Properties

Label 799.1.h.b.563.4
Level $799$
Weight $1$
Character 799.563
Analytic conductor $0.399$
Analytic rank $0$
Dimension $16$
Projective image $D_{40}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 799 = 17 \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 799.h (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.398752945094\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{40})\)
Defining polynomial: \(x^{16} - x^{12} + x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{40}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{40} + \cdots)\)

Embedding invariants

Embedding label 563.4
Root \(0.453990 - 0.891007i\) of defining polynomial
Character \(\chi\) \(=\) 799.563
Dual form 799.1.h.b.281.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.34500 + 1.34500i) q^{2} +(-0.965451 + 0.399903i) q^{3} +2.61803i q^{4} +(-1.83640 - 0.760661i) q^{6} +(0.0600500 - 0.144974i) q^{7} +(-2.17625 + 2.17625i) q^{8} +(0.0650673 - 0.0650673i) q^{9} +O(q^{10})\) \(q+(1.34500 + 1.34500i) q^{2} +(-0.965451 + 0.399903i) q^{3} +2.61803i q^{4} +(-1.83640 - 0.760661i) q^{6} +(0.0600500 - 0.144974i) q^{7} +(-2.17625 + 2.17625i) q^{8} +(0.0650673 - 0.0650673i) q^{9} +(-1.04696 - 2.52758i) q^{12} +(0.275756 - 0.114222i) q^{14} -3.23607 q^{16} +(0.809017 - 0.587785i) q^{17} +0.175031 q^{18} +0.163979i q^{21} +(1.23078 - 2.97135i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(0.363104 - 0.876612i) q^{27} +(0.379546 + 0.157213i) q^{28} +(-2.17625 - 2.17625i) q^{32} +(1.87869 + 0.297556i) q^{34} +(0.170348 + 0.170348i) q^{36} +(1.57547 - 0.652583i) q^{37} +(-0.220551 + 0.220551i) q^{42} +1.00000i q^{47} +(3.12427 - 1.29411i) q^{48} +(0.689695 + 0.689695i) q^{49} -1.90211 q^{50} +(-0.546010 + 0.891007i) q^{51} +(0.642040 + 0.642040i) q^{53} +(1.66741 - 0.690666i) q^{54} +(0.184815 + 0.446183i) q^{56} +(0.437016 - 0.437016i) q^{59} +(0.581990 - 1.40505i) q^{61} +(-0.00552574 - 0.0133403i) q^{63} -2.61803i q^{64} +(1.53884 + 2.11803i) q^{68} +(-1.79671 + 0.744220i) q^{71} +0.283205i q^{72} +(2.99673 + 1.24129i) q^{74} +(0.399903 - 0.965451i) q^{75} +(-1.79671 - 0.744220i) q^{79} +1.08355i q^{81} +(-1.00000 - 1.00000i) q^{83} -0.429303 q^{84} -1.90211i q^{89} +(-1.34500 + 1.34500i) q^{94} +(2.97135 + 1.23078i) q^{96} +(0.497066 + 1.20002i) q^{97} +1.85528i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} - 4q^{9} + O(q^{10}) \) \( 16q - 4q^{3} - 4q^{9} - 16q^{16} + 4q^{17} - 20q^{24} - 4q^{27} - 4q^{28} + 4q^{36} - 20q^{42} + 24q^{48} + 4q^{49} - 16q^{51} + 4q^{53} + 20q^{54} + 20q^{56} + 4q^{61} - 4q^{63} - 4q^{71} - 4q^{79} - 16q^{83} + 32q^{84} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/799\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34500 + 1.34500i 1.34500 + 1.34500i 0.891007 + 0.453990i \(0.150000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(3\) −0.965451 + 0.399903i −0.965451 + 0.399903i −0.809017 0.587785i \(-0.800000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(4\) 2.61803i 2.61803i
\(5\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(6\) −1.83640 0.760661i −1.83640 0.760661i
\(7\) 0.0600500 0.144974i 0.0600500 0.144974i −0.891007 0.453990i \(-0.850000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(8\) −2.17625 + 2.17625i −2.17625 + 2.17625i
\(9\) 0.0650673 0.0650673i 0.0650673 0.0650673i
\(10\) 0 0
\(11\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(12\) −1.04696 2.52758i −1.04696 2.52758i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0.275756 0.114222i 0.275756 0.114222i
\(15\) 0 0
\(16\) −3.23607 −3.23607
\(17\) 0.809017 0.587785i 0.809017 0.587785i
\(18\) 0.175031 0.175031
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0.163979i 0.163979i
\(22\) 0 0
\(23\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(24\) 1.23078 2.97135i 1.23078 2.97135i
\(25\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(26\) 0 0
\(27\) 0.363104 0.876612i 0.363104 0.876612i
\(28\) 0.379546 + 0.157213i 0.379546 + 0.157213i
\(29\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(30\) 0 0
\(31\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(32\) −2.17625 2.17625i −2.17625 2.17625i
\(33\) 0 0
\(34\) 1.87869 + 0.297556i 1.87869 + 0.297556i
\(35\) 0 0
\(36\) 0.170348 + 0.170348i 0.170348 + 0.170348i
\(37\) 1.57547 0.652583i 1.57547 0.652583i 0.587785 0.809017i \(-0.300000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(42\) −0.220551 + 0.220551i −0.220551 + 0.220551i
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000i 1.00000i
\(48\) 3.12427 1.29411i 3.12427 1.29411i
\(49\) 0.689695 + 0.689695i 0.689695 + 0.689695i
\(50\) −1.90211 −1.90211
\(51\) −0.546010 + 0.891007i −0.546010 + 0.891007i
\(52\) 0 0
\(53\) 0.642040 + 0.642040i 0.642040 + 0.642040i 0.951057 0.309017i \(-0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(54\) 1.66741 0.690666i 1.66741 0.690666i
\(55\) 0 0
\(56\) 0.184815 + 0.446183i 0.184815 + 0.446183i
\(57\) 0 0
\(58\) 0 0
\(59\) 0.437016 0.437016i 0.437016 0.437016i −0.453990 0.891007i \(-0.650000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(60\) 0 0
\(61\) 0.581990 1.40505i 0.581990 1.40505i −0.309017 0.951057i \(-0.600000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(62\) 0 0
\(63\) −0.00552574 0.0133403i −0.00552574 0.0133403i
\(64\) 2.61803i 2.61803i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 1.53884 + 2.11803i 1.53884 + 2.11803i
\(69\) 0 0
\(70\) 0 0
\(71\) −1.79671 + 0.744220i −1.79671 + 0.744220i −0.809017 + 0.587785i \(0.800000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(72\) 0.283205i 0.283205i
\(73\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(74\) 2.99673 + 1.24129i 2.99673 + 1.24129i
\(75\) 0.399903 0.965451i 0.399903 0.965451i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.79671 0.744220i −1.79671 0.744220i −0.987688 0.156434i \(-0.950000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(80\) 0 0
\(81\) 1.08355i 1.08355i
\(82\) 0 0
\(83\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(84\) −0.429303 −0.429303
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.90211i 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −1.34500 + 1.34500i −1.34500 + 1.34500i
\(95\) 0 0
\(96\) 2.97135 + 1.23078i 2.97135 + 1.23078i
\(97\) 0.497066 + 1.20002i 0.497066 + 1.20002i 0.951057 + 0.309017i \(0.100000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(98\) 1.85528i 1.85528i
\(99\) 0 0
\(100\) −1.85123 1.85123i −1.85123 1.85123i
\(101\) −0.312869 −0.312869 −0.156434 0.987688i \(-0.550000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(102\) −1.93278 + 0.464020i −1.93278 + 0.464020i
\(103\) 1.97538 1.97538 0.987688 0.156434i \(-0.0500000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.72708i 1.72708i
\(107\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(108\) 2.29500 + 0.950620i 2.29500 + 0.950620i
\(109\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(110\) 0 0
\(111\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(112\) −0.194326 + 0.469144i −0.194326 + 0.469144i
\(113\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 1.17557 1.17557
\(119\) −0.0366318 0.152583i −0.0366318 0.152583i
\(120\) 0 0
\(121\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(122\) 2.67256 1.10701i 2.67256 1.10701i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.0105106 0.0253748i 0.0105106 0.0253748i
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 1.34500 1.34500i 1.34500 1.34500i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.497066 1.20002i −0.497066 1.20002i −0.951057 0.309017i \(-0.900000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.481456 + 3.03979i −0.481456 + 3.03979i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(140\) 0 0
\(141\) −0.399903 0.965451i −0.399903 0.965451i
\(142\) −3.41754 1.41559i −3.41754 1.41559i
\(143\) 0 0
\(144\) −0.210562 + 0.210562i −0.210562 + 0.210562i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.941679 0.390056i −0.941679 0.390056i
\(148\) 1.70848 + 4.12464i 1.70848 + 4.12464i
\(149\) 1.97538i 1.97538i −0.156434 0.987688i \(-0.550000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(150\) 1.83640 0.760661i 1.83640 0.760661i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) 0.0143949 0.0908861i 0.0143949 0.0908861i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.78201i 1.78201i −0.453990 0.891007i \(-0.650000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(158\) −1.41559 3.41754i −1.41559 3.41754i
\(159\) −0.876612 0.363104i −0.876612 0.363104i
\(160\) 0 0
\(161\) 0 0
\(162\) −1.45737 + 1.45737i −1.45737 + 1.45737i
\(163\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 2.68999i 2.68999i
\(167\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(168\) −0.356860 0.356860i −0.356860 0.356860i
\(169\) −1.00000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.84206 + 0.763007i −1.84206 + 0.763007i −0.891007 + 0.453990i \(0.850000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(174\) 0 0
\(175\) 0.0600500 + 0.144974i 0.0600500 + 0.144974i
\(176\) 0 0
\(177\) −0.247154 + 0.596682i −0.247154 + 0.596682i
\(178\) 2.55834 2.55834i 2.55834 2.55834i
\(179\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(182\) 0 0
\(183\) 1.58924i 1.58924i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −2.61803 −2.61803
\(189\) −0.105281 0.105281i −0.105281 0.105281i
\(190\) 0 0
\(191\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(192\) 1.04696 + 2.52758i 1.04696 + 2.52758i
\(193\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(194\) −0.945476 + 2.28258i −0.945476 + 2.28258i
\(195\) 0 0
\(196\) −1.80565 + 1.80565i −1.80565 + 1.80565i
\(197\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(198\) 0 0
\(199\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(200\) 3.07768i 3.07768i
\(201\) 0 0
\(202\) −0.420808 0.420808i −0.420808 0.420808i
\(203\) 0 0
\(204\) −2.33269 1.42947i −2.33269 1.42947i
\(205\) 0 0
\(206\) 2.65688 + 2.65688i 2.65688 + 2.65688i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(212\) −1.68088 + 1.68088i −1.68088 + 1.68088i
\(213\) 1.43702 1.43702i 1.43702 1.43702i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.11752 + 2.69793i 1.11752 + 2.69793i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −3.38959 −3.38959
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) −0.446183 + 0.184815i −0.446183 + 0.184815i
\(225\) 0.0920190i 0.0920190i
\(226\) 0 0
\(227\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(228\) 0 0
\(229\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.14412 + 1.14412i 1.14412 + 1.14412i
\(237\) 2.03225 2.03225
\(238\) 0.155953 0.254493i 0.155953 0.254493i
\(239\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(240\) 0 0
\(241\) −1.57547 + 0.652583i −1.57547 + 0.652583i −0.987688 0.156434i \(-0.950000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(242\) 1.90211i 1.90211i
\(243\) −0.0702112 0.169505i −0.0702112 0.169505i
\(244\) 3.67846 + 1.52367i 3.67846 + 1.52367i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.36535 + 0.565548i 1.36535 + 0.565548i
\(250\) 0 0
\(251\) 0.312869i 0.312869i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(252\) 0.0349254 0.0144666i 0.0349254 0.0144666i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 0.267590i 0.267590i
\(260\) 0 0
\(261\) 0 0
\(262\) 0.945476 2.28258i 0.945476 2.28258i
\(263\) −0.437016 + 0.437016i −0.437016 + 0.437016i −0.891007 0.453990i \(-0.850000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.760661 + 1.83640i 0.760661 + 1.83640i
\(268\) 0 0
\(269\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0.312869 0.312869 0.156434 0.987688i \(-0.450000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(272\) −2.61803 + 1.90211i −2.61803 + 1.90211i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.744220 + 1.79671i 0.744220 + 1.79671i 0.587785 + 0.809017i \(0.300000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0.760661 1.83640i 0.760661 1.83640i
\(283\) −0.144974 0.0600500i −0.144974 0.0600500i 0.309017 0.951057i \(-0.400000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(284\) −1.94839 4.70384i −1.94839 4.70384i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.283205 −0.283205
\(289\) 0.309017 0.951057i 0.309017 0.951057i
\(290\) 0 0
\(291\) −0.959786 0.959786i −0.959786 0.959786i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −0.741931 1.79118i −0.741931 1.79118i
\(295\) 0 0
\(296\) −2.00844 + 4.84881i −2.00844 + 4.84881i
\(297\) 0 0
\(298\) 2.65688 2.65688i 2.65688 2.65688i
\(299\) 0 0
\(300\) 2.52758 + 1.04696i 2.52758 + 1.04696i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.302060 0.125117i 0.302060 0.125117i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.141603 0.102880i 0.141603 0.102880i
\(307\) 0.312869 0.312869 0.156434 0.987688i \(-0.450000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(308\) 0 0
\(309\) −1.90713 + 0.789959i −1.90713 + 0.789959i
\(310\) 0 0
\(311\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(312\) 0 0
\(313\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(314\) 2.39680 2.39680i 2.39680 2.39680i
\(315\) 0 0
\(316\) 1.94839 4.70384i 1.94839 4.70384i
\(317\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(318\) −0.690666 1.66741i −0.690666 1.66741i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −2.83677 −2.83677
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.144974 + 0.0600500i 0.144974 + 0.0600500i
\(330\) 0 0
\(331\) 1.34500 1.34500i 1.34500 1.34500i 0.453990 0.891007i \(-0.350000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(332\) 2.61803 2.61803i 2.61803 2.61803i
\(333\) 0.0600500 0.144974i 0.0600500 0.144974i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.530647i 0.530647i
\(337\) 1.84206 0.763007i 1.84206 0.763007i 0.891007 0.453990i \(-0.150000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(338\) −1.34500 1.34500i −1.34500 1.34500i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.286377 0.118621i 0.286377 0.118621i
\(344\) 0 0
\(345\) 0 0
\(346\) −3.50381 1.45133i −3.50381 1.45133i
\(347\) −0.399903 + 0.965451i −0.399903 + 0.965451i 0.587785 + 0.809017i \(0.300000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(348\) 0 0
\(349\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) −0.114222 + 0.275756i −0.114222 + 0.275756i
\(351\) 0 0
\(352\) 0 0
\(353\) 1.78201i 1.78201i 0.453990 + 0.891007i \(0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(354\) −1.13496 + 0.470114i −1.13496 + 0.470114i
\(355\) 0 0
\(356\) 4.97980 4.97980
\(357\) 0.0963845 + 0.132662i 0.0963845 + 0.132662i
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) 1.00000i 1.00000i
\(362\) 0 0
\(363\) −0.965451 0.399903i −0.965451 0.399903i
\(364\) 0 0
\(365\) 0 0
\(366\) −2.13753 + 2.13753i −2.13753 + 2.13753i
\(367\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.131633 0.0545243i 0.131633 0.0545243i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.17625 2.17625i −2.17625 2.17625i
\(377\) 0 0
\(378\) 0.283205i 0.283205i
\(379\) 0.763007 + 1.84206i 0.763007 + 1.84206i 0.453990 + 0.891007i \(0.350000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.90211 1.90211i 1.90211 1.90211i
\(383\) −1.39680 + 1.39680i −1.39680 + 1.39680i −0.587785 + 0.809017i \(0.700000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(384\) −0.760661 + 1.83640i −0.760661 + 1.83640i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −3.14170 + 1.30134i −3.14170 + 1.30134i
\(389\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.00190 −3.00190
\(393\) 0.959786 + 0.959786i 0.959786 + 0.959786i
\(394\) 1.34500 0.557116i 1.34500 0.557116i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.431351 + 0.178671i 0.431351 + 0.178671i 0.587785 0.809017i \(-0.300000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.28825 2.28825i 2.28825 2.28825i
\(401\) 0.399903 0.965451i 0.399903 0.965451i −0.587785 0.809017i \(-0.700000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.819101i 0.819101i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.750800 3.12731i −0.750800 3.12731i
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.17160i 5.17160i
\(413\) −0.0371129 0.0895986i −0.0371129 0.0895986i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0.0650673 + 0.0650673i 0.0650673 + 0.0650673i
\(424\) −2.79448 −2.79448
\(425\) −0.156434 + 0.987688i −0.156434 + 0.987688i
\(426\) 3.86556 3.86556
\(427\) −0.168746 0.168746i −0.168746 0.168746i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.20002 + 0.497066i 1.20002 + 0.497066i 0.891007 0.453990i \(-0.150000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(432\) −1.17503 + 2.83677i −1.17503 + 2.83677i
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0.0897532 0.0897532
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −3.29892 3.29892i −3.29892 3.29892i
\(445\) 0 0
\(446\) 0 0
\(447\) 0.789959 + 1.90713i 0.789959 + 1.90713i
\(448\) −0.379546 0.157213i −0.379546 0.157213i
\(449\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(450\) −0.123765 + 0.123765i −0.123765 + 0.123765i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.221232 + 0.221232i 0.221232 + 0.221232i 0.809017 0.587785i \(-0.200000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(458\) 0 0
\(459\) −0.221502 0.922621i −0.221502 0.922621i
\(460\) 0 0
\(461\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.712633 + 1.72045i 0.712633 + 1.72045i
\(472\) 1.90211i 1.90211i
\(473\) 0 0
\(474\) 2.73337 + 2.73337i 2.73337 + 2.73337i
\(475\) 0 0
\(476\) 0.399466 0.0959034i 0.399466 0.0959034i
\(477\) 0.0835515 0.0835515
\(478\) −1.58114 1.58114i −1.58114 1.58114i
\(479\) 0.144974 0.0600500i 0.144974 0.0600500i −0.309017 0.951057i \(-0.600000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −2.99673 1.24129i −2.99673 1.24129i
\(483\) 0 0
\(484\) −1.85123 + 1.85123i −1.85123 + 1.85123i
\(485\) 0 0
\(486\) 0.133550 0.322417i 0.133550 0.322417i
\(487\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(488\) 1.79118 + 4.32429i 1.79118 + 4.32429i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.305165i 0.305165i
\(498\) 1.07574 + 2.59706i 1.07574 + 2.59706i
\(499\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.420808 + 0.420808i −0.420808 + 0.420808i
\(503\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(504\) 0.0410573 + 0.0170065i 0.0410573 + 0.0170065i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.965451 0.399903i 0.965451 0.399903i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.359907 0.359907i 0.359907 0.359907i
\(519\) 1.47329 1.47329i 1.47329 1.47329i
\(520\) 0 0
\(521\) −1.84206 0.763007i −1.84206 0.763007i −0.951057 0.309017i \(-0.900000\pi\)
−0.891007 0.453990i \(-0.850000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 3.14170 1.30134i 3.14170 1.30134i
\(525\) −0.115951 0.115951i −0.115951 0.115951i
\(526\) −1.17557 −1.17557
\(527\) 0 0
\(528\) 0 0
\(529\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(530\) 0 0
\(531\) 0.0568709i 0.0568709i
\(532\) 0 0
\(533\) 0 0
\(534\) −1.44686 + 3.49304i −1.44686 + 3.49304i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −3.24711 1.34500i −3.24711 1.34500i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.84206 + 0.763007i −1.84206 + 0.763007i −0.891007 + 0.453990i \(0.850000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(542\) 0.420808 + 0.420808i 0.420808 + 0.420808i
\(543\) 0 0
\(544\) −3.03979 0.481456i −3.03979 0.481456i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 0 0
\(549\) −0.0535541 0.129291i −0.0535541 0.129291i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.215784 + 0.215784i −0.215784 + 0.215784i
\(554\) −1.41559 + 3.41754i −1.41559 + 3.41754i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 2.52758 1.04696i 2.52758 1.04696i
\(565\) 0 0
\(566\) −0.114222 0.275756i −0.114222 0.275756i
\(567\) 0.157086 + 0.0650673i 0.157086 + 0.0650673i
\(568\) 2.29047 5.52969i 2.29047 5.52969i
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 0 0
\(571\) −0.178671 + 0.431351i −0.178671 + 0.431351i −0.987688 0.156434i \(-0.950000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(572\) 0 0
\(573\) 0.565548 + 1.36535i 0.565548 + 1.36535i
\(574\) 0 0
\(575\) 0 0
\(576\) −0.170348 0.170348i −0.170348 0.170348i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 1.69480 0.863541i 1.69480 0.863541i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.205023 + 0.0849235i −0.205023 + 0.0849235i
\(582\) 2.58182i 2.58182i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 1.02118 2.46535i 1.02118 2.46535i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.799806i 0.799806i
\(592\) −5.09834 + 2.11180i −5.09834 + 2.11180i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.17160 5.17160
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 1.23078 + 2.97135i 1.23078 + 2.97135i
\(601\) −1.40505 0.581990i −1.40505 0.581990i −0.453990 0.891007i \(-0.650000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0.574552 + 0.237987i 0.574552 + 0.237987i
\(607\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.237943 + 0.0376865i 0.237943 + 0.0376865i
\(613\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(614\) 0.420808 + 0.420808i 0.420808 + 0.420808i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.178671 + 0.431351i 0.178671 + 0.431351i 0.987688 0.156434i \(-0.0500000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(618\) −3.62758 1.50259i −3.62758 1.50259i
\(619\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.275756 0.114222i −0.275756 0.114222i
\(624\) 0 0
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 0 0
\(628\) 4.66537 4.66537
\(629\) 0.891007 1.45399i 0.891007 1.45399i
\(630\) 0 0
\(631\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) 5.52969 2.29047i 5.52969 2.29047i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0.950620 2.29500i 0.950620 2.29500i
\(637\) 0 0
\(638\) 0 0
\(639\) −0.0684824 + 0.165331i −0.0684824 + 0.165331i
\(640\) 0 0
\(641\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(642\) 0 0
\(643\) 1.40505 0.581990i 1.40505 0.581990i 0.453990 0.891007i \(-0.350000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.78201 1.78201 0.891007 0.453990i \(-0.150000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(648\) −2.35808 2.35808i −2.35808 2.35808i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.652583 1.57547i 0.652583 1.57547i −0.156434 0.987688i \(-0.550000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0.114222 + 0.275756i 0.114222 + 0.275756i
\(659\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(660\) 0 0
\(661\) −0.831254 0.831254i −0.831254 0.831254i 0.156434 0.987688i \(-0.450000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(662\) 3.61803 3.61803
\(663\) 0 0
\(664\) 4.35250 4.35250
\(665\) 0 0
\(666\) 0.275756 0.114222i 0.275756 0.114222i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.356860 0.356860i 0.356860 0.356860i
\(673\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(674\) 3.50381 + 1.45133i 3.50381 + 1.45133i
\(675\) 0.363104 + 0.876612i 0.363104 + 0.876612i
\(676\) 2.61803i 2.61803i
\(677\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(678\) 0 0
\(679\) 0.203820 0.203820
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.40505 + 0.581990i −1.40505 + 0.581990i −0.951057 0.309017i \(-0.900000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.544722 + 0.225631i 0.544722 + 0.225631i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(692\) −1.99758 4.82258i −1.99758 4.82258i
\(693\) 0 0
\(694\) −1.83640 + 0.760661i −1.83640 + 0.760661i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.379546 + 0.157213i −0.379546 + 0.157213i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −2.39680 + 2.39680i −2.39680 + 2.39680i
\(707\) −0.0187878 + 0.0453577i −0.0187878 + 0.0453577i
\(708\) −1.56213 0.647057i −1.56213 0.647057i
\(709\) 0.0600500 + 0.144974i 0.0600500 + 0.144974i 0.951057 0.309017i \(-0.100000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(710\) 0 0
\(711\) −0.165331 + 0.0684824i −0.165331 + 0.0684824i
\(712\) 4.13948 + 4.13948i 4.13948 + 4.13948i
\(713\) 0 0
\(714\) −0.0487930 + 0.308067i −0.0487930 + 0.308067i
\(715\) 0 0
\(716\) 0 0
\(717\) 1.13496 0.470114i 1.13496 0.470114i
\(718\) 0 0
\(719\) −0.581990 1.40505i −0.581990 1.40505i −0.891007 0.453990i \(-0.850000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(720\) 0 0
\(721\) 0.118621 0.286377i 0.118621 0.286377i
\(722\) −1.34500 + 1.34500i −1.34500 + 1.34500i
\(723\) 1.26007 1.26007i 1.26007 1.26007i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.760661 1.83640i −0.760661 1.83640i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −0.630616 0.630616i −0.630616 0.630616i
\(730\) 0 0
\(731\) 0 0
\(732\) −4.16070 −4.16070
\(733\) −0.831254 0.831254i −0.831254 0.831254i 0.156434 0.987688i \(-0.450000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.26007 + 1.26007i −1.26007 + 1.26007i −0.309017 + 0.951057i \(0.600000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.250381 + 0.103711i 0.250381 + 0.103711i
\(743\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.130135 −0.130135
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(752\) 3.23607i 3.23607i
\(753\) −0.125117 0.302060i −0.125117 0.302060i
\(754\) 0 0
\(755\) 0 0
\(756\) 0.275629 0.275629i 0.275629 0.275629i
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) −1.45133 + 3.50381i −1.45133 + 3.50381i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.70246 3.70246
\(765\) 0 0
\(766\) −3.75739 −3.75739
\(767\) 0 0
\(768\) −0.965451 + 0.399903i −0.965451 + 0.399903i
\(769\) 1.17557i 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.831254 0.831254i 0.831254 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −3.69329 1.52981i −3.69329 1.52981i
\(777\) 0.107010 + 0.258345i 0.107010 + 0.258345i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −2.23190 2.23190i −2.23190 2.23190i
\(785\) 0 0
\(786\) 2.58182i 2.58182i
\(787\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(788\) 1.85123 + 0.766804i 1.85123 + 0.766804i
\(789\) 0.247154 0.596682i 0.247154 0.596682i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.339853 + 0.820478i 0.339853 + 0.820478i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(800\) 3.07768 3.07768 <