Properties

Label 799.2.a
Level $799$
Weight $2$
Character orbit 799.a
Rep. character $\chi_{799}(1,\cdot)$
Character field $\Q$
Dimension $61$
Newform subspaces $7$
Sturm bound $144$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 799 = 17 \cdot 47 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 799.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(144\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(799))\).

Total New Old
Modular forms 74 61 13
Cusp forms 71 61 10
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(17\)\(47\)FrickeDim
\(+\)\(+\)$+$\(12\)
\(+\)\(-\)$-$\(20\)
\(-\)\(+\)$-$\(18\)
\(-\)\(-\)$+$\(11\)
Plus space\(+\)\(23\)
Minus space\(-\)\(38\)

Trace form

\( 61 q - q^{2} + 59 q^{4} + 6 q^{5} + 8 q^{6} - 16 q^{7} + 3 q^{8} + 69 q^{9} + O(q^{10}) \) \( 61 q - q^{2} + 59 q^{4} + 6 q^{5} + 8 q^{6} - 16 q^{7} + 3 q^{8} + 69 q^{9} + 10 q^{10} + 4 q^{11} + 16 q^{12} - 10 q^{13} + 12 q^{14} - 4 q^{15} + 51 q^{16} - 3 q^{17} - 33 q^{18} - 4 q^{19} - 6 q^{20} - 16 q^{22} - 12 q^{24} + 55 q^{25} - 18 q^{26} + 24 q^{27} - 36 q^{28} + 14 q^{29} - 24 q^{30} - 8 q^{31} - 5 q^{32} - 8 q^{33} - q^{34} + 20 q^{35} + 19 q^{36} - 10 q^{37} - 24 q^{38} - 4 q^{39} + 6 q^{40} + 34 q^{41} - 20 q^{42} - 8 q^{43} + 4 q^{44} + 58 q^{45} - 24 q^{46} + q^{47} + 28 q^{48} + 41 q^{49} + q^{50} - 4 q^{51} - 14 q^{52} + 2 q^{53} + 16 q^{54} + 12 q^{55} - 36 q^{56} - 8 q^{57} + 34 q^{58} + 48 q^{59} - 64 q^{60} + 6 q^{61} + 44 q^{62} - 28 q^{63} + 75 q^{64} - 8 q^{65} - 24 q^{66} - 28 q^{67} - 5 q^{68} + 28 q^{69} + 32 q^{70} + 20 q^{71} - 13 q^{72} - 26 q^{73} - 54 q^{74} - 52 q^{75} - 8 q^{76} - 12 q^{77} + 32 q^{78} - 76 q^{79} + 58 q^{80} + 45 q^{81} + 46 q^{82} - 16 q^{83} + 2 q^{85} - 52 q^{86} - 20 q^{87} - 24 q^{88} + 46 q^{89} + 30 q^{90} - 4 q^{91} + 8 q^{92} + 12 q^{93} + 3 q^{94} - 44 q^{95} - 136 q^{96} - 62 q^{97} + 107 q^{98} - 40 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(799))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 17 47
799.2.a.a 799.a 1.a $1$ $6.380$ \(\Q\) None \(-1\) \(2\) \(0\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}-q^{4}-2q^{6}-2q^{7}+3q^{8}+\cdots\)
799.2.a.b 799.a 1.a $1$ $6.380$ \(\Q\) None \(-1\) \(2\) \(4\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}-q^{4}+4q^{5}-2q^{6}-2q^{7}+\cdots\)
799.2.a.c 799.a 1.a $2$ $6.380$ \(\Q(\sqrt{5}) \) None \(-3\) \(0\) \(-1\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(-1+2\beta )q^{3}+3\beta q^{4}+\cdots\)
799.2.a.d 799.a 1.a $8$ $6.380$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(1\) \(-7\) \(-10\) \(-9\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{6}q^{2}+(-1+\beta _{1})q^{3}+(1-\beta _{2}-\beta _{7})q^{4}+\cdots\)
799.2.a.e 799.a 1.a $12$ $6.380$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-4\) \(-1\) \(-11\) \(1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{9}q^{3}+(\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
799.2.a.f 799.a 1.a $17$ $6.380$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None \(3\) \(1\) \(11\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{9}q^{3}+(1+\beta _{2})q^{4}+(1+\beta _{7}+\cdots)q^{5}+\cdots\)
799.2.a.g 799.a 1.a $20$ $6.380$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(4\) \(3\) \(13\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{7}q^{3}+(1+\beta _{2})q^{4}+(1+\beta _{17}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(799))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(799)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(47))\)\(^{\oplus 2}\)