Defining parameters
Level: | \( N \) | \(=\) | \( 799 = 17 \cdot 47 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 799.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(799))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 74 | 61 | 13 |
Cusp forms | 71 | 61 | 10 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(17\) | \(47\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | $+$ | \(12\) |
\(+\) | \(-\) | $-$ | \(20\) |
\(-\) | \(+\) | $-$ | \(18\) |
\(-\) | \(-\) | $+$ | \(11\) |
Plus space | \(+\) | \(23\) | |
Minus space | \(-\) | \(38\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(799))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(799))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(799)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(47))\)\(^{\oplus 2}\)