Properties

Label 8.10.a
Level $8$
Weight $10$
Character orbit 8.a
Rep. character $\chi_{8}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $10$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 8.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(10\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(8))\).

Total New Old
Modular forms 11 2 9
Cusp forms 7 2 5
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(6\)\(1\)\(5\)\(4\)\(1\)\(3\)\(2\)\(0\)\(2\)

Trace form

\( 2 q + 8 q^{3} - 564 q^{5} + 5904 q^{7} - 31142 q^{9} + 97560 q^{11} - 188836 q^{13} + 227120 q^{15} - 171228 q^{17} - 53720 q^{19} + 957504 q^{21} - 2602704 q^{23} + 2675326 q^{25} - 216496 q^{27} + 1154940 q^{29}+ \cdots - 1565047496 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(8))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
8.10.a.a 8.a 1.a $1$ $4.120$ \(\Q\) None 8.10.a.a \(0\) \(-60\) \(-2074\) \(-4344\) $+$ $\mathrm{SU}(2)$ \(q-60q^{3}-2074q^{5}-4344q^{7}-16083q^{9}+\cdots\)
8.10.a.b 8.a 1.a $1$ $4.120$ \(\Q\) None 8.10.a.b \(0\) \(68\) \(1510\) \(10248\) $-$ $\mathrm{SU}(2)$ \(q+68q^{3}+1510q^{5}+10248q^{7}-15059q^{9}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(8))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(8)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)