Properties

Label 799.1.h.b.563.1
Level $799$
Weight $1$
Character 799.563
Analytic conductor $0.399$
Analytic rank $0$
Dimension $16$
Projective image $D_{40}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 799 = 17 \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 799.h (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.398752945094\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{40})\)
Defining polynomial: \(x^{16} - x^{12} + x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{40}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{40} + \cdots)\)

Embedding invariants

Embedding label 563.1
Root \(-0.891007 + 0.453990i\) of defining polynomial
Character \(\chi\) \(=\) 799.563
Dual form 799.1.h.b.281.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.34500 - 1.34500i) q^{2} +(-1.79671 + 0.744220i) q^{3} +2.61803i q^{4} +(3.41754 + 1.41559i) q^{6} +(-0.497066 + 1.20002i) q^{7} +(2.17625 - 2.17625i) q^{8} +(1.96718 - 1.96718i) q^{9} +O(q^{10})\) \(q+(-1.34500 - 1.34500i) q^{2} +(-1.79671 + 0.744220i) q^{3} +2.61803i q^{4} +(3.41754 + 1.41559i) q^{6} +(-0.497066 + 1.20002i) q^{7} +(2.17625 - 2.17625i) q^{8} +(1.96718 - 1.96718i) q^{9} +(-1.94839 - 4.70384i) q^{12} +(2.28258 - 0.945476i) q^{14} -3.23607 q^{16} +(0.809017 + 0.587785i) q^{17} -5.29170 q^{18} -2.52601i q^{21} +(-2.29047 + 5.52969i) q^{24} +(-0.707107 + 0.707107i) q^{25} +(-1.32621 + 3.20175i) q^{27} +(-3.14170 - 1.30134i) q^{28} +(2.17625 + 2.17625i) q^{32} +(-0.297556 - 1.87869i) q^{34} +(5.15014 + 5.15014i) q^{36} +(-0.431351 + 0.178671i) q^{37} +(-3.39748 + 3.39748i) q^{42} +1.00000i q^{47} +(5.81426 - 2.40835i) q^{48} +(-0.485875 - 0.485875i) q^{49} +1.90211 q^{50} +(-1.89101 - 0.453990i) q^{51} +(-1.26007 - 1.26007i) q^{53} +(6.09009 - 2.52260i) q^{54} +(1.52981 + 3.69329i) q^{56} +(0.437016 - 0.437016i) q^{59} +(-0.763007 + 1.84206i) q^{61} +(1.38284 + 3.33848i) q^{63} -2.61803i q^{64} +(-1.53884 + 2.11803i) q^{68} +(-0.965451 + 0.399903i) q^{71} -8.56216i q^{72} +(0.820478 + 0.339853i) q^{74} +(0.744220 - 1.79671i) q^{75} +(-0.965451 - 0.399903i) q^{79} -3.95758i q^{81} +(-1.00000 - 1.00000i) q^{83} +6.61319 q^{84} +1.90211i q^{89} +(1.34500 - 1.34500i) q^{94} +(-5.52969 - 2.29047i) q^{96} +(-0.0600500 - 0.144974i) q^{97} +1.30700i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} - 4q^{9} + O(q^{10}) \) \( 16q - 4q^{3} - 4q^{9} - 16q^{16} + 4q^{17} - 20q^{24} - 4q^{27} - 4q^{28} + 4q^{36} - 20q^{42} + 24q^{48} + 4q^{49} - 16q^{51} + 4q^{53} + 20q^{54} + 20q^{56} + 4q^{61} - 4q^{63} - 4q^{71} - 4q^{79} - 16q^{83} + 32q^{84} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/799\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34500 1.34500i −1.34500 1.34500i −0.891007 0.453990i \(-0.850000\pi\)
−0.453990 0.891007i \(-0.650000\pi\)
\(3\) −1.79671 + 0.744220i −1.79671 + 0.744220i −0.809017 + 0.587785i \(0.800000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(4\) 2.61803i 2.61803i
\(5\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(6\) 3.41754 + 1.41559i 3.41754 + 1.41559i
\(7\) −0.497066 + 1.20002i −0.497066 + 1.20002i 0.453990 + 0.891007i \(0.350000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(8\) 2.17625 2.17625i 2.17625 2.17625i
\(9\) 1.96718 1.96718i 1.96718 1.96718i
\(10\) 0 0
\(11\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(12\) −1.94839 4.70384i −1.94839 4.70384i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 2.28258 0.945476i 2.28258 0.945476i
\(15\) 0 0
\(16\) −3.23607 −3.23607
\(17\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(18\) −5.29170 −5.29170
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 2.52601i 2.52601i
\(22\) 0 0
\(23\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(24\) −2.29047 + 5.52969i −2.29047 + 5.52969i
\(25\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(26\) 0 0
\(27\) −1.32621 + 3.20175i −1.32621 + 3.20175i
\(28\) −3.14170 1.30134i −3.14170 1.30134i
\(29\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(30\) 0 0
\(31\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(32\) 2.17625 + 2.17625i 2.17625 + 2.17625i
\(33\) 0 0
\(34\) −0.297556 1.87869i −0.297556 1.87869i
\(35\) 0 0
\(36\) 5.15014 + 5.15014i 5.15014 + 5.15014i
\(37\) −0.431351 + 0.178671i −0.431351 + 0.178671i −0.587785 0.809017i \(-0.700000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(42\) −3.39748 + 3.39748i −3.39748 + 3.39748i
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000i 1.00000i
\(48\) 5.81426 2.40835i 5.81426 2.40835i
\(49\) −0.485875 0.485875i −0.485875 0.485875i
\(50\) 1.90211 1.90211
\(51\) −1.89101 0.453990i −1.89101 0.453990i
\(52\) 0 0
\(53\) −1.26007 1.26007i −1.26007 1.26007i −0.951057 0.309017i \(-0.900000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(54\) 6.09009 2.52260i 6.09009 2.52260i
\(55\) 0 0
\(56\) 1.52981 + 3.69329i 1.52981 + 3.69329i
\(57\) 0 0
\(58\) 0 0
\(59\) 0.437016 0.437016i 0.437016 0.437016i −0.453990 0.891007i \(-0.650000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(60\) 0 0
\(61\) −0.763007 + 1.84206i −0.763007 + 1.84206i −0.309017 + 0.951057i \(0.600000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(62\) 0 0
\(63\) 1.38284 + 3.33848i 1.38284 + 3.33848i
\(64\) 2.61803i 2.61803i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −1.53884 + 2.11803i −1.53884 + 2.11803i
\(69\) 0 0
\(70\) 0 0
\(71\) −0.965451 + 0.399903i −0.965451 + 0.399903i −0.809017 0.587785i \(-0.800000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(72\) 8.56216i 8.56216i
\(73\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(74\) 0.820478 + 0.339853i 0.820478 + 0.339853i
\(75\) 0.744220 1.79671i 0.744220 1.79671i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.965451 0.399903i −0.965451 0.399903i −0.156434 0.987688i \(-0.550000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(80\) 0 0
\(81\) 3.95758i 3.95758i
\(82\) 0 0
\(83\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(84\) 6.61319 6.61319
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.90211i 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 1.34500 1.34500i 1.34500 1.34500i
\(95\) 0 0
\(96\) −5.52969 2.29047i −5.52969 2.29047i
\(97\) −0.0600500 0.144974i −0.0600500 0.144974i 0.891007 0.453990i \(-0.150000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(98\) 1.30700i 1.30700i
\(99\) 0 0
\(100\) −1.85123 1.85123i −1.85123 1.85123i
\(101\) −1.97538 −1.97538 −0.987688 0.156434i \(-0.950000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(102\) 1.93278 + 3.15401i 1.93278 + 3.15401i
\(103\) 0.312869 0.312869 0.156434 0.987688i \(-0.450000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.38959i 3.38959i
\(107\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(108\) −8.38230 3.47206i −8.38230 3.47206i
\(109\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(110\) 0 0
\(111\) 0.642040 0.642040i 0.642040 0.642040i
\(112\) 1.60854 3.88336i 1.60854 3.88336i
\(113\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.17557 −1.17557
\(119\) −1.10749 + 0.678671i −1.10749 + 0.678671i
\(120\) 0 0
\(121\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(122\) 3.50381 1.45133i 3.50381 1.45133i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 2.63033 6.35017i 2.63033 6.35017i
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) −1.34500 + 1.34500i −1.34500 + 1.34500i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.0600500 + 0.144974i 0.0600500 + 0.144974i 0.951057 0.309017i \(-0.100000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 3.03979 0.481456i 3.03979 0.481456i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(140\) 0 0
\(141\) −0.744220 1.79671i −0.744220 1.79671i
\(142\) 1.83640 + 0.760661i 1.83640 + 0.760661i
\(143\) 0 0
\(144\) −6.36593 + 6.36593i −6.36593 + 6.36593i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.23457 + 0.511376i 1.23457 + 0.511376i
\(148\) −0.467768 1.12929i −0.467768 1.12929i
\(149\) 0.312869i 0.312869i −0.987688 0.156434i \(-0.950000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(150\) −3.41754 + 1.41559i −3.41754 + 1.41559i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) 2.74776 0.435203i 2.74776 0.435203i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.907981i 0.907981i 0.891007 + 0.453990i \(0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(158\) 0.760661 + 1.83640i 0.760661 + 1.83640i
\(159\) 3.20175 + 1.32621i 3.20175 + 1.32621i
\(160\) 0 0
\(161\) 0 0
\(162\) −5.32294 + 5.32294i −5.32294 + 5.32294i
\(163\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 2.68999i 2.68999i
\(167\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(168\) −5.49724 5.49724i −5.49724 5.49724i
\(169\) −1.00000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.40505 0.581990i 1.40505 0.581990i 0.453990 0.891007i \(-0.350000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(174\) 0 0
\(175\) −0.497066 1.20002i −0.497066 1.20002i
\(176\) 0 0
\(177\) −0.459953 + 1.11042i −0.459953 + 1.11042i
\(178\) 2.55834 2.55834i 2.55834 2.55834i
\(179\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(182\) 0 0
\(183\) 3.87749i 3.87749i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −2.61803 −2.61803
\(189\) −3.18296 3.18296i −3.18296 3.18296i
\(190\) 0 0
\(191\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(192\) 1.94839 + 4.70384i 1.94839 + 4.70384i
\(193\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(194\) −0.114222 + 0.275756i −0.114222 + 0.275756i
\(195\) 0 0
\(196\) 1.27204 1.27204i 1.27204 1.27204i
\(197\) 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i \(-0.750000\pi\)
1.00000 \(0\)
\(198\) 0 0
\(199\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(200\) 3.07768i 3.07768i
\(201\) 0 0
\(202\) 2.65688 + 2.65688i 2.65688 + 2.65688i
\(203\) 0 0
\(204\) 1.18856 4.95072i 1.18856 4.95072i
\(205\) 0 0
\(206\) −0.420808 0.420808i −0.420808 0.420808i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(212\) 3.29892 3.29892i 3.29892 3.29892i
\(213\) 1.43702 1.43702i 1.43702 1.43702i
\(214\) 0 0
\(215\) 0 0
\(216\) 4.08165 + 9.85398i 4.08165 + 9.85398i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −1.72708 −1.72708
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) −3.69329 + 1.52981i −3.69329 + 1.52981i
\(225\) 2.78201i 2.78201i
\(226\) 0 0
\(227\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(228\) 0 0
\(229\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.14412 + 1.14412i 1.14412 + 1.14412i
\(237\) 2.03225 2.03225
\(238\) 2.40238 + 0.576761i 2.40238 + 0.576761i
\(239\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(240\) 0 0
\(241\) 0.431351 0.178671i 0.431351 0.178671i −0.156434 0.987688i \(-0.550000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(242\) 1.90211i 1.90211i
\(243\) 1.61910 + 3.90886i 1.61910 + 3.90886i
\(244\) −4.82258 1.99758i −4.82258 1.99758i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 2.54093 + 1.05249i 2.54093 + 1.05249i
\(250\) 0 0
\(251\) 1.97538i 1.97538i 0.156434 + 0.987688i \(0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(252\) −8.74026 + 3.62033i −8.74026 + 3.62033i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 0.606443i 0.606443i
\(260\) 0 0
\(261\) 0 0
\(262\) 0.114222 0.275756i 0.114222 0.275756i
\(263\) −0.437016 + 0.437016i −0.437016 + 0.437016i −0.891007 0.453990i \(-0.850000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.41559 3.41754i −1.41559 3.41754i
\(268\) 0 0
\(269\) −1.70711 + 0.707107i −1.70711 + 0.707107i −0.707107 + 0.707107i \(0.750000\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 1.97538 1.97538 0.987688 0.156434i \(-0.0500000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(272\) −2.61803 1.90211i −2.61803 1.90211i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.399903 + 0.965451i 0.399903 + 0.965451i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) −1.41559 + 3.41754i −1.41559 + 3.41754i
\(283\) 1.20002 + 0.497066i 1.20002 + 0.497066i 0.891007 0.453990i \(-0.150000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(284\) −1.04696 2.52758i −1.04696 2.52758i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 8.56216 8.56216
\(289\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(290\) 0 0
\(291\) 0.215784 + 0.215784i 0.215784 + 0.215784i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −0.972696 2.34830i −0.972696 2.34830i
\(295\) 0 0
\(296\) −0.549894 + 1.32756i −0.549894 + 1.32756i
\(297\) 0 0
\(298\) −0.420808 + 0.420808i −0.420808 + 0.420808i
\(299\) 0 0
\(300\) 4.70384 + 1.94839i 4.70384 + 1.94839i
\(301\) 0 0
\(302\) 0 0
\(303\) 3.54917 1.47011i 3.54917 1.47011i
\(304\) 0 0
\(305\) 0 0
\(306\) −4.28108 3.11039i −4.28108 3.11039i
\(307\) 1.97538 1.97538 0.987688 0.156434i \(-0.0500000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(308\) 0 0
\(309\) −0.562133 + 0.232843i −0.562133 + 0.232843i
\(310\) 0 0
\(311\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(312\) 0 0
\(313\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(314\) 1.22123 1.22123i 1.22123 1.22123i
\(315\) 0 0
\(316\) 1.04696 2.52758i 1.04696 2.52758i
\(317\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(318\) −2.52260 6.09009i −2.52260 6.09009i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 10.3611 10.3611
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.20002 0.497066i −1.20002 0.497066i
\(330\) 0 0
\(331\) −1.34500 + 1.34500i −1.34500 + 1.34500i −0.453990 + 0.891007i \(0.650000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(332\) 2.61803 2.61803i 2.61803 2.61803i
\(333\) −0.497066 + 1.20002i −0.497066 + 1.20002i
\(334\) 0 0
\(335\) 0 0
\(336\) 8.17436i 8.17436i
\(337\) −1.40505 + 0.581990i −1.40505 + 0.581990i −0.951057 0.309017i \(-0.900000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(338\) 1.34500 + 1.34500i 1.34500 + 1.34500i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.375450 + 0.155517i −0.375450 + 0.155517i
\(344\) 0 0
\(345\) 0 0
\(346\) −2.67256 1.10701i −2.67256 1.10701i
\(347\) −0.744220 + 1.79671i −0.744220 + 1.79671i −0.156434 + 0.987688i \(0.550000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(348\) 0 0
\(349\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) −0.945476 + 2.28258i −0.945476 + 2.28258i
\(351\) 0 0
\(352\) 0 0
\(353\) 0.907981i 0.907981i −0.891007 0.453990i \(-0.850000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(354\) 2.11215 0.874883i 2.11215 0.874883i
\(355\) 0 0
\(356\) −4.97980 −4.97980
\(357\) 1.48475 2.04359i 1.48475 2.04359i
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) 1.00000i 1.00000i
\(362\) 0 0
\(363\) −1.79671 0.744220i −1.79671 0.744220i
\(364\) 0 0
\(365\) 0 0
\(366\) −5.21521 + 5.21521i −5.21521 + 5.21521i
\(367\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.13846 0.885778i 2.13846 0.885778i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.17625 + 2.17625i 2.17625 + 2.17625i
\(377\) 0 0
\(378\) 8.56216i 8.56216i
\(379\) −0.581990 1.40505i −0.581990 1.40505i −0.891007 0.453990i \(-0.850000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.90211 + 1.90211i −1.90211 + 1.90211i
\(383\) −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(384\) 1.41559 3.41754i 1.41559 3.41754i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.379546 0.157213i 0.379546 0.157213i
\(389\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.11477 −2.11477
\(393\) −0.215784 0.215784i −0.215784 0.215784i
\(394\) −1.34500 + 0.557116i −1.34500 + 0.557116i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.57547 0.652583i −1.57547 0.652583i −0.587785 0.809017i \(-0.700000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.28825 2.28825i 2.28825 2.28825i
\(401\) 0.744220 1.79671i 0.744220 1.79671i 0.156434 0.987688i \(-0.450000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.17160i 5.17160i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −5.10330 + 3.12731i −5.10330 + 3.12731i
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.819101i 0.819101i
\(413\) 0.307204 + 0.741655i 0.307204 + 0.741655i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 1.96718 + 1.96718i 1.96718 + 1.96718i
\(424\) −5.48447 −5.48447
\(425\) −0.987688 + 0.156434i −0.987688 + 0.156434i
\(426\) −3.86556 −3.86556
\(427\) −1.83125 1.83125i −1.83125 1.83125i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.144974 0.0600500i −0.144974 0.0600500i 0.309017 0.951057i \(-0.400000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(432\) 4.29170 10.3611i 4.29170 10.3611i
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i \(-0.750000\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −1.91161 −1.91161
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 1.68088 + 1.68088i 1.68088 + 1.68088i
\(445\) 0 0
\(446\) 0 0
\(447\) 0.232843 + 0.562133i 0.232843 + 0.562133i
\(448\) 3.14170 + 1.30134i 3.14170 + 1.30134i
\(449\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(450\) 3.74180 3.74180i 3.74180 3.74180i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(458\) 0 0
\(459\) −2.95487 + 1.81075i −2.95487 + 1.81075i
\(460\) 0 0
\(461\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.675737 1.63137i −0.675737 1.63137i
\(472\) 1.90211i 1.90211i
\(473\) 0 0
\(474\) −2.73337 2.73337i −2.73337 2.73337i
\(475\) 0 0
\(476\) −1.77678 2.89945i −1.77678 2.89945i
\(477\) −4.95758 −4.95758
\(478\) −1.58114 1.58114i −1.58114 1.58114i
\(479\) −1.20002 + 0.497066i −1.20002 + 0.497066i −0.891007 0.453990i \(-0.850000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.820478 0.339853i −0.820478 0.339853i
\(483\) 0 0
\(484\) −1.85123 + 1.85123i −1.85123 + 1.85123i
\(485\) 0 0
\(486\) 3.07972 7.43509i 3.07972 7.43509i
\(487\) 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i \(-0.250000\pi\)
1.00000i \(0.5\pi\)
\(488\) 2.34830 + 5.66929i 2.34830 + 5.66929i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.642040 0.642040i −0.642040 0.642040i 0.309017 0.951057i \(-0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.35734i 1.35734i
\(498\) −2.00195 4.83313i −2.00195 4.83313i
\(499\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.65688 2.65688i 2.65688 2.65688i
\(503\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(504\) 10.2748 + 4.25596i 10.2748 + 4.25596i
\(505\) 0 0
\(506\) 0 0
\(507\) 1.79671 0.744220i 1.79671 0.744220i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −0.815663 + 0.815663i −0.815663 + 0.815663i
\(519\) −2.09133 + 2.09133i −2.09133 + 2.09133i
\(520\) 0 0
\(521\) 1.40505 + 0.581990i 1.40505 + 0.581990i 0.951057 0.309017i \(-0.100000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −0.379546 + 0.157213i −0.379546 + 0.157213i
\(525\) 1.78616 + 1.78616i 1.78616 + 1.78616i
\(526\) 1.17557 1.17557
\(527\) 0 0
\(528\) 0 0
\(529\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(530\) 0 0
\(531\) 1.71938i 1.71938i
\(532\) 0 0
\(533\) 0 0
\(534\) −2.69261 + 6.50054i −2.69261 + 6.50054i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 3.24711 + 1.34500i 3.24711 + 1.34500i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.40505 0.581990i 1.40505 0.581990i 0.453990 0.891007i \(-0.350000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(542\) −2.65688 2.65688i −2.65688 2.65688i
\(543\) 0 0
\(544\) 0.481456 + 3.03979i 0.481456 + 3.03979i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 0 0
\(549\) 2.12270 + 5.12464i 2.12270 + 5.12464i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.959786 0.959786i 0.959786 0.959786i
\(554\) 0.760661 1.83640i 0.760661 1.83640i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 4.70384 1.94839i 4.70384 1.94839i
\(565\) 0 0
\(566\) −0.945476 2.28258i −0.945476 2.28258i
\(567\) 4.74919 + 1.96718i 4.74919 + 1.96718i
\(568\) −1.23078 + 2.97135i −1.23078 + 2.97135i
\(569\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 0 0
\(571\) 0.652583 1.57547i 0.652583 1.57547i −0.156434 0.987688i \(-0.550000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(572\) 0 0
\(573\) 1.05249 + 2.54093i 1.05249 + 2.54093i
\(574\) 0 0
\(575\) 0 0
\(576\) −5.15014 5.15014i −5.15014 5.15014i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.863541 1.69480i 0.863541 1.69480i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.69709 0.702958i 1.69709 0.702958i
\(582\) 0.580458i 0.580458i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −1.33880 + 3.23215i −1.33880 + 3.23215i
\(589\) 0 0
\(590\) 0 0
\(591\) 1.48844i 1.48844i
\(592\) 1.39588 0.578193i 1.39588 0.578193i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.819101 0.819101
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −2.29047 5.52969i −2.29047 5.52969i
\(601\) 1.84206 + 0.763007i 1.84206 + 0.763007i 0.951057 + 0.309017i \(0.100000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −6.75092 2.79632i −6.75092 2.79632i
\(607\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.13938 + 7.19373i 1.13938 + 7.19373i
\(613\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(614\) −2.65688 2.65688i −2.65688 2.65688i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.652583 1.57547i −0.652583 1.57547i −0.809017 0.587785i \(-0.800000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(618\) 1.06924 + 0.442894i 1.06924 + 0.442894i
\(619\) 0.707107 1.70711i 0.707107 1.70711i 1.00000i \(-0.5\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.28258 0.945476i −2.28258 0.945476i
\(624\) 0 0
\(625\) 1.00000i 1.00000i
\(626\) 0 0
\(627\) 0 0
\(628\) −2.37713 −2.37713
\(629\) −0.453990 0.108993i −0.453990 0.108993i
\(630\) 0 0
\(631\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) −2.97135 + 1.23078i −2.97135 + 1.23078i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −3.47206 + 8.38230i −3.47206 + 8.38230i
\(637\) 0 0
\(638\) 0 0
\(639\) −1.11254 + 2.68590i −1.11254 + 2.68590i
\(640\) 0 0
\(641\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(642\) 0 0
\(643\) −1.84206 + 0.763007i −1.84206 + 0.763007i −0.891007 + 0.453990i \(0.850000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.907981 −0.907981 −0.453990 0.891007i \(-0.650000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(648\) −8.61269 8.61269i −8.61269 8.61269i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.178671 + 0.431351i −0.178671 + 0.431351i −0.987688 0.156434i \(-0.950000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0.945476 + 2.28258i 0.945476 + 2.28258i
\(659\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(660\) 0 0
\(661\) 0.831254 + 0.831254i 0.831254 + 0.831254i 0.987688 0.156434i \(-0.0500000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(662\) 3.61803 3.61803
\(663\) 0 0
\(664\) −4.35250 −4.35250
\(665\) 0 0
\(666\) 2.28258 0.945476i 2.28258 0.945476i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 5.49724 5.49724i 5.49724 5.49724i
\(673\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(674\) 2.67256 + 1.10701i 2.67256 + 1.10701i
\(675\) −1.32621 3.20175i −1.32621 3.20175i
\(676\) 2.61803i 2.61803i
\(677\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(678\) 0 0
\(679\) 0.203820 0.203820
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.84206 0.763007i 1.84206 0.763007i 0.891007 0.453990i \(-0.150000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.714148 + 0.295810i 0.714148 + 0.295810i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(692\) 1.52367 + 3.67846i 1.52367 + 3.67846i
\(693\) 0 0
\(694\) 3.41754 1.41559i 3.41754 1.41559i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 3.14170 1.30134i 3.14170 1.30134i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −1.22123 + 1.22123i −1.22123 + 1.22123i
\(707\) 0.981893 2.37050i 0.981893 2.37050i
\(708\) −2.90713 1.20417i −2.90713 1.20417i
\(709\) −0.497066 1.20002i −0.497066 1.20002i −0.951057 0.309017i \(-0.900000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(710\) 0 0
\(711\) −2.68590 + 1.11254i −2.68590 + 1.11254i
\(712\) 4.13948 + 4.13948i 4.13948 + 4.13948i
\(713\) 0 0
\(714\) −4.74561 + 0.751631i −4.74561 + 0.751631i
\(715\) 0 0
\(716\) 0 0
\(717\) −2.11215 + 0.874883i −2.11215 + 0.874883i
\(718\) 0 0
\(719\) 0.763007 + 1.84206i 0.763007 + 1.84206i 0.453990 + 0.891007i \(0.350000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(720\) 0 0
\(721\) −0.155517 + 0.375450i −0.155517 + 0.375450i
\(722\) 1.34500 1.34500i 1.34500 1.34500i
\(723\) −0.642040 + 0.642040i −0.642040 + 0.642040i
\(724\) 0 0
\(725\) 0 0
\(726\) 1.41559 + 3.41754i 1.41559 + 3.41754i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −3.01967 3.01967i −3.01967 3.01967i
\(730\) 0 0
\(731\) 0 0
\(732\) 10.1514 10.1514
\(733\) 0.831254 + 0.831254i 0.831254 + 0.831254i 0.987688 0.156434i \(-0.0500000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.642040 0.642040i 0.642040 0.642040i −0.309017 0.951057i \(-0.600000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −4.06759 1.68485i −4.06759 1.68485i
\(743\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.93436 −3.93436
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(752\) 3.23607i 3.23607i
\(753\) −1.47011 3.54917i −1.47011 3.54917i
\(754\) 0 0
\(755\) 0 0
\(756\) 8.33311 8.33311i 8.33311 8.33311i
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) −1.10701 + 2.67256i −1.10701 + 2.67256i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.70246 3.70246
\(765\) 0 0
\(766\) 0.595112 0.595112
\(767\) 0 0
\(768\) −1.79671 + 0.744220i −1.79671 + 0.744220i
\(769\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.831254 + 0.831254i −0.831254 + 0.831254i −0.987688 0.156434i \(-0.950000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.446183 0.184815i −0.446183 0.184815i
\(777\) 0.451326 + 1.08960i 0.451326 + 1.08960i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.57232 + 1.57232i 1.57232 + 1.57232i
\(785\) 0 0
\(786\) 0.580458i 0.580458i
\(787\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(788\) 1.85123 + 0.766804i 1.85123 + 0.766804i
\(789\) 0.459953 1.11042i 0.459953 1.11042i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 1.24129 + 2.99673i 1.24129 + 2.99673i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(800\) −3.07768 −3.07768