Properties

Label 8.10
Level 8
Weight 10
Dimension 10
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 40
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(40\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(8))\).

Total New Old
Modular forms 21 12 9
Cusp forms 15 10 5
Eisenstein series 6 2 4

Trace form

\( 10 q - 18 q^{2} + 8 q^{3} - 428 q^{4} - 564 q^{5} + 4684 q^{6} + 10704 q^{7} - 3384 q^{8} - 70510 q^{9} + 26392 q^{10} + 97560 q^{11} + 54760 q^{12} - 188836 q^{13} - 72336 q^{14} + 63984 q^{15} + 185616 q^{16}+ \cdots - 1565047496 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.10.a \(\chi_{8}(1, \cdot)\) 8.10.a.a 1 1
8.10.a.b 1
8.10.b \(\chi_{8}(5, \cdot)\) 8.10.b.a 8 1

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(8))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(8)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)