Properties

Label 799.1.h.b.563.3
Level $799$
Weight $1$
Character 799.563
Analytic conductor $0.399$
Analytic rank $0$
Dimension $16$
Projective image $D_{40}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 799 = 17 \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 799.h (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.398752945094\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{40})\)
Defining polynomial: \(x^{16} - x^{12} + x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{40}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{40} + \cdots)\)

Embedding invariants

Embedding label 563.3
Root \(0.987688 + 0.156434i\) of defining polynomial
Character \(\chi\) \(=\) 799.563
Dual form 799.1.h.b.281.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.831254 + 0.831254i) q^{2} +(-0.144974 + 0.0600500i) q^{3} +0.381966i q^{4} +(-0.170427 - 0.0705930i) q^{6} +(0.744220 - 1.79671i) q^{7} +(0.513743 - 0.513743i) q^{8} +(-0.689695 + 0.689695i) q^{9} +O(q^{10})\) \(q+(0.831254 + 0.831254i) q^{2} +(-0.144974 + 0.0600500i) q^{3} +0.381966i q^{4} +(-0.170427 - 0.0705930i) q^{6} +(0.744220 - 1.79671i) q^{7} +(0.513743 - 0.513743i) q^{8} +(-0.689695 + 0.689695i) q^{9} +(-0.0229371 - 0.0553750i) q^{12} +(2.11215 - 0.874883i) q^{14} +1.23607 q^{16} +(-0.309017 + 0.951057i) q^{17} -1.14662 q^{18} +0.305165i q^{21} +(-0.0436289 + 0.105329i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(0.118621 - 0.286377i) q^{27} +(0.686280 + 0.284267i) q^{28} +(0.513743 + 0.513743i) q^{32} +(-1.04744 + 0.533698i) q^{34} +(-0.263440 - 0.263440i) q^{36} +(-1.84206 + 0.763007i) q^{37} +(-0.253670 + 0.253670i) q^{42} +1.00000i q^{47} +(-0.179197 + 0.0742259i) q^{48} +(-1.96718 - 1.96718i) q^{49} -1.17557 q^{50} +(-0.0123117 - 0.156434i) q^{51} +(1.39680 + 1.39680i) q^{53} +(0.336657 - 0.139448i) q^{54} +(-0.540707 - 1.30538i) q^{56} +(-1.14412 + 1.14412i) q^{59} +(0.652583 - 1.57547i) q^{61} +(0.725895 + 1.75246i) q^{63} -0.381966i q^{64} +(-0.363271 - 0.118034i) q^{68} +(1.20002 - 0.497066i) q^{71} +0.708653i q^{72} +(-2.16547 - 0.896969i) q^{74} +(0.0600500 - 0.144974i) q^{75} +(1.20002 + 0.497066i) q^{79} -0.926736i q^{81} +(-1.00000 - 1.00000i) q^{83} -0.116563 q^{84} -1.17557i q^{89} +(-0.831254 + 0.831254i) q^{94} +(-0.105329 - 0.0436289i) q^{96} +(-0.399903 - 0.965451i) q^{97} -3.27045i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} - 4q^{9} + O(q^{10}) \) \( 16q - 4q^{3} - 4q^{9} - 16q^{16} + 4q^{17} - 20q^{24} - 4q^{27} - 4q^{28} + 4q^{36} - 20q^{42} + 24q^{48} + 4q^{49} - 16q^{51} + 4q^{53} + 20q^{54} + 20q^{56} + 4q^{61} - 4q^{63} - 4q^{71} - 4q^{79} - 16q^{83} + 32q^{84} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/799\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.831254 + 0.831254i 0.831254 + 0.831254i 0.987688 0.156434i \(-0.0500000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(3\) −0.144974 + 0.0600500i −0.144974 + 0.0600500i −0.453990 0.891007i \(-0.650000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(4\) 0.381966i 0.381966i
\(5\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(6\) −0.170427 0.0705930i −0.170427 0.0705930i
\(7\) 0.744220 1.79671i 0.744220 1.79671i 0.156434 0.987688i \(-0.450000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(8\) 0.513743 0.513743i 0.513743 0.513743i
\(9\) −0.689695 + 0.689695i −0.689695 + 0.689695i
\(10\) 0 0
\(11\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(12\) −0.0229371 0.0553750i −0.0229371 0.0553750i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 2.11215 0.874883i 2.11215 0.874883i
\(15\) 0 0
\(16\) 1.23607 1.23607
\(17\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(18\) −1.14662 −1.14662
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0.305165i 0.305165i
\(22\) 0 0
\(23\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(24\) −0.0436289 + 0.105329i −0.0436289 + 0.105329i
\(25\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(26\) 0 0
\(27\) 0.118621 0.286377i 0.118621 0.286377i
\(28\) 0.686280 + 0.284267i 0.686280 + 0.284267i
\(29\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(30\) 0 0
\(31\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(32\) 0.513743 + 0.513743i 0.513743 + 0.513743i
\(33\) 0 0
\(34\) −1.04744 + 0.533698i −1.04744 + 0.533698i
\(35\) 0 0
\(36\) −0.263440 0.263440i −0.263440 0.263440i
\(37\) −1.84206 + 0.763007i −1.84206 + 0.763007i −0.891007 + 0.453990i \(0.850000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(42\) −0.253670 + 0.253670i −0.253670 + 0.253670i
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000i 1.00000i
\(48\) −0.179197 + 0.0742259i −0.179197 + 0.0742259i
\(49\) −1.96718 1.96718i −1.96718 1.96718i
\(50\) −1.17557 −1.17557
\(51\) −0.0123117 0.156434i −0.0123117 0.156434i
\(52\) 0 0
\(53\) 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(54\) 0.336657 0.139448i 0.336657 0.139448i
\(55\) 0 0
\(56\) −0.540707 1.30538i −0.540707 1.30538i
\(57\) 0 0
\(58\) 0 0
\(59\) −1.14412 + 1.14412i −1.14412 + 1.14412i −0.156434 + 0.987688i \(0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(60\) 0 0
\(61\) 0.652583 1.57547i 0.652583 1.57547i −0.156434 0.987688i \(-0.550000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(62\) 0 0
\(63\) 0.725895 + 1.75246i 0.725895 + 1.75246i
\(64\) 0.381966i 0.381966i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −0.363271 0.118034i −0.363271 0.118034i
\(69\) 0 0
\(70\) 0 0
\(71\) 1.20002 0.497066i 1.20002 0.497066i 0.309017 0.951057i \(-0.400000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(72\) 0.708653i 0.708653i
\(73\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(74\) −2.16547 0.896969i −2.16547 0.896969i
\(75\) 0.0600500 0.144974i 0.0600500 0.144974i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.20002 + 0.497066i 1.20002 + 0.497066i 0.891007 0.453990i \(-0.150000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(80\) 0 0
\(81\) 0.926736i 0.926736i
\(82\) 0 0
\(83\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(84\) −0.116563 −0.116563
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.831254 + 0.831254i −0.831254 + 0.831254i
\(95\) 0 0
\(96\) −0.105329 0.0436289i −0.105329 0.0436289i
\(97\) −0.399903 0.965451i −0.399903 0.965451i −0.987688 0.156434i \(-0.950000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(98\) 3.27045i 3.27045i
\(99\) 0 0
\(100\) −0.270091 0.270091i −0.270091 0.270091i
\(101\) −0.907981 −0.907981 −0.453990 0.891007i \(-0.650000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(102\) 0.119803 0.140271i 0.119803 0.140271i
\(103\) −1.78201 −1.78201 −0.891007 0.453990i \(-0.850000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.32219i 2.32219i
\(107\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(108\) 0.109386 + 0.0453093i 0.109386 + 0.0453093i
\(109\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(110\) 0 0
\(111\) 0.221232 0.221232i 0.221232 0.221232i
\(112\) 0.919906 2.22085i 0.919906 2.22085i
\(113\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.90211 −1.90211
\(119\) 1.47879 + 1.26301i 1.47879 + 1.26301i
\(120\) 0 0
\(121\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(122\) 1.85208 0.767157i 1.85208 0.767157i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.853340 + 2.06015i −0.853340 + 2.06015i
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0.831254 0.831254i 0.831254 0.831254i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.399903 + 0.965451i 0.399903 + 0.965451i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.329843 + 0.647354i 0.329843 + 0.647354i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(140\) 0 0
\(141\) −0.0600500 0.144974i −0.0600500 0.144974i
\(142\) 1.41071 + 0.584336i 1.41071 + 0.584336i
\(143\) 0 0
\(144\) −0.852510 + 0.852510i −0.852510 + 0.852510i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.403318 + 0.167060i 0.403318 + 0.167060i
\(148\) −0.291443 0.703605i −0.291443 0.703605i
\(149\) 1.78201i 1.78201i 0.453990 + 0.891007i \(0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(150\) 0.170427 0.0705930i 0.170427 0.0705930i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) −0.442812 0.869067i −0.442812 0.869067i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.312869i 0.312869i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(158\) 0.584336 + 1.41071i 0.584336 + 1.41071i
\(159\) −0.286377 0.118621i −0.286377 0.118621i
\(160\) 0 0
\(161\) 0 0
\(162\) 0.770353 0.770353i 0.770353 0.770353i
\(163\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.66251i 1.66251i
\(167\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(168\) 0.156776 + 0.156776i 0.156776 + 0.156776i
\(169\) −1.00000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.431351 + 0.178671i −0.431351 + 0.178671i −0.587785 0.809017i \(-0.700000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(174\) 0 0
\(175\) 0.744220 + 1.79671i 0.744220 + 1.79671i
\(176\) 0 0
\(177\) 0.0971629 0.234572i 0.0971629 0.234572i
\(178\) 0.977198 0.977198i 0.977198 0.977198i
\(179\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(182\) 0 0
\(183\) 0.267590i 0.267590i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.381966 −0.381966
\(189\) −0.426255 0.426255i −0.426255 0.426255i
\(190\) 0 0
\(191\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(192\) 0.0229371 + 0.0553750i 0.0229371 + 0.0553750i
\(193\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(194\) 0.470114 1.13496i 0.470114 1.13496i
\(195\) 0 0
\(196\) 0.751396 0.751396i 0.751396 0.751396i
\(197\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(198\) 0 0
\(199\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(200\) 0.726543i 0.726543i
\(201\) 0 0
\(202\) −0.754763 0.754763i −0.754763 0.754763i
\(203\) 0 0
\(204\) 0.0597526 0.00470264i 0.0597526 0.00470264i
\(205\) 0 0
\(206\) −1.48131 1.48131i −1.48131 1.48131i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(212\) −0.533531 + 0.533531i −0.533531 + 0.533531i
\(213\) −0.144123 + 0.144123i −0.144123 + 0.144123i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.0861835 0.208065i −0.0861835 0.208065i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0.367799 0.367799
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 1.30538 0.540707i 1.30538 0.540707i
\(225\) 0.975377i 0.975377i
\(226\) 0 0
\(227\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(228\) 0 0
\(229\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.437016 0.437016i −0.437016 0.437016i
\(237\) −0.203820 −0.203820
\(238\) 0.179372 + 2.27913i 0.179372 + 2.27913i
\(239\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(240\) 0 0
\(241\) 1.84206 0.763007i 1.84206 0.763007i 0.891007 0.453990i \(-0.150000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(242\) 1.17557i 1.17557i
\(243\) 0.174272 + 0.420729i 0.174272 + 0.420729i
\(244\) 0.601777 + 0.249264i 0.601777 + 0.249264i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.205023 + 0.0849235i 0.205023 + 0.0849235i
\(250\) 0 0
\(251\) 0.907981i 0.907981i 0.891007 + 0.453990i \(0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(252\) −0.669382 + 0.277267i −0.669382 + 0.277267i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 3.87749i 3.87749i
\(260\) 0 0
\(261\) 0 0
\(262\) −0.470114 + 1.13496i −0.470114 + 1.13496i
\(263\) 1.14412 1.14412i 1.14412 1.14412i 0.156434 0.987688i \(-0.450000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.0705930 + 0.170427i 0.0705930 + 0.170427i
\(268\) 0 0
\(269\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(272\) −0.381966 + 1.17557i −0.381966 + 1.17557i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.497066 1.20002i −0.497066 1.20002i −0.951057 0.309017i \(-0.900000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0.0705930 0.170427i 0.0705930 0.170427i
\(283\) −1.79671 0.744220i −1.79671 0.744220i −0.987688 0.156434i \(-0.950000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(284\) 0.189862 + 0.458368i 0.189862 + 0.458368i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.708653 −0.708653
\(289\) −0.809017 0.587785i −0.809017 0.587785i
\(290\) 0 0
\(291\) 0.115951 + 0.115951i 0.115951 + 0.115951i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0.196391 + 0.474129i 0.196391 + 0.474129i
\(295\) 0 0
\(296\) −0.554357 + 1.33834i −0.554357 + 1.33834i
\(297\) 0 0
\(298\) −1.48131 + 1.48131i −1.48131 + 1.48131i
\(299\) 0 0
\(300\) 0.0553750 + 0.0229371i 0.0553750 + 0.0229371i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.131633 0.0545243i 0.131633 0.0545243i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.354326 1.09050i 0.354326 1.09050i
\(307\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(308\) 0 0
\(309\) 0.258345 0.107010i 0.258345 0.107010i
\(310\) 0 0
\(311\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(312\) 0 0
\(313\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(314\) −0.260074 + 0.260074i −0.260074 + 0.260074i
\(315\) 0 0
\(316\) −0.189862 + 0.458368i −0.189862 + 0.458368i
\(317\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(318\) −0.139448 0.336657i −0.139448 0.336657i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.353982 0.353982
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.79671 + 0.744220i 1.79671 + 0.744220i
\(330\) 0 0
\(331\) 0.831254 0.831254i 0.831254 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(332\) 0.381966 0.381966i 0.381966 0.381966i
\(333\) 0.744220 1.79671i 0.744220 1.79671i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.377205i 0.377205i
\(337\) 0.431351 0.178671i 0.431351 0.178671i −0.156434 0.987688i \(-0.550000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(338\) −0.831254 0.831254i −0.831254 0.831254i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −3.20175 + 1.32621i −3.20175 + 1.32621i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.507083 0.210041i −0.507083 0.210041i
\(347\) −0.0600500 + 0.144974i −0.0600500 + 0.144974i −0.951057 0.309017i \(-0.900000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(348\) 0 0
\(349\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) −0.874883 + 2.11215i −0.874883 + 2.11215i
\(351\) 0 0
\(352\) 0 0
\(353\) 0.312869i 0.312869i −0.987688 0.156434i \(-0.950000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(354\) 0.275756 0.114222i 0.275756 0.114222i
\(355\) 0 0
\(356\) 0.449028 0.449028
\(357\) −0.290229 0.0943012i −0.290229 0.0943012i
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) 1.00000i 1.00000i
\(362\) 0 0
\(363\) −0.144974 0.0600500i −0.144974 0.0600500i
\(364\) 0 0
\(365\) 0 0
\(366\) −0.222435 + 0.222435i −0.222435 + 0.222435i
\(367\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.54917 1.47011i 3.54917 1.47011i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.513743 + 0.513743i 0.513743 + 0.513743i
\(377\) 0 0
\(378\) 0.708653i 0.708653i
\(379\) 0.178671 + 0.431351i 0.178671 + 0.431351i 0.987688 0.156434i \(-0.0500000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.17557 1.17557i 1.17557 1.17557i
\(383\) 1.26007 1.26007i 1.26007 1.26007i 0.309017 0.951057i \(-0.400000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(384\) −0.0705930 + 0.170427i −0.0705930 + 0.170427i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.368770 0.152749i 0.368770 0.152749i
\(389\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.02125 −2.02125
\(393\) −0.115951 0.115951i −0.115951 0.115951i
\(394\) 0.831254 0.344317i 0.831254 0.344317i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.40505 0.581990i −1.40505 0.581990i −0.453990 0.891007i \(-0.650000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.874032 + 0.874032i −0.874032 + 0.874032i
\(401\) 0.0600500 0.144974i 0.0600500 0.144974i −0.891007 0.453990i \(-0.850000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.346818i 0.346818i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.0866922 0.0740421i −0.0866922 0.0740421i
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.680668i 0.680668i
\(413\) 1.20417 + 2.90713i 1.20417 + 2.90713i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) −0.689695 0.689695i −0.689695 0.689695i
\(424\) 1.43520 1.43520
\(425\) −0.453990 0.891007i −0.453990 0.891007i
\(426\) −0.239605 −0.239605
\(427\) −2.34500 2.34500i −2.34500 2.34500i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.965451 0.399903i −0.965451 0.399903i −0.156434 0.987688i \(-0.550000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(432\) 0.146624 0.353982i 0.146624 0.353982i
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 2.71351 2.71351
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0.0845030 + 0.0845030i 0.0845030 + 0.0845030i
\(445\) 0 0
\(446\) 0 0
\(447\) −0.107010 0.258345i −0.107010 0.258345i
\(448\) −0.686280 0.284267i −0.686280 0.284267i
\(449\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(450\) 0.810786 0.810786i 0.810786 0.810786i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.642040 + 0.642040i 0.642040 + 0.642040i 0.951057 0.309017i \(-0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(458\) 0 0
\(459\) 0.235705 + 0.201311i 0.235705 + 0.201311i
\(460\) 0 0
\(461\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.0187878 0.0453577i −0.0187878 0.0453577i
\(472\) 1.17557i 1.17557i
\(473\) 0 0
\(474\) −0.169427 0.169427i −0.169427 0.169427i
\(475\) 0 0
\(476\) −0.482426 + 0.564848i −0.482426 + 0.564848i
\(477\) −1.92674 −1.92674
\(478\) 1.58114 + 1.58114i 1.58114 + 1.58114i
\(479\) 1.79671 0.744220i 1.79671 0.744220i 0.809017 0.587785i \(-0.200000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.16547 + 0.896969i 2.16547 + 0.896969i
\(483\) 0 0
\(484\) −0.270091 + 0.270091i −0.270091 + 0.270091i
\(485\) 0 0
\(486\) −0.204869 + 0.494597i −0.204869 + 0.494597i
\(487\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(488\) −0.474129 1.14465i −0.474129 1.14465i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.52601i 2.52601i
\(498\) 0.0998336 + 0.241020i 0.0998336 + 0.241020i
\(499\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.754763 + 0.754763i −0.754763 + 0.754763i
\(503\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(504\) 1.27324 + 0.527393i 1.27324 + 0.527393i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.144974 0.0600500i 0.144974 0.0600500i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −3.22318 + 3.22318i −3.22318 + 3.22318i
\(519\) 0.0518052 0.0518052i 0.0518052 0.0518052i
\(520\) 0 0
\(521\) −0.431351 0.178671i −0.431351 0.178671i 0.156434 0.987688i \(-0.450000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −0.368770 + 0.152749i −0.368770 + 0.152749i
\(525\) −0.215784 0.215784i −0.215784 0.215784i
\(526\) 1.90211 1.90211
\(527\) 0 0
\(528\) 0 0
\(529\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(530\) 0 0
\(531\) 1.57819i 1.57819i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.0829870 + 0.200348i −0.0829870 + 0.200348i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −2.00682 0.831254i −2.00682 0.831254i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.431351 + 0.178671i −0.431351 + 0.178671i −0.587785 0.809017i \(-0.700000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(542\) 0.754763 + 0.754763i 0.754763 + 0.754763i
\(543\) 0 0
\(544\) −0.647354 + 0.329843i −0.647354 + 0.329843i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 0 0
\(549\) 0.636514 + 1.53668i 0.636514 + 1.53668i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.78616 1.78616i 1.78616 1.78616i
\(554\) 0.584336 1.41071i 0.584336 1.41071i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0.0553750 0.0229371i 0.0553750 0.0229371i
\(565\) 0 0
\(566\) −0.874883 2.11215i −0.874883 2.11215i
\(567\) −1.66507 0.689695i −1.66507 0.689695i
\(568\) 0.361140 0.871868i 0.361140 0.871868i
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 0 0
\(571\) 0.581990 1.40505i 0.581990 1.40505i −0.309017 0.951057i \(-0.600000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(572\) 0 0
\(573\) 0.0849235 + 0.205023i 0.0849235 + 0.205023i
\(574\) 0 0
\(575\) 0 0
\(576\) 0.263440 + 0.263440i 0.263440 + 0.263440i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.183900 1.16110i −0.183900 1.16110i
\(579\) 0 0
\(580\) 0 0
\(581\) −2.54093 + 1.05249i −2.54093 + 1.05249i
\(582\) 0.192769i 0.192769i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −0.0638112 + 0.154054i −0.0638112 + 0.154054i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.120100i 0.120100i
\(592\) −2.27692 + 0.943129i −2.27692 + 0.943129i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.680668 −0.680668
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −0.0436289 0.105329i −0.0436289 0.105329i
\(601\) −1.57547 0.652583i −1.57547 0.652583i −0.587785 0.809017i \(-0.700000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0.154744 + 0.0640971i 0.154744 + 0.0640971i
\(607\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.331954 0.169139i 0.331954 0.169139i
\(613\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(614\) 0.754763 + 0.754763i 0.754763 + 0.754763i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.581990 1.40505i −0.581990 1.40505i −0.891007 0.453990i \(-0.850000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(618\) 0.303702 + 0.125798i 0.303702 + 0.125798i
\(619\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.11215 0.874883i −2.11215 0.874883i
\(624\) 0 0
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.119505 −0.119505
\(629\) −0.156434 1.98769i −0.156434 1.98769i
\(630\) 0 0
\(631\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) 0.871868 0.361140i 0.871868 0.361140i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0.0453093 0.109386i 0.0453093 0.109386i
\(637\) 0 0
\(638\) 0 0
\(639\) −0.484827 + 1.17047i −0.484827 + 1.17047i
\(640\) 0 0
\(641\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(642\) 0 0
\(643\) 1.57547 0.652583i 1.57547 0.652583i 0.587785 0.809017i \(-0.300000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.312869 −0.312869 −0.156434 0.987688i \(-0.550000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(648\) −0.476104 0.476104i −0.476104 0.476104i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.763007 + 1.84206i −0.763007 + 1.84206i −0.309017 + 0.951057i \(0.600000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0.874883 + 2.11215i 0.874883 + 2.11215i
\(659\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(660\) 0 0
\(661\) 1.34500 + 1.34500i 1.34500 + 1.34500i 0.891007 + 0.453990i \(0.150000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(662\) 1.38197 1.38197
\(663\) 0 0
\(664\) −1.02749 −1.02749
\(665\) 0 0
\(666\) 2.11215 0.874883i 2.11215 0.874883i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −0.156776 + 0.156776i −0.156776 + 0.156776i
\(673\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(674\) 0.507083 + 0.210041i 0.507083 + 0.210041i
\(675\) 0.118621 + 0.286377i 0.118621 + 0.286377i
\(676\) 0.381966i 0.381966i
\(677\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(678\) 0 0
\(679\) −2.03225 −2.03225
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.57547 + 0.652583i −1.57547 + 0.652583i −0.987688 0.156434i \(-0.950000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.76389 1.55905i −3.76389 1.55905i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(692\) −0.0682464 0.164761i −0.0682464 0.164761i
\(693\) 0 0
\(694\) −0.170427 + 0.0705930i −0.170427 + 0.0705930i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.686280 + 0.284267i −0.686280 + 0.284267i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.260074 0.260074i 0.260074 0.260074i
\(707\) −0.675737 + 1.63137i −0.675737 + 1.63137i
\(708\) 0.0895986 + 0.0371129i 0.0895986 + 0.0371129i
\(709\) 0.744220 + 1.79671i 0.744220 + 1.79671i 0.587785 + 0.809017i \(0.300000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(710\) 0 0
\(711\) −1.17047 + 0.484827i −1.17047 + 0.484827i
\(712\) −0.603941 0.603941i −0.603941 0.603941i
\(713\) 0 0
\(714\) −0.162866 0.319642i −0.162866 0.319642i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.275756 + 0.114222i −0.275756 + 0.114222i
\(718\) 0 0
\(719\) −0.652583 1.57547i −0.652583 1.57547i −0.809017 0.587785i \(-0.800000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(720\) 0 0
\(721\) −1.32621 + 3.20175i −1.32621 + 3.20175i
\(722\) −0.831254 + 0.831254i −0.831254 + 0.831254i
\(723\) −0.221232 + 0.221232i −0.221232 + 0.221232i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.0705930 0.170427i −0.0705930 0.170427i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0.604772 + 0.604772i 0.604772 + 0.604772i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.102210 −0.102210
\(733\) 1.34500 + 1.34500i 1.34500 + 1.34500i 0.891007 + 0.453990i \(0.150000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.17230 + 1.72822i 4.17230 + 1.72822i
\(743\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.37939 1.37939
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(752\) 1.23607i 1.23607i
\(753\) −0.0545243 0.131633i −0.0545243 0.131633i
\(754\) 0 0
\(755\) 0 0
\(756\) 0.162815 0.162815i 0.162815 0.162815i
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) −0.210041 + 0.507083i −0.210041 + 0.507083i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.540182 0.540182
\(765\) 0 0
\(766\) 2.09488 2.09488
\(767\) 0 0
\(768\) −0.144974 + 0.0600500i −0.144974 + 0.0600500i
\(769\) 1.90211i 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.34500 + 1.34500i −1.34500 + 1.34500i −0.453990 + 0.891007i \(0.650000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.701442 0.290547i −0.701442 0.290547i
\(777\) −0.232843 0.562133i −0.232843 0.562133i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −2.43157 2.43157i −2.43157 2.43157i
\(785\) 0 0
\(786\) 0.192769i 0.192769i
\(787\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(788\) 0.270091 + 0.111875i 0.270091 + 0.111875i
\(789\) −0.0971629 + 0.234572i −0.0971629 + 0.234572i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −0.684170 1.65173i −0.684170 1.65173i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) −0.951057 0.309017i −0.951057 0.309017i
\(800\)