Properties

Label 798.2.p
Level $798$
Weight $2$
Character orbit 798.p
Rep. character $\chi_{798}(107,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $104$
Newform subspaces $4$
Sturm bound $320$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 399 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(320\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(798, [\chi])\).

Total New Old
Modular forms 336 104 232
Cusp forms 304 104 200
Eisenstein series 32 0 32

Trace form

\( 104 q + 104 q^{4} + 8 q^{7} + 12 q^{13} - 30 q^{15} + 104 q^{16} + 4 q^{19} + 12 q^{22} - 96 q^{25} + 8 q^{28} + 4 q^{30} + 12 q^{31} - 12 q^{34} - 10 q^{39} - 26 q^{42} + 20 q^{43} + 4 q^{45} + 20 q^{49}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(798, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
798.2.p.a 798.p 399.am $2$ $6.372$ \(\Q(\sqrt{-3}) \) None 798.2.p.a \(-2\) \(3\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q-q^{2}+(1+\zeta_{6})q^{3}+q^{4}+(-1-\zeta_{6})q^{6}+\cdots\)
798.2.p.b 798.p 399.am $2$ $6.372$ \(\Q(\sqrt{-3}) \) None 798.2.p.a \(2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+q^{2}+(1-2\zeta_{6})q^{3}+q^{4}+(1-2\zeta_{6})q^{6}+\cdots\)
798.2.p.c 798.p 399.am $50$ $6.372$ None 798.2.p.c \(-50\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
798.2.p.d 798.p 399.am $50$ $6.372$ None 798.2.p.c \(50\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(798, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(798, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 2}\)