root \(0\)
Character \(\chi\) = 8.3

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+64.0000 q^{2}\) \(+658.000 q^{3}\) \(+4096.00 q^{4}\) \(+42112.0 q^{6}\) \(+262144. q^{8}\) \(-98477.0 q^{9}\) \(+O(q^{10})\) \(q\)\(+64.0000 q^{2}\) \(+658.000 q^{3}\) \(+4096.00 q^{4}\) \(+42112.0 q^{6}\) \(+262144. q^{8}\) \(-98477.0 q^{9}\) \(+1.92312e6 q^{11}\) \(+2.69517e6 q^{12}\) \(+1.67772e7 q^{16}\) \(-4.52961e7 q^{17}\) \(-6.30253e6 q^{18}\) \(-8.79314e7 q^{19}\) \(+1.23080e8 q^{22}\) \(+1.72491e8 q^{24}\) \(+2.44141e8 q^{25}\) \(-4.14486e8 q^{27}\) \(+1.07374e9 q^{32}\) \(+1.26541e9 q^{33}\) \(-2.89895e9 q^{34}\) \(-4.03362e8 q^{36}\) \(-5.62761e9 q^{38}\) \(+8.62826e9 q^{41}\) \(-7.03062e9 q^{43}\) \(+7.87711e9 q^{44}\) \(+1.10394e10 q^{48}\) \(+1.38413e10 q^{49}\) \(+1.56250e10 q^{50}\) \(-2.98048e10 q^{51}\) \(-2.65271e10 q^{54}\) \(-5.78589e10 q^{57}\) \(+8.63831e9 q^{59}\) \(+6.87195e10 q^{64}\) \(+8.09865e10 q^{66}\) \(+1.75046e11 q^{67}\) \(-1.85533e11 q^{68}\) \(-2.58152e10 q^{72}\) \(+4.91395e10 q^{73}\) \(+1.60645e11 q^{75}\) \(-3.60167e11 q^{76}\) \(-2.20397e11 q^{81}\) \(+5.52209e11 q^{82}\) \(-1.92940e11 q^{83}\) \(-4.49960e11 q^{86}\) \(+5.04135e11 q^{88}\) \(-8.66326e11 q^{89}\) \(+7.06522e11 q^{96}\) \(+1.65649e12 q^{97}\) \(+8.85842e11 q^{98}\) \(-1.89383e11 q^{99}\) \(+O(q^{100})\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 64.0000 1.00000
\(3\) 658.000 0.902606 0.451303 0.892371i \(-0.350959\pi\)
0.451303 + 0.892371i \(0.350959\pi\)
\(4\) 4096.00 1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 42112.0 0.902606
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 262144. 1.00000
\(9\) −98477.0 −0.185302
\(10\) 0 0
\(11\) 1.92312e6 1.08555 0.542776 0.839877i \(-0.317373\pi\)
0.542776 + 0.839877i \(0.317373\pi\)
\(12\) 2.69517e6 0.902606
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.67772e7 1.00000
\(17\) −4.52961e7 −1.87658 −0.938290 0.345850i \(-0.887590\pi\)
−0.938290 + 0.345850i \(0.887590\pi\)
\(18\) −6.30253e6 −0.185302
\(19\) −8.79314e7 −1.86906 −0.934529 0.355888i \(-0.884178\pi\)
−0.934529 + 0.355888i \(0.884178\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.23080e8 1.08555
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.72491e8 0.902606
\(25\) 2.44141e8 1.00000
\(26\) 0 0
\(27\) −4.14486e8 −1.06986
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.07374e9 1.00000
\(33\) 1.26541e9 0.979826
\(34\) −2.89895e9 −1.87658
\(35\) 0 0
\(36\) −4.03362e8 −0.185302
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −5.62761e9 −1.86906
\(39\) 0 0
\(40\) 0 0
\(41\) 8.62826e9 1.81644 0.908218 0.418498i \(-0.137443\pi\)
0.908218 + 0.418498i \(0.137443\pi\)
\(42\) 0 0
\(43\) −7.03062e9 −1.11220 −0.556100 0.831115i \(-0.687703\pi\)
−0.556100 + 0.831115i \(0.687703\pi\)
\(44\) 7.87711e9 1.08555
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.10394e10 0.902606
\(49\) 1.38413e10 1.00000
\(50\) 1.56250e10 1.00000
\(51\) −2.98048e10 −1.69381
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −2.65271e10 −1.06986
\(55\) 0 0
\(56\) 0 0
\(57\) −5.78589e10 −1.68702
\(58\) 0 0
\(59\) 8.63831e9 0.204794 0.102397 0.994744i \(-0.467349\pi\)
0.102397 + 0.994744i \(0.467349\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 6.87195e10 1.00000
\(65\) 0 0
\(66\) 8.09865e10 0.979826
\(67\) 1.75046e11 1.93510 0.967549 0.252684i \(-0.0813132\pi\)
0.967549 + 0.252684i \(0.0813132\pi\)
\(68\) −1.85533e11 −1.87658
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −2.58152e10 −0.185302
\(73\) 4.91395e10 0.324708 0.162354 0.986733i \(-0.448091\pi\)
0.162354 + 0.986733i \(0.448091\pi\)
\(74\) 0 0
\(75\) 1.60645e11 0.902606
\(76\) −3.60167e11 −1.86906
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −2.20397e11 −0.780361
\(82\) 5.52209e11 1.81644
\(83\) −1.92940e11 −0.590139 −0.295069 0.955476i \(-0.595343\pi\)
−0.295069 + 0.955476i \(0.595343\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.49960e11 −1.11220
\(87\) 0 0
\(88\) 5.04135e11 1.08555
\(89\) −8.66326e11 −1.74318 −0.871589 0.490238i \(-0.836910\pi\)
−0.871589 + 0.490238i \(0.836910\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 7.06522e11 0.902606
\(97\) 1.65649e12 1.98865 0.994324 0.106394i \(-0.0339306\pi\)
0.994324 + 0.106394i \(0.0339306\pi\)
\(98\) 8.85842e11 1.00000
\(99\) −1.89383e11 −0.201155
\(100\) 1.00000e12 1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −1.90751e12 −1.69381
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.77677e12 −1.85028 −0.925140 0.379626i \(-0.876053\pi\)
−0.925140 + 0.379626i \(0.876053\pi\)
\(108\) −1.69773e12 −1.06986
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.74847e12 1.80046 0.900230 0.435416i \(-0.143399\pi\)
0.900230 + 0.435416i \(0.143399\pi\)
\(114\) −3.70297e12 −1.68702
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 5.52852e11 0.204794
\(119\) 0 0
\(120\) 0 0
\(121\) 5.59970e11 0.178424
\(122\) 0 0
\(123\) 5.67739e12 1.63953
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 4.39805e12 1.00000
\(129\) −4.62615e12 −1.00388
\(130\) 0 0
\(131\) −1.38397e12 −0.273841 −0.136920 0.990582i \(-0.543720\pi\)
−0.136920 + 0.990582i \(0.543720\pi\)
\(132\) 5.18314e12 0.979826
\(133\) 0 0
\(134\) 1.12029e13 1.93510
\(135\) 0 0
\(136\) −1.18741e13 −1.87658
\(137\) −1.32173e13 −1.99903 −0.999514 0.0311883i \(-0.990071\pi\)
−0.999514 + 0.0311883i \(0.990071\pi\)
\(138\) 0 0
\(139\) −4.19430e12 −0.581528 −0.290764 0.956795i \(-0.593909\pi\)
−0.290764 + 0.956795i \(0.593909\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.65217e12 −0.185302
\(145\) 0 0
\(146\) 3.14493e12 0.324708
\(147\) 9.10757e12 0.902606
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 1.02812e13 0.902606
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −2.30507e13 −1.86906
\(153\) 4.46062e12 0.347734
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.41054e13 −0.780361
\(163\) 2.20968e13 1.17816 0.589080 0.808075i \(-0.299490\pi\)
0.589080 + 0.808075i \(0.299490\pi\)
\(164\) 3.53414e13 1.81644
\(165\) 0 0
\(166\) −1.23482e13 −0.590139
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 2.32981e13 1.00000
\(170\) 0 0
\(171\) 8.65922e12 0.346340
\(172\) −2.87974e13 −1.11220
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.22646e13 1.08555
\(177\) 5.68401e12 0.184848
\(178\) −5.54449e13 −1.74318
\(179\) −5.53626e13 −1.68305 −0.841527 0.540215i \(-0.818343\pi\)
−0.841527 + 0.540215i \(0.818343\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −8.71099e13 −2.03712
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 4.52174e13 0.902606
\(193\) −3.16470e12 −0.0612335 −0.0306167 0.999531i \(-0.509747\pi\)
−0.0306167 + 0.999531i \(0.509747\pi\)
\(194\) 1.06015e14 1.98865
\(195\) 0 0
\(196\) 5.66939e13 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −1.21205e13 −0.201155
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 6.40000e13 1.00000
\(201\) 1.15180e14 1.74663
\(202\) 0 0
\(203\) 0 0
\(204\) −1.22080e14 −1.69381
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.69103e14 −2.02896
\(210\) 0 0
\(211\) 1.71035e14 1.93816 0.969079 0.246750i \(-0.0793627\pi\)
0.969079 + 0.246750i \(0.0793627\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.77713e14 −1.85028
\(215\) 0 0
\(216\) −1.08655e14 −1.06986
\(217\) 0 0
\(218\) 0 0
\(219\) 3.23338e13 0.293084
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −2.40422e13 −0.185302
\(226\) 2.39902e14 1.80046
\(227\) 1.17238e14 0.856870 0.428435 0.903573i \(-0.359065\pi\)
0.428435 + 0.903573i \(0.359065\pi\)
\(228\) −2.36990e14 −1.68702
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.97639e14 −1.23520 −0.617599 0.786494i \(-0.711894\pi\)
−0.617599 + 0.786494i \(0.711894\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.53825e13 0.204794
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 3.10482e14 1.58465 0.792326 0.610097i \(-0.208870\pi\)
0.792326 + 0.610097i \(0.208870\pi\)
\(242\) 3.58381e13 0.178424
\(243\) 7.52536e13 0.365502
\(244\) 0 0
\(245\) 0 0
\(246\) 3.63353e14 1.63953
\(247\) 0 0
\(248\) 0 0
\(249\) −1.26955e14 −0.532663
\(250\) 0 0
\(251\) −3.28002e14 −1.31170 −0.655849 0.754892i \(-0.727689\pi\)
−0.655849 + 0.754892i \(0.727689\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 2.81475e14 1.00000
\(257\) −2.16326e14 −0.750775 −0.375388 0.926868i \(-0.622490\pi\)
−0.375388 + 0.926868i \(0.622490\pi\)
\(258\) −2.96073e14 −1.00388
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −8.85739e13 −0.273841
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 3.31721e14 0.979826
\(265\) 0 0
\(266\) 0 0
\(267\) −5.70043e14 −1.57340
\(268\) 7.16988e14 1.93510
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −7.59942e14 −1.87658
\(273\) 0 0
\(274\) −8.45906e14 −1.99903
\(275\) 4.69512e14 1.08555
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −2.68435e14 −0.581528
\(279\) 0 0
\(280\) 0 0
\(281\) 8.55524e14 1.73778 0.868889 0.495007i \(-0.164834\pi\)
0.868889 + 0.495007i \(0.164834\pi\)
\(282\) 0 0
\(283\) −6.60679e14 −1.28609 −0.643046 0.765828i \(-0.722329\pi\)
−0.643046 + 0.765828i \(0.722329\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.05739e14 −0.185302
\(289\) 1.46911e15 2.52155
\(290\) 0 0
\(291\) 1.08997e15 1.79497
\(292\) 2.01275e14 0.324708
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 5.82884e14 0.902606
\(295\) 0 0
\(296\) 0 0
\(297\) −7.97107e14 −1.16139
\(298\) 0 0
\(299\) 0 0
\(300\) 6.58000e14 0.902606
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.47524e15 −1.86906
\(305\) 0 0
\(306\) 2.85480e14 0.347734
\(307\) −1.63875e15 −1.95741 −0.978706 0.205269i \(-0.934193\pi\)
−0.978706 + 0.205269i \(0.934193\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −1.79845e15 −1.91264 −0.956319 0.292326i \(-0.905571\pi\)
−0.956319 + 0.292326i \(0.905571\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.82712e15 −1.67007
\(322\) 0 0
\(323\) 3.98295e15 3.50743
\(324\) −9.02747e14 −0.780361
\(325\) 0 0
\(326\) 1.41420e15 1.17816
\(327\) 0 0
\(328\) 2.26185e15 1.81644
\(329\) 0 0
\(330\) 0 0
\(331\) −2.60911e15 −1.98392 −0.991959 0.126557i \(-0.959607\pi\)
−0.991959 + 0.126557i \(0.959607\pi\)
\(332\) −7.90283e14 −0.590139
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5.20794e13 −0.0355538 −0.0177769 0.999842i \(-0.505659\pi\)
−0.0177769 + 0.999842i \(0.505659\pi\)
\(338\) 1.49108e15 1.00000
\(339\) 2.46649e15 1.62511
\(340\) 0 0
\(341\) 0 0
\(342\) 5.54190e14 0.346340
\(343\) 0 0
\(344\) −1.84303e15 −1.11220
\(345\) 0 0
\(346\) 0 0
\(347\) −1.26334e15 −0.723675 −0.361837 0.932241i \(-0.617850\pi\)
−0.361837 + 0.932241i \(0.617850\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.06494e15 1.08555
\(353\) 3.84078e14 0.198505 0.0992523 0.995062i \(-0.468355\pi\)
0.0992523 + 0.995062i \(0.468355\pi\)
\(354\) 3.63777e14 0.184848
\(355\) 0 0
\(356\) −3.54847e15 −1.74318
\(357\) 0 0
\(358\) −3.54320e15 −1.68305
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 5.51862e15 2.49337
\(362\) 0 0
\(363\) 3.68460e14 0.161046
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) −8.49685e14 −0.336589
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) −5.57503e15 −2.03712
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.18672e15 −1.75008 −0.875039 0.484052i \(-0.839165\pi\)
−0.875039 + 0.484052i \(0.839165\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 2.89391e15 0.902606
\(385\) 0 0
\(386\) −2.02541e14 −0.0612335
\(387\) 6.92354e14 0.206093
\(388\) 6.78498e15 1.98865
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.62841e15 1.00000
\(393\) −9.10650e14 −0.247170
\(394\) 0 0
\(395\) 0 0
\(396\) −7.75714e14 −0.201155
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4.09600e15 1.00000
\(401\) −1.92614e15 −0.463257 −0.231629 0.972804i \(-0.574405\pi\)
−0.231629 + 0.972804i \(0.574405\pi\)
\(402\) 7.37153e15 1.74663
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −7.81315e15 −1.69381
\(409\) 7.63062e15 1.63012 0.815061 0.579375i \(-0.196703\pi\)
0.815061 + 0.579375i \(0.196703\pi\)
\(410\) 0 0
\(411\) −8.69697e15 −1.80433
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2.75985e15 −0.524891
\(418\) −1.08226e16 −2.02896
\(419\) 7.38079e15 1.36401 0.682007 0.731346i \(-0.261108\pi\)
0.682007 + 0.731346i \(0.261108\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 1.09462e16 1.93816
\(423\) 0 0
\(424\) 0 0
\(425\) −1.10586e16 −1.87658
\(426\) 0 0
\(427\) 0 0
\(428\) −1.13737e16 −1.85028
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −6.95392e15 −1.06986
\(433\) 4.24415e15 0.643966 0.321983 0.946745i \(-0.395651\pi\)
0.321983 + 0.946745i \(0.395651\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 2.06936e15 0.293084
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.36305e15 −0.185302
\(442\) 0 0
\(443\) 1.04567e16 1.38348 0.691738 0.722149i \(-0.256845\pi\)
0.691738 + 0.722149i \(0.256845\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.86206e14 −0.0715438 −0.0357719 0.999360i \(-0.511389\pi\)
−0.0357719 + 0.999360i \(0.511389\pi\)
\(450\) −1.53870e15 −0.185302
\(451\) 1.65932e16 1.97184
\(452\) 1.53537e16 1.80046
\(453\) 0 0
\(454\) 7.50326e15 0.856870
\(455\) 0 0
\(456\) −1.51674e16 −1.68702
\(457\) 1.78261e14 0.0195686 0.00978428 0.999952i \(-0.496886\pi\)
0.00978428 + 0.999952i \(0.496886\pi\)
\(458\) 0 0
\(459\) 1.87746e16 2.00768
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.26489e16 −1.23520
\(467\) −2.02528e16 −1.95246 −0.976232 0.216730i \(-0.930461\pi\)
−0.976232 + 0.216730i \(0.930461\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 2.26448e15 0.204794
\(473\) −1.35207e16 −1.20735
\(474\) 0 0
\(475\) −2.14676e16 −1.86906
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.98708e16 1.58465
\(483\) 0 0
\(484\) 2.29364e15 0.178424
\(485\) 0 0
\(486\) 4.81623e15 0.365502
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 1.45397e16 1.06341
\(490\) 0 0
\(491\) −2.03908e16 −1.45527 −0.727637 0.685963i \(-0.759381\pi\)
−0.727637 + 0.685963i \(0.759381\pi\)
\(492\) 2.32546e16 1.63953
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −8.12510e15 −0.532663
\(499\) −2.39468e16 −1.55112 −0.775559 0.631275i \(-0.782532\pi\)
−0.775559 + 0.631275i \(0.782532\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.09921e16 −1.31170
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.53301e16 0.902606
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.80144e16 1.00000
\(513\) 3.64464e16 1.99963
\(514\) −1.38449e16 −0.750775
\(515\) 0 0
\(516\) −1.89487e16 −1.00388
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.38740e14 −0.0219372 −0.0109686 0.999940i \(-0.503491\pi\)
−0.0109686 + 0.999940i \(0.503491\pi\)
\(522\) 0 0
\(523\) 2.85281e16 1.39400 0.697001 0.717070i \(-0.254517\pi\)
0.697001 + 0.717070i \(0.254517\pi\)
\(524\) −5.66873e15 −0.273841
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 2.12301e16 0.979826
\(529\) 2.19146e16 1.00000
\(530\) 0 0
\(531\) −8.50675e14 −0.0379487
\(532\) 0 0
\(533\) 0 0
\(534\) −3.64827e16 −1.57340
\(535\) 0 0
\(536\) 4.58872e16 1.93510
\(537\) −3.64286e16 −1.51914
\(538\) 0 0
\(539\) 2.66185e16 1.08555
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −4.86363e16 −1.87658
\(545\) 0 0
\(546\) 0 0
\(547\) −3.10476e16 −1.15906 −0.579528 0.814952i \(-0.696763\pi\)
−0.579528 + 0.814952i \(0.696763\pi\)
\(548\) −5.41380e16 −1.99903
\(549\) 0 0
\(550\) 3.00488e16 1.08555
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.71799e16 −0.581528
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −5.73183e16 −1.83872
\(562\) 5.47535e16 1.73778
\(563\) −2.23353e16 −0.701361 −0.350681 0.936495i \(-0.614050\pi\)
−0.350681 + 0.936495i \(0.614050\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.22834e16 −1.28609
\(567\) 0 0
\(568\) 0 0
\(569\) 6.36836e16 1.87652 0.938262 0.345925i \(-0.112435\pi\)
0.938262 + 0.345925i \(0.112435\pi\)
\(570\) 0 0
\(571\) 5.93581e16 1.71263 0.856314 0.516455i \(-0.172749\pi\)
0.856314 + 0.516455i \(0.172749\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −6.76729e15 −0.185302
\(577\) −7.38009e16 −1.99989 −0.999946 0.0103984i \(-0.996690\pi\)
−0.999946 + 0.0103984i \(0.996690\pi\)
\(578\) 9.40231e16 2.52155
\(579\) −2.08237e15 −0.0552697
\(580\) 0 0
\(581\) 0 0
\(582\) 6.97580e16 1.79497
\(583\) 0 0
\(584\) 1.28816e16 0.324708
\(585\) 0 0
\(586\) 0 0
\(587\) 6.62782e15 0.162010 0.0810051 0.996714i \(-0.474187\pi\)
0.0810051 + 0.996714i \(0.474187\pi\)
\(588\) 3.73046e16 0.902606
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.46818e16 −0.337638 −0.168819 0.985647i \(-0.553995\pi\)
−0.168819 + 0.985647i \(0.553995\pi\)
\(594\) −5.10149e16 −1.16139
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 4.21120e16 0.902606
\(601\) −4.27830e16 −0.907872 −0.453936 0.891034i \(-0.649980\pi\)
−0.453936 + 0.891034i \(0.649980\pi\)
\(602\) 0 0
\(603\) −1.72380e16 −0.358577
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) −9.44157e16 −1.86906
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.82707e16 0.347734
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −1.04880e17 −1.95741
\(615\) 0 0
\(616\) 0 0
\(617\) 8.12519e15 0.147273 0.0736364 0.997285i \(-0.476540\pi\)
0.0736364 + 0.997285i \(0.476540\pi\)
\(618\) 0 0
\(619\) 1.06992e17 1.90198 0.950989 0.309225i \(-0.100070\pi\)
0.950989 + 0.309225i \(0.100070\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.96046e16 1.00000
\(626\) −1.15101e17 −1.91264
\(627\) −1.11270e17 −1.83135
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 1.12541e17 1.74939
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.37398e16 1.35137 0.675687 0.737188i \(-0.263847\pi\)
0.675687 + 0.737188i \(0.263847\pi\)
\(642\) −1.16935e17 −1.67007
\(643\) −6.10304e16 −0.863536 −0.431768 0.901985i \(-0.642110\pi\)
−0.431768 + 0.901985i \(0.642110\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.54909e17 3.50743
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −5.77758e16 −0.780361
\(649\) 1.66125e16 0.222314
\(650\) 0 0
\(651\) 0 0
\(652\) 9.05086e16 1.17816
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.44758e17 1.81644
\(657\) −4.83911e15 −0.0601691
\(658\) 0 0
\(659\) −6.58930e16 −0.804501 −0.402251 0.915530i \(-0.631772\pi\)
−0.402251 + 0.915530i \(0.631772\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −1.66983e17 −1.98392
\(663\) 0 0
\(664\) −5.05781e16 −0.590139
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.27565e17 −1.37290 −0.686451 0.727176i \(-0.740833\pi\)
−0.686451 + 0.727176i \(0.740833\pi\)
\(674\) −3.33308e15 −0.0355538
\(675\) −1.01193e17 −1.06986
\(676\) 9.54290e16 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 1.57856e17 1.62511
\(679\) 0 0
\(680\) 0 0
\(681\) 7.71429e16 0.773416
\(682\) 0 0
\(683\) 4.09526e16 0.403419 0.201710 0.979445i \(-0.435350\pi\)
0.201710 + 0.979445i \(0.435350\pi\)
\(684\) 3.54682e16 0.346340
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −1.17954e17 −1.11220
\(689\) 0 0
\(690\) 0 0
\(691\) 2.12572e17 1.95271 0.976354 0.216178i \(-0.0693592\pi\)
0.976354 + 0.216178i \(0.0693592\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −8.08538e16 −0.723675
\(695\) 0 0
\(696\) 0 0
\(697\) −3.90826e17 −3.40869
\(698\) 0 0
\(699\) −1.30046e17 −1.11490
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.32156e17 1.08555
\(705\) 0 0
\(706\) 2.45810e16 0.198505
\(707\) 0 0
\(708\) 2.32817e16 0.184848
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −2.27102e17 −1.74318
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −2.26765e17 −1.68305
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.53192e17 2.49337
\(723\) 2.04297e17 1.43032
\(724\) 0 0
\(725\) 0 0
\(726\) 2.35815e16 0.161046
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.66645e17 1.11027
\(730\) 0 0
\(731\) 3.18459e17 2.08713
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.36634e17 2.10065
\(738\) −5.43798e16 −0.336589
\(739\) −8.15585e16 −0.500729 −0.250364 0.968152i \(-0.580550\pi\)
−0.250364 + 0.968152i \(0.580550\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.90002e16 0.109354
\(748\) −3.56802e17 −2.03712
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −2.15825e17 −1.18395
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −3.31950e17 −1.75008
\(759\) 0 0
\(760\) 0 0
\(761\) −3.06091e17 −1.57595 −0.787975 0.615707i \(-0.788871\pi\)
−0.787975 + 0.615707i \(0.788871\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.85211e17 0.902606
\(769\) 7.49631e16 0.362485 0.181242 0.983438i \(-0.441988\pi\)
0.181242 + 0.983438i \(0.441988\pi\)
\(770\) 0 0
\(771\) −1.42342e17 −0.677654
\(772\) −1.29626e16 −0.0612335
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 4.43107e16 0.206093
\(775\) 0 0
\(776\) 4.34238e17 1.98865
\(777\) 0 0
\(778\) 0 0
\(779\) −7.58695e17 −3.39502
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 2.32218e17 1.00000
\(785\) 0 0
\(786\) −5.82816e16 −0.247170
\(787\) 3.83356e17 1.61345 0.806723 0.590930i \(-0.201239\pi\)
0.806723 + 0.590930i \(0.201239\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −4.96457e16 −0.201155
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.62144e17 1.00000
\(801\) 8.53132e16 0.323014
\(802\) −1.23273e17 −0.463257
\(803\) 9.45012e16 0.352488
\(804\) 4.71778e17 1.74663
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.67164e17 0.596283 0.298142 0.954522i \(-0.403633\pi\)
0.298142 + 0.954522i \(0.403633\pi\)
\(810\) 0 0
\(811\) −4.49628e17 −1.58026 −0.790130 0.612939i \(-0.789987\pi\)
−0.790130 + 0.612939i \(0.789987\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −5.00042e17 −1.69381
\(817\) 6.18212e17 2.07876
\(818\) 4.88360e17 1.63012
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −5.56606e17 −1.80433
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 3.08939e17 0.979826
\(826\) 0 0
\(827\) −3.04079e17 −0.950502 −0.475251 0.879850i \(-0.657643\pi\)
−0.475251 + 0.879850i \(0.657643\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.26956e17 −1.87658
\(834\) −1.76630e17 −0.524891
\(835\) 0 0
\(836\) −6.92645e17 −2.02896
\(837\) 0 0
\(838\) 4.72370e17 1.36401
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 3.53815e17 1.00000
\(842\) 0 0
\(843\) 5.62935e17 1.56853
\(844\) 7.00558e17 1.93816
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.34727e17 −1.16083
\(850\) −7.07751e17 −1.87658
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −7.27914e17 −1.85028
\(857\) 3.89760e16 0.0983813 0.0491907 0.998789i \(-0.484336\pi\)
0.0491907 + 0.998789i \(0.484336\pi\)
\(858\) 0 0
\(859\) −1.37849e17 −0.343119 −0.171560 0.985174i \(-0.554881\pi\)
−0.171560 + 0.985174i \(0.554881\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) −4.45051e17 −1.06986
\(865\) 0 0
\(866\) 2.71625e17 0.643966
\(867\) 9.66675e17 2.27597
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.63126e17 −0.368500
\(874\) 0 0
\(875\) 0 0
\(876\) 1.32439e17 0.293084
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.94685e17 −1.69957 −0.849786 0.527128i \(-0.823269\pi\)
−0.849786 + 0.527128i \(0.823269\pi\)
\(882\) −8.72351e16 −0.185302
\(883\) 8.71688e17 1.83906 0.919532 0.393015i \(-0.128568\pi\)
0.919532 + 0.393015i \(0.128568\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 6.69228e17 1.38348
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.23851e17 −0.847123
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −3.75172e16 −0.0715438
\(899\) 0 0
\(900\) −9.84770e16 −0.185302
\(901\) 0 0
\(902\) 1.06196e18 1.97184
\(903\) 0 0
\(904\) 9.82639e17 1.80046
\(905\) 0 0
\(906\) 0 0
\(907\) −4.64915e17 −0.835084 −0.417542 0.908658i \(-0.637108\pi\)
−0.417542 + 0.908658i \(0.637108\pi\)
\(908\) 4.80209e17 0.856870
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −9.70711e17 −1.68702
\(913\) −3.71048e17 −0.640627
\(914\) 1.14087e16 0.0195686
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 1.20157e18 2.00768
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −1.07830e18 −1.76677
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.13239e18 1.76157 0.880786 0.473515i \(-0.157015\pi\)
0.880786 + 0.473515i \(0.157015\pi\)
\(930\) 0 0
\(931\) −1.21708e18 −1.86906
\(932\) −8.09528e17 −1.23520
\(933\) 0 0
\(934\) −1.29618e18 −1.95246
\(935\) 0 0
\(936\) 0 0
\(937\) 9.59909e17 1.41838 0.709190 0.705018i \(-0.249061\pi\)
0.709190 + 0.705018i \(0.249061\pi\)
\(938\) 0 0
\(939\) −1.18338e18 −1.72636
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.44927e17 0.204794
\(945\) 0 0
\(946\) −8.65327e17 −1.20735
\(947\) 1.42092e18 1.97001 0.985005 0.172528i \(-0.0551935\pi\)
0.985005 + 0.172528i \(0.0551935\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.37393e18 −1.86906
\(951\) 0 0
\(952\) 0 0
\(953\) −1.35078e18 −1.80313 −0.901565 0.432645i \(-0.857581\pi\)
−0.901565 + 0.432645i \(0.857581\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 7.87663e17 1.00000
\(962\) 0 0
\(963\) 2.73448e17 0.342860
\(964\) 1.27173e18 1.58465
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.46793e17 0.178424
\(969\) 2.62078e18 3.16583
\(970\) 0 0
\(971\) 1.67618e18 1.99989 0.999943 0.0107080i \(-0.00340853\pi\)
0.999943 + 0.0107080i \(0.00340853\pi\)
\(972\) 3.08239e17 0.365502
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.04930e17 0.810548 0.405274 0.914195i \(-0.367176\pi\)
0.405274 + 0.914195i \(0.367176\pi\)
\(978\) 9.30542e17 1.06341
\(979\) −1.66605e18 −1.89231
\(980\) 0 0
\(981\) 0 0
\(982\) −1.30501e18 −1.45527
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 1.48830e18 1.63953
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −1.71679e18 −1.79070
\(994\) 0 0
\(995\) 0 0
\(996\) −5.20006e17 −0.532663
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −1.53260e18 −1.55112
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))