Defining parameters
Level: | \( N \) | = | \( 799 = 17 \cdot 47 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 10 \) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(105984\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(799))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 27232 | 26963 | 269 |
Cusp forms | 25761 | 25611 | 150 |
Eisenstein series | 1471 | 1352 | 119 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(799))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
799.2.a | \(\chi_{799}(1, \cdot)\) | 799.2.a.a | 1 | 1 |
799.2.a.b | 1 | |||
799.2.a.c | 2 | |||
799.2.a.d | 8 | |||
799.2.a.e | 12 | |||
799.2.a.f | 17 | |||
799.2.a.g | 20 | |||
799.2.b | \(\chi_{799}(424, \cdot)\) | 799.2.b.a | 2 | 1 |
799.2.b.b | 28 | |||
799.2.b.c | 40 | |||
799.2.f | \(\chi_{799}(565, \cdot)\) | 799.2.f.a | 60 | 2 |
799.2.f.b | 80 | |||
799.2.g | \(\chi_{799}(189, \cdot)\) | 799.2.g.a | 4 | 4 |
799.2.g.b | 4 | |||
799.2.g.c | 112 | |||
799.2.g.d | 152 | |||
799.2.j | \(\chi_{799}(46, \cdot)\) | 799.2.j.a | 80 | 8 |
799.2.j.b | 480 | |||
799.2.k | \(\chi_{799}(18, \cdot)\) | 799.2.k.a | 704 | 22 |
799.2.k.b | 704 | |||
799.2.n | \(\chi_{799}(16, \cdot)\) | 799.2.n.a | 1540 | 22 |
799.2.o | \(\chi_{799}(4, \cdot)\) | 799.2.o.a | 3080 | 44 |
799.2.r | \(\chi_{799}(2, \cdot)\) | 799.2.r.a | 6160 | 88 |
799.2.s | \(\chi_{799}(5, \cdot)\) | 799.2.s.a | 12320 | 176 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(799))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(799)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(47))\)\(^{\oplus 2}\)