Properties

Label 798.2.j.l.571.2
Level $798$
Weight $2$
Character 798.571
Analytic conductor $6.372$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
Defining polynomial: \(x^{8} + 11 x^{6} + 36 x^{4} + 32 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 571.2
Root \(-2.33086i\) of defining polynomial
Character \(\chi\) \(=\) 798.571
Dual form 798.2.j.l.457.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.05903 - 1.83430i) q^{5} +1.00000 q^{6} +(-1.11699 + 2.39840i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.05903 - 1.83430i) q^{5} +1.00000 q^{6} +(-1.11699 + 2.39840i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.05903 - 1.83430i) q^{10} +(-1.67602 + 2.90295i) q^{11} +(0.500000 + 0.866025i) q^{12} -4.23612 q^{13} +(-2.63557 + 0.231865i) q^{14} -2.11806 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-3.47814 + 6.02432i) q^{17} +(0.500000 - 0.866025i) q^{18} +(-0.500000 - 0.866025i) q^{19} +2.11806 q^{20} +(1.51859 + 2.16654i) q^{21} -3.35203 q^{22} +(3.59035 + 6.21867i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(0.256906 - 0.444974i) q^{25} +(-2.11806 - 3.66859i) q^{26} -1.00000 q^{27} +(-1.51859 - 2.16654i) q^{28} +7.29877 q^{29} +(-1.05903 - 1.83430i) q^{30} +(-2.27442 + 3.93940i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.67602 + 2.90295i) q^{33} -6.95628 q^{34} +(5.58231 - 0.491104i) q^{35} +1.00000 q^{36} +(0.126109 + 0.218427i) q^{37} +(0.500000 - 0.866025i) q^{38} +(-2.11806 + 3.66859i) q^{39} +(1.05903 + 1.83430i) q^{40} -10.3359 q^{41} +(-1.11699 + 2.39840i) q^{42} +3.17133 q^{43} +(-1.67602 - 2.90295i) q^{44} +(-1.05903 + 1.83430i) q^{45} +(-3.59035 + 6.21867i) q^{46} +(-3.57762 - 6.19662i) q^{47} -1.00000 q^{48} +(-4.50469 - 5.35796i) q^{49} +0.513812 q^{50} +(3.47814 + 6.02432i) q^{51} +(2.11806 - 3.66859i) q^{52} +(-0.878666 + 1.52189i) q^{53} +(-0.500000 - 0.866025i) q^{54} +7.09982 q^{55} +(1.11699 - 2.39840i) q^{56} -1.00000 q^{57} +(3.64938 + 6.32092i) q^{58} +(-6.52327 + 11.2986i) q^{59} +(1.05903 - 1.83430i) q^{60} +(-3.45956 - 5.99213i) q^{61} -4.54883 q^{62} +(2.63557 - 0.231865i) q^{63} +1.00000 q^{64} +(4.48619 + 7.77031i) q^{65} +(-1.67602 + 2.90295i) q^{66} +(2.15308 - 3.72925i) q^{67} +(-3.47814 - 6.02432i) q^{68} +7.18070 q^{69} +(3.21646 + 4.58887i) q^{70} -10.4518 q^{71} +(0.500000 + 0.866025i) q^{72} +(6.38335 - 11.0563i) q^{73} +(-0.126109 + 0.218427i) q^{74} +(-0.256906 - 0.444974i) q^{75} +1.00000 q^{76} +(-5.09035 - 7.26231i) q^{77} -4.23612 q^{78} +(-1.13557 - 1.96687i) q^{79} +(-1.05903 + 1.83430i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-5.16797 - 8.95119i) q^{82} +16.5699 q^{83} +(-2.63557 + 0.231865i) q^{84} +14.7338 q^{85} +(1.58566 + 2.74645i) q^{86} +(3.64938 - 6.32092i) q^{87} +(1.67602 - 2.90295i) q^{88} +(-1.89683 - 3.28540i) q^{89} -2.11806 q^{90} +(4.73169 - 10.1599i) q^{91} -7.18070 q^{92} +(2.27442 + 3.93940i) q^{93} +(3.57762 - 6.19662i) q^{94} +(-1.05903 + 1.83430i) q^{95} +(-0.500000 - 0.866025i) q^{96} -6.18070 q^{97} +(2.38779 - 6.58016i) q^{98} +3.35203 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 8 q^{6} - 2 q^{7} - 8 q^{8} - 4 q^{9} + O(q^{10}) \) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 8 q^{6} - 2 q^{7} - 8 q^{8} - 4 q^{9} + 2 q^{11} + 4 q^{12} - q^{14} - 4 q^{16} - 10 q^{17} + 4 q^{18} - 4 q^{19} - q^{21} + 4 q^{22} + 5 q^{23} - 4 q^{24} - 4 q^{25} - 8 q^{27} + q^{28} - 6 q^{29} - 9 q^{31} + 4 q^{32} - 2 q^{33} - 20 q^{34} - 9 q^{35} + 8 q^{36} + 14 q^{37} + 4 q^{38} + 8 q^{41} - 2 q^{42} + 42 q^{43} + 2 q^{44} - 5 q^{46} - 7 q^{47} - 8 q^{48} - 4 q^{49} - 8 q^{50} + 10 q^{51} + 7 q^{53} - 4 q^{54} + 2 q^{56} - 8 q^{57} - 3 q^{58} - 7 q^{59} - 23 q^{61} - 18 q^{62} + q^{63} + 8 q^{64} + 48 q^{65} + 2 q^{66} - 6 q^{67} - 10 q^{68} + 10 q^{69} + 15 q^{70} + 4 q^{71} + 4 q^{72} + 5 q^{73} - 14 q^{74} + 4 q^{75} + 8 q^{76} - 17 q^{77} + 11 q^{79} - 4 q^{81} + 4 q^{82} + 28 q^{83} - q^{84} + 12 q^{85} + 21 q^{86} - 3 q^{87} - 2 q^{88} - 10 q^{89} - 48 q^{91} - 10 q^{92} + 9 q^{93} + 7 q^{94} - 4 q^{96} - 2 q^{97} + 25 q^{98} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.05903 1.83430i −0.473613 0.820322i 0.525931 0.850528i \(-0.323717\pi\)
−0.999544 + 0.0302055i \(0.990384\pi\)
\(6\) 1.00000 0.408248
\(7\) −1.11699 + 2.39840i −0.422181 + 0.906512i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 1.05903 1.83430i 0.334895 0.580055i
\(11\) −1.67602 + 2.90295i −0.505338 + 0.875271i 0.494643 + 0.869096i \(0.335299\pi\)
−0.999981 + 0.00617477i \(0.998034\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −4.23612 −1.17489 −0.587445 0.809264i \(-0.699866\pi\)
−0.587445 + 0.809264i \(0.699866\pi\)
\(14\) −2.63557 + 0.231865i −0.704386 + 0.0619684i
\(15\) −2.11806 −0.546881
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.47814 + 6.02432i −0.843573 + 1.46111i 0.0432811 + 0.999063i \(0.486219\pi\)
−0.886854 + 0.462049i \(0.847114\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) −0.500000 0.866025i −0.114708 0.198680i
\(20\) 2.11806 0.473613
\(21\) 1.51859 + 2.16654i 0.331383 + 0.472778i
\(22\) −3.35203 −0.714656
\(23\) 3.59035 + 6.21867i 0.748640 + 1.29668i 0.948475 + 0.316853i \(0.102626\pi\)
−0.199834 + 0.979830i \(0.564040\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 0.256906 0.444974i 0.0513812 0.0889948i
\(26\) −2.11806 3.66859i −0.415386 0.719470i
\(27\) −1.00000 −0.192450
\(28\) −1.51859 2.16654i −0.286986 0.409438i
\(29\) 7.29877 1.35535 0.677673 0.735363i \(-0.262988\pi\)
0.677673 + 0.735363i \(0.262988\pi\)
\(30\) −1.05903 1.83430i −0.193352 0.334895i
\(31\) −2.27442 + 3.93940i −0.408497 + 0.707538i −0.994722 0.102611i \(-0.967280\pi\)
0.586225 + 0.810149i \(0.300614\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 1.67602 + 2.90295i 0.291757 + 0.505338i
\(34\) −6.95628 −1.19299
\(35\) 5.58231 0.491104i 0.943582 0.0830117i
\(36\) 1.00000 0.166667
\(37\) 0.126109 + 0.218427i 0.0207322 + 0.0359092i 0.876205 0.481938i \(-0.160067\pi\)
−0.855473 + 0.517847i \(0.826734\pi\)
\(38\) 0.500000 0.866025i 0.0811107 0.140488i
\(39\) −2.11806 + 3.66859i −0.339161 + 0.587445i
\(40\) 1.05903 + 1.83430i 0.167448 + 0.290028i
\(41\) −10.3359 −1.61420 −0.807101 0.590413i \(-0.798965\pi\)
−0.807101 + 0.590413i \(0.798965\pi\)
\(42\) −1.11699 + 2.39840i −0.172355 + 0.370082i
\(43\) 3.17133 0.483623 0.241812 0.970323i \(-0.422258\pi\)
0.241812 + 0.970323i \(0.422258\pi\)
\(44\) −1.67602 2.90295i −0.252669 0.437636i
\(45\) −1.05903 + 1.83430i −0.157871 + 0.273441i
\(46\) −3.59035 + 6.21867i −0.529369 + 0.916893i
\(47\) −3.57762 6.19662i −0.521849 0.903869i −0.999677 0.0254158i \(-0.991909\pi\)
0.477828 0.878454i \(-0.341424\pi\)
\(48\) −1.00000 −0.144338
\(49\) −4.50469 5.35796i −0.643527 0.765424i
\(50\) 0.513812 0.0726639
\(51\) 3.47814 + 6.02432i 0.487037 + 0.843573i
\(52\) 2.11806 3.66859i 0.293722 0.508742i
\(53\) −0.878666 + 1.52189i −0.120694 + 0.209048i −0.920042 0.391821i \(-0.871845\pi\)
0.799348 + 0.600869i \(0.205179\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 7.09982 0.957339
\(56\) 1.11699 2.39840i 0.149263 0.320500i
\(57\) −1.00000 −0.132453
\(58\) 3.64938 + 6.32092i 0.479188 + 0.829977i
\(59\) −6.52327 + 11.2986i −0.849258 + 1.47096i 0.0326134 + 0.999468i \(0.489617\pi\)
−0.881871 + 0.471490i \(0.843716\pi\)
\(60\) 1.05903 1.83430i 0.136720 0.236807i
\(61\) −3.45956 5.99213i −0.442951 0.767213i 0.554956 0.831880i \(-0.312735\pi\)
−0.997907 + 0.0646665i \(0.979402\pi\)
\(62\) −4.54883 −0.577702
\(63\) 2.63557 0.231865i 0.332051 0.0292122i
\(64\) 1.00000 0.125000
\(65\) 4.48619 + 7.77031i 0.556443 + 0.963788i
\(66\) −1.67602 + 2.90295i −0.206303 + 0.357328i
\(67\) 2.15308 3.72925i 0.263041 0.455600i −0.704008 0.710192i \(-0.748608\pi\)
0.967048 + 0.254592i \(0.0819413\pi\)
\(68\) −3.47814 6.02432i −0.421787 0.730556i
\(69\) 7.18070 0.864455
\(70\) 3.21646 + 4.58887i 0.384441 + 0.548474i
\(71\) −10.4518 −1.24041 −0.620203 0.784441i \(-0.712950\pi\)
−0.620203 + 0.784441i \(0.712950\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 6.38335 11.0563i 0.747115 1.29404i −0.202085 0.979368i \(-0.564772\pi\)
0.949200 0.314673i \(-0.101895\pi\)
\(74\) −0.126109 + 0.218427i −0.0146599 + 0.0253916i
\(75\) −0.256906 0.444974i −0.0296649 0.0513812i
\(76\) 1.00000 0.114708
\(77\) −5.09035 7.26231i −0.580099 0.827617i
\(78\) −4.23612 −0.479647
\(79\) −1.13557 1.96687i −0.127762 0.221290i 0.795047 0.606547i \(-0.207446\pi\)
−0.922809 + 0.385257i \(0.874113\pi\)
\(80\) −1.05903 + 1.83430i −0.118403 + 0.205081i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −5.16797 8.95119i −0.570707 0.988493i
\(83\) 16.5699 1.81878 0.909392 0.415940i \(-0.136547\pi\)
0.909392 + 0.415940i \(0.136547\pi\)
\(84\) −2.63557 + 0.231865i −0.287564 + 0.0252985i
\(85\) 14.7338 1.59811
\(86\) 1.58566 + 2.74645i 0.170987 + 0.296157i
\(87\) 3.64938 6.32092i 0.391255 0.677673i
\(88\) 1.67602 2.90295i 0.178664 0.309455i
\(89\) −1.89683 3.28540i −0.201063 0.348252i 0.747808 0.663915i \(-0.231106\pi\)
−0.948871 + 0.315663i \(0.897773\pi\)
\(90\) −2.11806 −0.223263
\(91\) 4.73169 10.1599i 0.496016 1.06505i
\(92\) −7.18070 −0.748640
\(93\) 2.27442 + 3.93940i 0.235846 + 0.408497i
\(94\) 3.57762 6.19662i 0.369003 0.639132i
\(95\) −1.05903 + 1.83430i −0.108654 + 0.188195i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) −6.18070 −0.627555 −0.313778 0.949496i \(-0.601595\pi\)
−0.313778 + 0.949496i \(0.601595\pi\)
\(98\) 2.38779 6.58016i 0.241203 0.664696i
\(99\) 3.35203 0.336892
\(100\) 0.256906 + 0.444974i 0.0256906 + 0.0444974i
\(101\) −6.61479 + 11.4572i −0.658196 + 1.14003i 0.322886 + 0.946438i \(0.395347\pi\)
−0.981082 + 0.193592i \(0.937986\pi\)
\(102\) −3.47814 + 6.02432i −0.344387 + 0.596496i
\(103\) 3.72700 + 6.45536i 0.367232 + 0.636065i 0.989132 0.147032i \(-0.0469721\pi\)
−0.621899 + 0.783097i \(0.713639\pi\)
\(104\) 4.23612 0.415386
\(105\) 2.36584 5.07997i 0.230883 0.495754i
\(106\) −1.75733 −0.170687
\(107\) −4.30354 7.45395i −0.416039 0.720601i 0.579498 0.814974i \(-0.303249\pi\)
−0.995537 + 0.0943730i \(0.969915\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) −3.15373 + 5.46242i −0.302073 + 0.523205i −0.976605 0.215040i \(-0.931012\pi\)
0.674533 + 0.738245i \(0.264345\pi\)
\(110\) 3.54991 + 6.14862i 0.338470 + 0.586248i
\(111\) 0.252218 0.0239395
\(112\) 2.63557 0.231865i 0.249038 0.0219091i
\(113\) 1.97453 0.185748 0.0928741 0.995678i \(-0.470395\pi\)
0.0928741 + 0.995678i \(0.470395\pi\)
\(114\) −0.500000 0.866025i −0.0468293 0.0811107i
\(115\) 7.60459 13.1715i 0.709132 1.22825i
\(116\) −3.64938 + 6.32092i −0.338837 + 0.586882i
\(117\) 2.11806 + 3.66859i 0.195815 + 0.339161i
\(118\) −13.0465 −1.20103
\(119\) −10.5637 15.0711i −0.968375 1.38156i
\(120\) 2.11806 0.193352
\(121\) −0.118062 0.204490i −0.0107329 0.0185900i
\(122\) 3.45956 5.99213i 0.313213 0.542502i
\(123\) −5.16797 + 8.95119i −0.465980 + 0.807101i
\(124\) −2.27442 3.93940i −0.204249 0.353769i
\(125\) −11.6786 −1.04457
\(126\) 1.51859 + 2.16654i 0.135286 + 0.193011i
\(127\) 12.2296 1.08520 0.542600 0.839991i \(-0.317440\pi\)
0.542600 + 0.839991i \(0.317440\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 1.58566 2.74645i 0.139610 0.241812i
\(130\) −4.48619 + 7.77031i −0.393465 + 0.681501i
\(131\) 0.510540 + 0.884281i 0.0446061 + 0.0772600i 0.887466 0.460872i \(-0.152463\pi\)
−0.842860 + 0.538132i \(0.819130\pi\)
\(132\) −3.35203 −0.291757
\(133\) 2.63557 0.231865i 0.228533 0.0201052i
\(134\) 4.30616 0.371996
\(135\) 1.05903 + 1.83430i 0.0911469 + 0.157871i
\(136\) 3.47814 6.02432i 0.298248 0.516581i
\(137\) 3.06381 5.30667i 0.261759 0.453379i −0.704951 0.709256i \(-0.749031\pi\)
0.966709 + 0.255877i \(0.0823642\pi\)
\(138\) 3.59035 + 6.21867i 0.305631 + 0.529369i
\(139\) 18.3476 1.55623 0.778113 0.628124i \(-0.216177\pi\)
0.778113 + 0.628124i \(0.216177\pi\)
\(140\) −2.36584 + 5.07997i −0.199950 + 0.429336i
\(141\) −7.15524 −0.602580
\(142\) −5.22592 9.05157i −0.438550 0.759591i
\(143\) 7.09982 12.2972i 0.593716 1.02835i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −7.72962 13.3881i −0.641910 1.11182i
\(146\) 12.7667 1.05658
\(147\) −6.89248 + 1.22219i −0.568482 + 0.100805i
\(148\) −0.252218 −0.0207322
\(149\) 10.9551 + 18.9748i 0.897478 + 1.55448i 0.830707 + 0.556710i \(0.187936\pi\)
0.0667713 + 0.997768i \(0.478730\pi\)
\(150\) 0.256906 0.444974i 0.0209763 0.0363320i
\(151\) −0.174600 + 0.302416i −0.0142088 + 0.0246103i −0.873042 0.487644i \(-0.837856\pi\)
0.858834 + 0.512255i \(0.171190\pi\)
\(152\) 0.500000 + 0.866025i 0.0405554 + 0.0702439i
\(153\) 6.95628 0.562382
\(154\) 3.74417 8.03953i 0.301714 0.647844i
\(155\) 9.63471 0.773878
\(156\) −2.11806 3.66859i −0.169581 0.293722i
\(157\) −6.52435 + 11.3005i −0.520700 + 0.901879i 0.479010 + 0.877809i \(0.340996\pi\)
−0.999710 + 0.0240695i \(0.992338\pi\)
\(158\) 1.13557 1.96687i 0.0903412 0.156476i
\(159\) 0.878666 + 1.52189i 0.0696827 + 0.120694i
\(160\) −2.11806 −0.167448
\(161\) −18.9253 + 1.66495i −1.49152 + 0.131217i
\(162\) −1.00000 −0.0785674
\(163\) −7.73070 13.3900i −0.605515 1.04878i −0.991970 0.126475i \(-0.959634\pi\)
0.386455 0.922308i \(-0.373700\pi\)
\(164\) 5.16797 8.95119i 0.403551 0.698970i
\(165\) 3.54991 6.14862i 0.276360 0.478669i
\(166\) 8.28496 + 14.3500i 0.643037 + 1.11377i
\(167\) −4.68797 −0.362766 −0.181383 0.983413i \(-0.558057\pi\)
−0.181383 + 0.983413i \(0.558057\pi\)
\(168\) −1.51859 2.16654i −0.117161 0.167152i
\(169\) 4.94475 0.380366
\(170\) 7.36692 + 12.7599i 0.565017 + 0.978638i
\(171\) −0.500000 + 0.866025i −0.0382360 + 0.0662266i
\(172\) −1.58566 + 2.74645i −0.120906 + 0.209415i
\(173\) 10.7642 + 18.6441i 0.818385 + 1.41748i 0.906872 + 0.421407i \(0.138464\pi\)
−0.0884866 + 0.996077i \(0.528203\pi\)
\(174\) 7.29877 0.553318
\(175\) 0.780267 + 1.11319i 0.0589827 + 0.0841495i
\(176\) 3.35203 0.252669
\(177\) 6.52327 + 11.2986i 0.490319 + 0.849258i
\(178\) 1.89683 3.28540i 0.142173 0.246251i
\(179\) −0.919111 + 1.59195i −0.0686976 + 0.118988i −0.898328 0.439325i \(-0.855218\pi\)
0.829631 + 0.558313i \(0.188551\pi\)
\(180\) −1.05903 1.83430i −0.0789355 0.136720i
\(181\) 20.3848 1.51519 0.757596 0.652724i \(-0.226374\pi\)
0.757596 + 0.652724i \(0.226374\pi\)
\(182\) 11.1646 0.982207i 0.827576 0.0728061i
\(183\) −6.91911 −0.511475
\(184\) −3.59035 6.21867i −0.264684 0.458447i
\(185\) 0.267107 0.462642i 0.0196381 0.0340141i
\(186\) −2.27442 + 3.93940i −0.166768 + 0.288851i
\(187\) −11.6588 20.1937i −0.852579 1.47671i
\(188\) 7.15524 0.521849
\(189\) 1.11699 2.39840i 0.0812487 0.174458i
\(190\) −2.11806 −0.153660
\(191\) 2.74895 + 4.76131i 0.198907 + 0.344517i 0.948174 0.317751i \(-0.102928\pi\)
−0.749267 + 0.662268i \(0.769594\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −3.94935 + 6.84048i −0.284281 + 0.492389i −0.972435 0.233176i \(-0.925088\pi\)
0.688154 + 0.725565i \(0.258421\pi\)
\(194\) −3.09035 5.35265i −0.221874 0.384298i
\(195\) 8.97238 0.642525
\(196\) 6.89248 1.22219i 0.492320 0.0872994i
\(197\) −1.93736 −0.138031 −0.0690155 0.997616i \(-0.521986\pi\)
−0.0690155 + 0.997616i \(0.521986\pi\)
\(198\) 1.67602 + 2.90295i 0.119109 + 0.206303i
\(199\) −4.36912 + 7.56753i −0.309718 + 0.536448i −0.978301 0.207190i \(-0.933568\pi\)
0.668582 + 0.743638i \(0.266901\pi\)
\(200\) −0.256906 + 0.444974i −0.0181660 + 0.0314644i
\(201\) −2.15308 3.72925i −0.151867 0.263041i
\(202\) −13.2296 −0.930830
\(203\) −8.15261 + 17.5054i −0.572201 + 1.22864i
\(204\) −6.95628 −0.487037
\(205\) 10.9461 + 18.9592i 0.764508 + 1.32417i
\(206\) −3.72700 + 6.45536i −0.259672 + 0.449766i
\(207\) 3.59035 6.21867i 0.249547 0.432228i
\(208\) 2.11806 + 3.66859i 0.146861 + 0.254371i
\(209\) 3.35203 0.231865
\(210\) 5.58231 0.491104i 0.385216 0.0338894i
\(211\) −23.3870 −1.61003 −0.805013 0.593257i \(-0.797842\pi\)
−0.805013 + 0.593257i \(0.797842\pi\)
\(212\) −0.878666 1.52189i −0.0603470 0.104524i
\(213\) −5.22592 + 9.05157i −0.358074 + 0.620203i
\(214\) 4.30354 7.45395i 0.294184 0.509542i
\(215\) −3.35854 5.81715i −0.229050 0.396727i
\(216\) 1.00000 0.0680414
\(217\) −6.90779 9.85522i −0.468932 0.669016i
\(218\) −6.30746 −0.427195
\(219\) −6.38335 11.0563i −0.431347 0.747115i
\(220\) −3.54991 + 6.14862i −0.239335 + 0.414540i
\(221\) 14.7338 25.5198i 0.991106 1.71665i
\(222\) 0.126109 + 0.218427i 0.00846388 + 0.0146599i
\(223\) 9.80320 0.656471 0.328236 0.944596i \(-0.393546\pi\)
0.328236 + 0.944596i \(0.393546\pi\)
\(224\) 1.51859 + 2.16654i 0.101465 + 0.144758i
\(225\) −0.513812 −0.0342541
\(226\) 0.987266 + 1.70999i 0.0656719 + 0.113747i
\(227\) 9.14176 15.8340i 0.606760 1.05094i −0.385011 0.922912i \(-0.625802\pi\)
0.991771 0.128027i \(-0.0408645\pi\)
\(228\) 0.500000 0.866025i 0.0331133 0.0573539i
\(229\) 0.722313 + 1.25108i 0.0477318 + 0.0826739i 0.888904 0.458093i \(-0.151467\pi\)
−0.841172 + 0.540767i \(0.818134\pi\)
\(230\) 15.2092 1.00286
\(231\) −8.83452 + 0.777218i −0.581269 + 0.0511372i
\(232\) −7.29877 −0.479188
\(233\) 7.84038 + 13.5799i 0.513640 + 0.889651i 0.999875 + 0.0158225i \(0.00503667\pi\)
−0.486235 + 0.873828i \(0.661630\pi\)
\(234\) −2.11806 + 3.66859i −0.138462 + 0.239823i
\(235\) −7.57762 + 13.1248i −0.494309 + 0.856169i
\(236\) −6.52327 11.2986i −0.424629 0.735479i
\(237\) −2.27114 −0.147527
\(238\) 7.77007 16.6840i 0.503659 1.08146i
\(239\) 3.76818 0.243744 0.121872 0.992546i \(-0.461110\pi\)
0.121872 + 0.992546i \(0.461110\pi\)
\(240\) 1.05903 + 1.83430i 0.0683602 + 0.118403i
\(241\) −1.49781 + 2.59428i −0.0964821 + 0.167112i −0.910226 0.414111i \(-0.864092\pi\)
0.813744 + 0.581223i \(0.197426\pi\)
\(242\) 0.118062 0.204490i 0.00758934 0.0131451i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 6.91911 0.442951
\(245\) −5.05749 + 13.9372i −0.323111 + 0.890414i
\(246\) −10.3359 −0.658995
\(247\) 2.11806 + 3.66859i 0.134769 + 0.233427i
\(248\) 2.27442 3.93940i 0.144426 0.250152i
\(249\) 8.28496 14.3500i 0.525038 0.909392i
\(250\) −5.83930 10.1140i −0.369310 0.639663i
\(251\) 26.2922 1.65955 0.829775 0.558098i \(-0.188469\pi\)
0.829775 + 0.558098i \(0.188469\pi\)
\(252\) −1.11699 + 2.39840i −0.0703635 + 0.151085i
\(253\) −24.0700 −1.51327
\(254\) 6.11479 + 10.5911i 0.383676 + 0.664547i
\(255\) 7.36692 12.7599i 0.461335 0.799055i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 9.86584 + 17.0881i 0.615414 + 1.06593i 0.990312 + 0.138863i \(0.0443447\pi\)
−0.374897 + 0.927066i \(0.622322\pi\)
\(258\) 3.17133 0.197438
\(259\) −0.664738 + 0.0584804i −0.0413048 + 0.00363380i
\(260\) −8.97238 −0.556443
\(261\) −3.64938 6.32092i −0.225891 0.391255i
\(262\) −0.510540 + 0.884281i −0.0315413 + 0.0546311i
\(263\) 2.22124 3.84729i 0.136967 0.237234i −0.789380 0.613905i \(-0.789598\pi\)
0.926347 + 0.376671i \(0.122931\pi\)
\(264\) −1.67602 2.90295i −0.103152 0.178664i
\(265\) 3.72214 0.228649
\(266\) 1.51859 + 2.16654i 0.0931105 + 0.132839i
\(267\) −3.79365 −0.232168
\(268\) 2.15308 + 3.72925i 0.131520 + 0.227800i
\(269\) −9.73982 + 16.8699i −0.593847 + 1.02857i 0.399861 + 0.916576i \(0.369058\pi\)
−0.993708 + 0.111998i \(0.964275\pi\)
\(270\) −1.05903 + 1.83430i −0.0644506 + 0.111632i
\(271\) −0.787888 1.36466i −0.0478608 0.0828973i 0.841103 0.540876i \(-0.181907\pi\)
−0.888963 + 0.457978i \(0.848574\pi\)
\(272\) 6.95628 0.421787
\(273\) −6.43292 9.17773i −0.389338 0.555462i
\(274\) 6.12761 0.370183
\(275\) 0.861157 + 1.49157i 0.0519297 + 0.0899449i
\(276\) −3.59035 + 6.21867i −0.216114 + 0.374320i
\(277\) −4.90306 + 8.49234i −0.294596 + 0.510256i −0.974891 0.222683i \(-0.928518\pi\)
0.680295 + 0.732939i \(0.261852\pi\)
\(278\) 9.17382 + 15.8895i 0.550209 + 0.952990i
\(279\) 4.54883 0.272331
\(280\) −5.58231 + 0.491104i −0.333607 + 0.0293491i
\(281\) −3.60641 −0.215140 −0.107570 0.994198i \(-0.534307\pi\)
−0.107570 + 0.994198i \(0.534307\pi\)
\(282\) −3.57762 6.19662i −0.213044 0.369003i
\(283\) 10.7664 18.6479i 0.639994 1.10850i −0.345439 0.938441i \(-0.612270\pi\)
0.985433 0.170061i \(-0.0543966\pi\)
\(284\) 5.22592 9.05157i 0.310102 0.537112i
\(285\) 1.05903 + 1.83430i 0.0627316 + 0.108654i
\(286\) 14.1996 0.839642
\(287\) 11.5451 24.7898i 0.681485 1.46329i
\(288\) −1.00000 −0.0589256
\(289\) −15.6949 27.1844i −0.923232 1.59908i
\(290\) 7.72962 13.3881i 0.453899 0.786176i
\(291\) −3.09035 + 5.35265i −0.181160 + 0.313778i
\(292\) 6.38335 + 11.0563i 0.373558 + 0.647021i
\(293\) −24.2946 −1.41930 −0.709651 0.704553i \(-0.751148\pi\)
−0.709651 + 0.704553i \(0.751148\pi\)
\(294\) −4.50469 5.35796i −0.262719 0.312483i
\(295\) 27.6334 1.60888
\(296\) −0.126109 0.218427i −0.00732993 0.0126958i
\(297\) 1.67602 2.90295i 0.0972523 0.168446i
\(298\) −10.9551 + 18.9748i −0.634613 + 1.09918i
\(299\) −15.2092 26.3431i −0.879570 1.52346i
\(300\) 0.513812 0.0296649
\(301\) −3.54233 + 7.60613i −0.204176 + 0.438410i
\(302\) −0.349200 −0.0200942
\(303\) 6.61479 + 11.4572i 0.380010 + 0.658196i
\(304\) −0.500000 + 0.866025i −0.0286770 + 0.0496700i
\(305\) −7.32755 + 12.6917i −0.419575 + 0.726724i
\(306\) 3.47814 + 6.02432i 0.198832 + 0.344387i
\(307\) 5.79365 0.330661 0.165331 0.986238i \(-0.447131\pi\)
0.165331 + 0.986238i \(0.447131\pi\)
\(308\) 8.83452 0.777218i 0.503394 0.0442861i
\(309\) 7.45400 0.424043
\(310\) 4.81735 + 8.34390i 0.273607 + 0.473902i
\(311\) −9.33930 + 16.1761i −0.529583 + 0.917265i 0.469822 + 0.882761i \(0.344318\pi\)
−0.999405 + 0.0345033i \(0.989015\pi\)
\(312\) 2.11806 3.66859i 0.119912 0.207693i
\(313\) −12.8684 22.2888i −0.727366 1.25984i −0.957993 0.286793i \(-0.907411\pi\)
0.230626 0.973042i \(-0.425923\pi\)
\(314\) −13.0487 −0.736381
\(315\) −3.21646 4.58887i −0.181227 0.258553i
\(316\) 2.27114 0.127762
\(317\) 10.3764 + 17.9724i 0.582796 + 1.00943i 0.995146 + 0.0984067i \(0.0313746\pi\)
−0.412350 + 0.911025i \(0.635292\pi\)
\(318\) −0.878666 + 1.52189i −0.0492731 + 0.0853436i
\(319\) −12.2329 + 21.1879i −0.684908 + 1.18630i
\(320\) −1.05903 1.83430i −0.0592016 0.102540i
\(321\) −8.60708 −0.480401
\(322\) −10.9045 15.5573i −0.607685 0.866973i
\(323\) 6.95628 0.387058
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −1.08828 + 1.88496i −0.0603672 + 0.104559i
\(326\) 7.73070 13.3900i 0.428164 0.741601i
\(327\) 3.15373 + 5.46242i 0.174402 + 0.302073i
\(328\) 10.3359 0.570707
\(329\) 18.8581 1.65905i 1.03968 0.0914662i
\(330\) 7.09982 0.390832
\(331\) 17.5018 + 30.3139i 0.961983 + 1.66620i 0.717510 + 0.696548i \(0.245282\pi\)
0.244474 + 0.969656i \(0.421385\pi\)
\(332\) −8.28496 + 14.3500i −0.454696 + 0.787557i
\(333\) 0.126109 0.218427i 0.00691073 0.0119697i
\(334\) −2.34399 4.05990i −0.128257 0.222148i
\(335\) −9.12072 −0.498318
\(336\) 1.11699 2.39840i 0.0609365 0.130844i
\(337\) −9.06565 −0.493837 −0.246919 0.969036i \(-0.579418\pi\)
−0.246919 + 0.969036i \(0.579418\pi\)
\(338\) 2.47238 + 4.28228i 0.134480 + 0.232925i
\(339\) 0.987266 1.70999i 0.0536209 0.0928741i
\(340\) −7.36692 + 12.7599i −0.399527 + 0.692002i
\(341\) −7.62391 13.2050i −0.412858 0.715091i
\(342\) −1.00000 −0.0540738
\(343\) 17.8822 4.81930i 0.965550 0.260218i
\(344\) −3.17133 −0.170987
\(345\) −7.60459 13.1715i −0.409417 0.709132i
\(346\) −10.7642 + 18.6441i −0.578686 + 1.00231i
\(347\) 8.82798 15.2905i 0.473911 0.820838i −0.525643 0.850705i \(-0.676175\pi\)
0.999554 + 0.0298676i \(0.00950857\pi\)
\(348\) 3.64938 + 6.32092i 0.195627 + 0.338837i
\(349\) 19.9745 1.06921 0.534606 0.845101i \(-0.320460\pi\)
0.534606 + 0.845101i \(0.320460\pi\)
\(350\) −0.573920 + 1.23233i −0.0306773 + 0.0658707i
\(351\) 4.23612 0.226108
\(352\) 1.67602 + 2.90295i 0.0893320 + 0.154728i
\(353\) −11.2514 + 19.4880i −0.598851 + 1.03724i 0.394140 + 0.919051i \(0.371043\pi\)
−0.992991 + 0.118190i \(0.962291\pi\)
\(354\) −6.52327 + 11.2986i −0.346708 + 0.600516i
\(355\) 11.0688 + 19.1718i 0.587473 + 1.01753i
\(356\) 3.79365 0.201063
\(357\) −18.3338 + 1.61292i −0.970327 + 0.0853646i
\(358\) −1.83822 −0.0971530
\(359\) 4.91795 + 8.51813i 0.259559 + 0.449570i 0.966124 0.258079i \(-0.0830894\pi\)
−0.706565 + 0.707649i \(0.749756\pi\)
\(360\) 1.05903 1.83430i 0.0558158 0.0966759i
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 10.1924 + 17.6538i 0.535701 + 0.927862i
\(363\) −0.236125 −0.0123933
\(364\) 6.43292 + 9.17773i 0.337177 + 0.481044i
\(365\) −27.0407 −1.41537
\(366\) −3.45956 5.99213i −0.180834 0.313213i
\(367\) −17.6673 + 30.6006i −0.922224 + 1.59734i −0.126259 + 0.991997i \(0.540297\pi\)
−0.795965 + 0.605342i \(0.793036\pi\)
\(368\) 3.59035 6.21867i 0.187160 0.324171i
\(369\) 5.16797 + 8.95119i 0.269034 + 0.465980i
\(370\) 0.534213 0.0277724
\(371\) −2.66866 3.80733i −0.138550 0.197667i
\(372\) −4.54883 −0.235846
\(373\) −16.9147 29.2972i −0.875811 1.51695i −0.855896 0.517148i \(-0.826994\pi\)
−0.0199149 0.999802i \(-0.506340\pi\)
\(374\) 11.6588 20.1937i 0.602865 1.04419i
\(375\) −5.83930 + 10.1140i −0.301540 + 0.522283i
\(376\) 3.57762 + 6.19662i 0.184502 + 0.319566i
\(377\) −30.9185 −1.59238
\(378\) 2.63557 0.231865i 0.135559 0.0119258i
\(379\) 25.4999 1.30984 0.654920 0.755698i \(-0.272702\pi\)
0.654920 + 0.755698i \(0.272702\pi\)
\(380\) −1.05903 1.83430i −0.0543272 0.0940974i
\(381\) 6.11479 10.5911i 0.313270 0.542600i
\(382\) −2.74895 + 4.76131i −0.140648 + 0.243610i
\(383\) −17.8593 30.9332i −0.912568 1.58061i −0.810424 0.585844i \(-0.800763\pi\)
−0.102144 0.994770i \(-0.532570\pi\)
\(384\) 1.00000 0.0510310
\(385\) −7.93039 + 17.0282i −0.404170 + 0.867839i
\(386\) −7.89871 −0.402034
\(387\) −1.58566 2.74645i −0.0806038 0.139610i
\(388\) 3.09035 5.35265i 0.156889 0.271739i
\(389\) −11.0124 + 19.0740i −0.558350 + 0.967091i 0.439284 + 0.898348i \(0.355232\pi\)
−0.997634 + 0.0687425i \(0.978101\pi\)
\(390\) 4.48619 + 7.77031i 0.227167 + 0.393465i
\(391\) −49.9510 −2.52613
\(392\) 4.50469 + 5.35796i 0.227521 + 0.270618i
\(393\) 1.02108 0.0515067
\(394\) −0.968679 1.67780i −0.0488013 0.0845264i
\(395\) −2.40521 + 4.16595i −0.121019 + 0.209612i
\(396\) −1.67602 + 2.90295i −0.0842230 + 0.145879i
\(397\) −9.86584 17.0881i −0.495153 0.857629i 0.504832 0.863218i \(-0.331554\pi\)
−0.999984 + 0.00558835i \(0.998221\pi\)
\(398\) −8.73823 −0.438008
\(399\) 1.11699 2.39840i 0.0559192 0.120070i
\(400\) −0.513812 −0.0256906
\(401\) −7.42638 12.8629i −0.370856 0.642341i 0.618842 0.785516i \(-0.287602\pi\)
−0.989697 + 0.143175i \(0.954269\pi\)
\(402\) 2.15308 3.72925i 0.107386 0.185998i
\(403\) 9.63471 16.6878i 0.479939 0.831279i
\(404\) −6.61479 11.4572i −0.329098 0.570015i
\(405\) 2.11806 0.105247
\(406\) −19.2364 + 1.69233i −0.954688 + 0.0839887i
\(407\) −0.845443 −0.0419070
\(408\) −3.47814 6.02432i −0.172194 0.298248i
\(409\) −3.01816 + 5.22761i −0.149238 + 0.258489i −0.930946 0.365156i \(-0.881016\pi\)
0.781708 + 0.623645i \(0.214349\pi\)
\(410\) −10.9461 + 18.9592i −0.540589 + 0.936327i
\(411\) −3.06381 5.30667i −0.151126 0.261759i
\(412\) −7.45400 −0.367232
\(413\) −19.8123 28.2659i −0.974900 1.39087i
\(414\) 7.18070 0.352912
\(415\) −17.5481 30.3941i −0.861400 1.49199i
\(416\) −2.11806 + 3.66859i −0.103847 + 0.179868i
\(417\) 9.17382 15.8895i 0.449244 0.778113i
\(418\) 1.67602 + 2.90295i 0.0819766 + 0.141988i
\(419\) 14.1370 0.690637 0.345319 0.938486i \(-0.387771\pi\)
0.345319 + 0.938486i \(0.387771\pi\)
\(420\) 3.21646 + 4.58887i 0.156947 + 0.223914i
\(421\) −35.7565 −1.74266 −0.871331 0.490695i \(-0.836743\pi\)
−0.871331 + 0.490695i \(0.836743\pi\)
\(422\) −11.6935 20.2537i −0.569230 0.985935i
\(423\) −3.57762 + 6.19662i −0.173950 + 0.301290i
\(424\) 0.878666 1.52189i 0.0426718 0.0739097i
\(425\) 1.78711 + 3.09536i 0.0866875 + 0.150147i
\(426\) −10.4518 −0.506394
\(427\) 18.2358 1.60430i 0.882493 0.0776374i
\(428\) 8.60708 0.416039
\(429\) −7.09982 12.2972i −0.342782 0.593716i
\(430\) 3.35854 5.81715i 0.161963 0.280528i
\(431\) −8.71211 + 15.0898i −0.419648 + 0.726851i −0.995904 0.0904180i \(-0.971180\pi\)
0.576256 + 0.817269i \(0.304513\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −0.745628 −0.0358326 −0.0179163 0.999839i \(-0.505703\pi\)
−0.0179163 + 0.999839i \(0.505703\pi\)
\(434\) 5.08098 10.9099i 0.243895 0.523694i
\(435\) −15.4592 −0.741214
\(436\) −3.15373 5.46242i −0.151036 0.261603i
\(437\) 3.59035 6.21867i 0.171750 0.297479i
\(438\) 6.38335 11.0563i 0.305008 0.528290i
\(439\) −5.86443 10.1575i −0.279894 0.484790i 0.691464 0.722411i \(-0.256966\pi\)
−0.971358 + 0.237620i \(0.923633\pi\)
\(440\) −7.09982 −0.338470
\(441\) −2.38779 + 6.58016i −0.113704 + 0.313341i
\(442\) 29.4677 1.40163
\(443\) −3.47805 6.02417i −0.165247 0.286217i 0.771496 0.636234i \(-0.219509\pi\)
−0.936743 + 0.350018i \(0.886176\pi\)
\(444\) −0.126109 + 0.218427i −0.00598487 + 0.0103661i
\(445\) −4.01760 + 6.95868i −0.190452 + 0.329873i
\(446\) 4.90160 + 8.48982i 0.232098 + 0.402005i
\(447\) 21.9102 1.03632
\(448\) −1.11699 + 2.39840i −0.0527726 + 0.113314i
\(449\) −27.5823 −1.30169 −0.650844 0.759211i \(-0.725585\pi\)
−0.650844 + 0.759211i \(0.725585\pi\)
\(450\) −0.256906 0.444974i −0.0121107 0.0209763i
\(451\) 17.3232 30.0047i 0.815718 1.41286i
\(452\) −0.987266 + 1.70999i −0.0464371 + 0.0804314i
\(453\) 0.174600 + 0.302416i 0.00820343 + 0.0142088i
\(454\) 18.2835 0.858088
\(455\) −23.6473 + 2.08038i −1.10860 + 0.0975296i
\(456\) 1.00000 0.0468293
\(457\) −10.3866 17.9902i −0.485866 0.841544i 0.514002 0.857789i \(-0.328162\pi\)
−0.999868 + 0.0162445i \(0.994829\pi\)
\(458\) −0.722313 + 1.25108i −0.0337515 + 0.0584593i
\(459\) 3.47814 6.02432i 0.162346 0.281191i
\(460\) 7.60459 + 13.1715i 0.354566 + 0.614126i
\(461\) 33.6610 1.56775 0.783875 0.620918i \(-0.213240\pi\)
0.783875 + 0.620918i \(0.213240\pi\)
\(462\) −5.09035 7.26231i −0.236825 0.337873i
\(463\) −18.4933 −0.859458 −0.429729 0.902958i \(-0.641391\pi\)
−0.429729 + 0.902958i \(0.641391\pi\)
\(464\) −3.64938 6.32092i −0.169418 0.293441i
\(465\) 4.81735 8.34390i 0.223399 0.386939i
\(466\) −7.84038 + 13.5799i −0.363198 + 0.629078i
\(467\) 6.71646 + 11.6333i 0.310801 + 0.538323i 0.978536 0.206076i \(-0.0660695\pi\)
−0.667735 + 0.744399i \(0.732736\pi\)
\(468\) −4.23612 −0.195815
\(469\) 6.53928 + 9.32947i 0.301956 + 0.430795i
\(470\) −15.1552 −0.699059
\(471\) 6.52435 + 11.3005i 0.300626 + 0.520700i
\(472\) 6.52327 11.2986i 0.300258 0.520062i
\(473\) −5.31520 + 9.20619i −0.244393 + 0.423301i
\(474\) −1.13557 1.96687i −0.0521585 0.0903412i
\(475\) −0.513812 −0.0235753
\(476\) 18.3338 1.61292i 0.840328 0.0739279i
\(477\) 1.75733 0.0804627
\(478\) 1.88409 + 3.26334i 0.0861764 + 0.149262i
\(479\) 2.02947 3.51514i 0.0927287 0.160611i −0.815930 0.578151i \(-0.803774\pi\)
0.908658 + 0.417540i \(0.137108\pi\)
\(480\) −1.05903 + 1.83430i −0.0483379 + 0.0837238i
\(481\) −0.534213 0.925285i −0.0243580 0.0421893i
\(482\) −2.99561 −0.136446
\(483\) −8.02074 + 17.2222i −0.364956 + 0.783639i
\(484\) 0.236125 0.0107329
\(485\) 6.54556 + 11.3372i 0.297219 + 0.514798i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −18.7539 + 32.4827i −0.849820 + 1.47193i 0.0315492 + 0.999502i \(0.489956\pi\)
−0.881369 + 0.472429i \(0.843377\pi\)
\(488\) 3.45956 + 5.99213i 0.156607 + 0.271251i
\(489\) −15.4614 −0.699189
\(490\) −14.5987 + 2.58868i −0.659502 + 0.116945i
\(491\) −27.2230 −1.22856 −0.614279 0.789089i \(-0.710553\pi\)
−0.614279 + 0.789089i \(0.710553\pi\)
\(492\) −5.16797 8.95119i −0.232990 0.403551i
\(493\) −25.3861 + 43.9701i −1.14333 + 1.98031i
\(494\) −2.11806 + 3.66859i −0.0952961 + 0.165058i
\(495\) −3.54991 6.14862i −0.159556 0.276360i
\(496\) 4.54883 0.204249
\(497\) 11.6746 25.0678i 0.523676 1.12444i
\(498\) 16.5699 0.742515
\(499\) −3.46825 6.00719i −0.155260 0.268919i 0.777893 0.628396i \(-0.216288\pi\)
−0.933154 + 0.359477i \(0.882955\pi\)
\(500\) 5.83930 10.1140i 0.261141 0.452310i
\(501\) −2.34399 + 4.05990i −0.104722 + 0.181383i
\(502\) 13.1461 + 22.7697i 0.586740 + 1.01626i
\(503\) 24.0509 1.07237 0.536187 0.844099i \(-0.319864\pi\)
0.536187 + 0.844099i \(0.319864\pi\)
\(504\) −2.63557 + 0.231865i −0.117398 + 0.0103281i
\(505\) 28.0211 1.24692
\(506\) −12.0350 20.8452i −0.535020 0.926682i
\(507\) 2.47238 4.28228i 0.109802 0.190183i
\(508\) −6.11479 + 10.5911i −0.271300 + 0.469905i
\(509\) −16.1843 28.0320i −0.717355 1.24250i −0.962044 0.272894i \(-0.912019\pi\)
0.244689 0.969602i \(-0.421314\pi\)
\(510\) 14.7338 0.652426
\(511\) 19.3874 + 27.6596i 0.857646 + 1.22359i
\(512\) −1.00000 −0.0441942
\(513\) 0.500000 + 0.866025i 0.0220755 + 0.0382360i
\(514\) −9.86584 + 17.0881i −0.435164 + 0.753726i
\(515\) 7.89402 13.6728i 0.347852 0.602498i
\(516\) 1.58566 + 2.74645i 0.0698050 + 0.120906i
\(517\) 23.9846 1.05484
\(518\) −0.383015 0.546440i −0.0168287 0.0240092i
\(519\) 21.5283 0.944990
\(520\) −4.48619 7.77031i −0.196732 0.340750i
\(521\) −6.25728 + 10.8379i −0.274137 + 0.474819i −0.969917 0.243436i \(-0.921725\pi\)
0.695780 + 0.718255i \(0.255059\pi\)
\(522\) 3.64938 6.32092i 0.159729 0.276659i
\(523\) 7.98288 + 13.8267i 0.349067 + 0.604601i 0.986084 0.166248i \(-0.0531653\pi\)
−0.637017 + 0.770850i \(0.719832\pi\)
\(524\) −1.02108 −0.0446061
\(525\) 1.35419 0.119135i 0.0591016 0.00519947i
\(526\) 4.44247 0.193701
\(527\) −15.8215 27.4036i −0.689194 1.19372i
\(528\) 1.67602 2.90295i 0.0729393 0.126334i
\(529\) −14.2813 + 24.7359i −0.620924 + 1.07547i
\(530\) 1.86107 + 3.22347i 0.0808397 + 0.140018i
\(531\) 13.0465 0.566172
\(532\) −1.11699 + 2.39840i −0.0484275 + 0.103984i
\(533\) 43.7843 1.89651
\(534\) −1.89683 3.28540i −0.0820837 0.142173i
\(535\) −9.11517 + 15.7879i −0.394083 + 0.682572i
\(536\) −2.15308 + 3.72925i −0.0929989 + 0.161079i
\(537\) 0.919111 + 1.59195i 0.0396626 + 0.0686976i
\(538\) −19.4796 −0.839827
\(539\) 23.1038 4.09683i 0.995152 0.176463i
\(540\) −2.11806 −0.0911469
\(541\) 20.1348 + 34.8745i 0.865662 + 1.49937i 0.866388 + 0.499372i \(0.166436\pi\)
−0.000725557 1.00000i \(0.500231\pi\)
\(542\) 0.787888 1.36466i 0.0338427 0.0586172i
\(543\) 10.1924 17.6538i 0.437398 0.757596i
\(544\) 3.47814 + 6.02432i 0.149124 + 0.258291i
\(545\) 13.3596 0.572263
\(546\) 4.73169 10.1599i 0.202498 0.434805i
\(547\) 7.22088 0.308743 0.154371 0.988013i \(-0.450665\pi\)
0.154371 + 0.988013i \(0.450665\pi\)
\(548\) 3.06381 + 5.30667i 0.130879 + 0.226690i
\(549\) −3.45956 + 5.99213i −0.147650 + 0.255738i
\(550\) −0.861157 + 1.49157i −0.0367198 + 0.0636006i
\(551\) −3.64938 6.32092i −0.155469 0.269280i
\(552\) −7.18070 −0.305631
\(553\) 5.98576 0.526598i 0.254540 0.0223932i
\(554\) −9.80612 −0.416622
\(555\) −0.267107 0.462642i −0.0113380 0.0196381i
\(556\) −9.17382 + 15.8895i −0.389057 + 0.673866i
\(557\) −1.36266 + 2.36020i −0.0577378 + 0.100005i −0.893450 0.449164i \(-0.851722\pi\)
0.835712 + 0.549168i \(0.185055\pi\)
\(558\) 2.27442 + 3.93940i 0.0962837 + 0.166768i
\(559\) −13.4341 −0.568204
\(560\) −3.21646 4.58887i −0.135920 0.193915i
\(561\) −23.3177 −0.984474
\(562\) −1.80320 3.12324i −0.0760635 0.131746i
\(563\) −9.17340 + 15.8888i −0.386613 + 0.669633i −0.991991 0.126305i \(-0.959688\pi\)
0.605379 + 0.795937i \(0.293022\pi\)
\(564\) 3.57762 6.19662i 0.150645 0.260925i
\(565\) −2.09109 3.62187i −0.0879728 0.152373i
\(566\) 21.5327 0.905088
\(567\) −1.51859 2.16654i −0.0637746 0.0909861i
\(568\) 10.4518 0.438550
\(569\) −18.1465 31.4307i −0.760742 1.31764i −0.942468 0.334295i \(-0.891502\pi\)
0.181726 0.983349i \(-0.441832\pi\)
\(570\) −1.05903 + 1.83430i −0.0443579 + 0.0768302i
\(571\) −22.9055 + 39.6735i −0.958566 + 1.66028i −0.232577 + 0.972578i \(0.574716\pi\)
−0.725989 + 0.687707i \(0.758617\pi\)
\(572\) 7.09982 + 12.2972i 0.296858 + 0.514173i
\(573\) 5.49789 0.229678
\(574\) 27.2411 2.39654i 1.13702 0.100030i
\(575\) 3.68953 0.153864
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 7.94463 13.7605i 0.330739 0.572857i −0.651918 0.758290i \(-0.726035\pi\)
0.982657 + 0.185433i \(0.0593686\pi\)
\(578\) 15.6949 27.1844i 0.652824 1.13072i
\(579\) 3.94935 + 6.84048i 0.164130 + 0.284281i
\(580\) 15.4592 0.641910
\(581\) −18.5083 + 39.7413i −0.767856 + 1.64875i
\(582\) −6.18070 −0.256198
\(583\) −2.94532 5.10144i −0.121983 0.211280i
\(584\) −6.38335 + 11.0563i −0.264145 + 0.457513i
\(585\) 4.48619 7.77031i 0.185481 0.321263i
\(586\) −12.1473 21.0397i −0.501799 0.869142i
\(587\) −4.19680 −0.173220 −0.0866102 0.996242i \(-0.527603\pi\)
−0.0866102 + 0.996242i \(0.527603\pi\)
\(588\) 2.38779 6.58016i 0.0984708 0.271361i
\(589\) 4.54883 0.187431
\(590\) 13.8167 + 23.9312i 0.568825 + 0.985233i
\(591\) −0.968679 + 1.67780i −0.0398461 + 0.0690155i
\(592\) 0.126109 0.218427i 0.00518305 0.00897730i
\(593\) 12.3647 + 21.4163i 0.507758 + 0.879464i 0.999960 + 0.00898203i \(0.00285911\pi\)
−0.492201 + 0.870481i \(0.663808\pi\)
\(594\) 3.35203 0.137536
\(595\) −16.4575 + 35.3377i −0.674691 + 1.44871i
\(596\) −21.9102 −0.897478
\(597\) 4.36912 + 7.56753i 0.178816 + 0.309718i
\(598\) 15.2092 26.3431i 0.621950 1.07725i
\(599\) 2.26964 3.93113i 0.0927350 0.160622i −0.815926 0.578156i \(-0.803772\pi\)
0.908661 + 0.417535i \(0.137106\pi\)
\(600\) 0.256906 + 0.444974i 0.0104881 + 0.0181660i
\(601\) 9.37441 0.382390 0.191195 0.981552i \(-0.438764\pi\)
0.191195 + 0.981552i \(0.438764\pi\)
\(602\) −8.35826 + 0.735319i −0.340657 + 0.0299694i
\(603\) −4.30616 −0.175360
\(604\) −0.174600 0.302416i −0.00710438 0.0123051i
\(605\) −0.250064 + 0.433123i −0.0101665 + 0.0176089i
\(606\) −6.61479 + 11.4572i −0.268708 + 0.465415i
\(607\) −10.3804 17.9794i −0.421327 0.729760i 0.574742 0.818334i \(-0.305102\pi\)
−0.996070 + 0.0885743i \(0.971769\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 11.0838 + 15.8131i 0.449139 + 0.640778i
\(610\) −14.6551 −0.593368
\(611\) 15.1552 + 26.2496i 0.613115 + 1.06195i
\(612\) −3.47814 + 6.02432i −0.140596 + 0.243519i
\(613\) −1.62869 + 2.82097i −0.0657822 + 0.113938i −0.897041 0.441948i \(-0.854288\pi\)
0.831259 + 0.555886i \(0.187621\pi\)
\(614\) 2.89683 + 5.01745i 0.116906 + 0.202488i
\(615\) 21.8922 0.882777
\(616\) 5.09035 + 7.26231i 0.205096 + 0.292607i
\(617\) −9.82446 −0.395518 −0.197759 0.980251i \(-0.563366\pi\)
−0.197759 + 0.980251i \(0.563366\pi\)
\(618\) 3.72700 + 6.45536i 0.149922 + 0.259672i
\(619\) 6.88508 11.9253i 0.276735 0.479319i −0.693837 0.720133i \(-0.744081\pi\)
0.970571 + 0.240814i \(0.0774143\pi\)
\(620\) −4.81735 + 8.34390i −0.193470 + 0.335099i
\(621\) −3.59035 6.21867i −0.144076 0.249547i
\(622\) −18.6786 −0.748944
\(623\) 9.99844 0.879614i 0.400579 0.0352410i
\(624\) 4.23612 0.169581
\(625\) 11.0835 + 19.1971i 0.443339 + 0.767885i
\(626\) 12.8684 22.2888i 0.514326 0.890838i
\(627\) 1.67602 2.90295i 0.0669337 0.115932i
\(628\) −6.52435 11.3005i −0.260350 0.450939i
\(629\) −1.75450 −0.0699565
\(630\) 2.36584 5.07997i 0.0942575 0.202391i
\(631\) 45.3832 1.80668 0.903338 0.428930i \(-0.141109\pi\)
0.903338 + 0.428930i \(0.141109\pi\)
\(632\) 1.13557 + 1.96687i 0.0451706 + 0.0782378i
\(633\) −11.6935 + 20.2537i −0.464774 + 0.805013i
\(634\) −10.3764 + 17.9724i −0.412099 + 0.713776i
\(635\) −12.9515 22.4327i −0.513965 0.890213i
\(636\) −1.75733 −0.0696827
\(637\) 19.0824 + 22.6970i 0.756073 + 0.899288i
\(638\) −24.4657 −0.968607
\(639\) 5.22592 + 9.05157i 0.206734 + 0.358074i
\(640\) 1.05903 1.83430i 0.0418619 0.0725069i
\(641\) 10.5389 18.2540i 0.416263 0.720988i −0.579297 0.815116i \(-0.696673\pi\)
0.995560 + 0.0941282i \(0.0300064\pi\)
\(642\) −4.30354 7.45395i −0.169847 0.294184i
\(643\) 28.6923 1.13151 0.565757 0.824572i \(-0.308584\pi\)
0.565757 + 0.824572i \(0.308584\pi\)
\(644\) 8.02074 17.2222i 0.316061 0.678651i
\(645\) −6.71707 −0.264484
\(646\) 3.47814 + 6.02432i 0.136846 + 0.237024i
\(647\) −0.425741 + 0.737405i −0.0167376 + 0.0289904i −0.874273 0.485435i \(-0.838661\pi\)
0.857535 + 0.514425i \(0.171995\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −21.8662 37.8734i −0.858325 1.48666i
\(650\) −2.17657 −0.0853721
\(651\) −11.9888 + 1.05471i −0.469877 + 0.0413375i
\(652\) 15.4614 0.605515
\(653\) 0.507356 + 0.878766i 0.0198544 + 0.0343888i 0.875782 0.482707i \(-0.160346\pi\)
−0.855928 + 0.517096i \(0.827013\pi\)
\(654\) −3.15373 + 5.46242i −0.123321 + 0.213598i
\(655\) 1.08136 1.87296i 0.0422521 0.0731827i
\(656\) 5.16797 + 8.95119i 0.201775 + 0.349485i
\(657\) −12.7667 −0.498077
\(658\) 10.8658 + 15.5021i 0.423595 + 0.604335i
\(659\) 10.9687 0.427279 0.213639 0.976913i \(-0.431468\pi\)
0.213639 + 0.976913i \(0.431468\pi\)
\(660\) 3.54991 + 6.14862i 0.138180 + 0.239335i
\(661\) 10.1333 17.5514i 0.394141 0.682672i −0.598850 0.800861i \(-0.704376\pi\)
0.992991 + 0.118189i \(0.0377089\pi\)
\(662\) −17.5018 + 30.3139i −0.680225 + 1.17818i
\(663\) −14.7338 25.5198i −0.572215 0.991106i
\(664\) −16.5699 −0.643037
\(665\) −3.21646 4.58887i −0.124729 0.177949i
\(666\) 0.252218 0.00977325
\(667\) 26.2051 + 45.3886i 1.01467 + 1.75746i
\(668\) 2.34399 4.05990i 0.0906916 0.157082i
\(669\) 4.90160 8.48982i 0.189507 0.328236i
\(670\) −4.56036 7.89878i −0.176182 0.305156i
\(671\) 23.1931 0.895359
\(672\) 2.63557 0.231865i 0.101669 0.00894437i
\(673\) 40.5792 1.56421 0.782107 0.623145i \(-0.214145\pi\)
0.782107 + 0.623145i \(0.214145\pi\)
\(674\) −4.53282 7.85108i −0.174598 0.302412i
\(675\) −0.256906 + 0.444974i −0.00988831 + 0.0171271i
\(676\) −2.47238 + 4.28228i −0.0950914 + 0.164703i
\(677\) 4.55641 + 7.89193i 0.175117 + 0.303312i 0.940202 0.340618i \(-0.110636\pi\)
−0.765085 + 0.643930i \(0.777303\pi\)
\(678\) 1.97453 0.0758314
\(679\) 6.90376 14.8238i 0.264942 0.568886i
\(680\) −14.7338 −0.565017
\(681\) −9.14176 15.8340i −0.350313 0.606760i
\(682\) 7.62391 13.2050i 0.291935 0.505646i
\(683\) 2.03979 3.53303i 0.0780505 0.135188i −0.824358 0.566068i \(-0.808464\pi\)
0.902409 + 0.430881i \(0.141797\pi\)
\(684\) −0.500000 0.866025i −0.0191180 0.0331133i
\(685\) −12.9787 −0.495889
\(686\) 13.1148 + 13.0768i 0.500724 + 0.499275i
\(687\) 1.44463 0.0551159
\(688\) −1.58566 2.74645i −0.0604529 0.104707i
\(689\) 3.72214 6.44693i 0.141802 0.245609i
\(690\) 7.60459 13.1715i 0.289502 0.501432i
\(691\) 0.733192 + 1.26993i 0.0278920 + 0.0483103i 0.879634 0.475650i \(-0.157787\pi\)
−0.851742 + 0.523961i \(0.824454\pi\)
\(692\) −21.5283 −0.818385
\(693\) −3.74417 + 8.03953i −0.142229 + 0.305397i
\(694\) 17.6560 0.670211
\(695\) −19.4307 33.6550i −0.737050 1.27661i
\(696\) −3.64938 + 6.32092i −0.138330 + 0.239594i
\(697\) 35.9499 62.2670i 1.36170 2.35853i
\(698\) 9.98727 + 17.2985i 0.378024 + 0.654756i
\(699\) 15.6808 0.593100
\(700\) −1.35419 + 0.119135i −0.0511835 + 0.00450287i
\(701\) 18.9890 0.717204 0.358602 0.933491i \(-0.383254\pi\)
0.358602 + 0.933491i \(0.383254\pi\)
\(702\) 2.11806 + 3.66859i 0.0799411 + 0.138462i
\(703\) 0.126109 0.218427i 0.00475629 0.00823814i
\(704\) −1.67602 + 2.90295i −0.0631672 + 0.109409i
\(705\) 7.57762 + 13.1248i 0.285390 + 0.494309i
\(706\) −22.5028 −0.846904
\(707\) −20.0903 28.6624i −0.755572 1.07796i
\(708\) −13.0465 −0.490319
\(709\) 10.3040 + 17.8470i 0.386974 + 0.670258i 0.992041 0.125916i \(-0.0401871\pi\)
−0.605067 + 0.796174i \(0.706854\pi\)
\(710\) −11.0688 + 19.1718i −0.415406 + 0.719504i
\(711\) −1.13557 + 1.96687i −0.0425873 + 0.0737633i
\(712\) 1.89683 + 3.28540i 0.0710866 + 0.123126i
\(713\) −32.6638 −1.22327
\(714\) −10.5637 15.0711i −0.395337 0.564020i
\(715\) −30.0757 −1.12477
\(716\) −0.919111 1.59195i −0.0343488 0.0594938i
\(717\) 1.88409 3.26334i 0.0703627 0.121872i
\(718\) −4.91795 + 8.51813i −0.183536 + 0.317894i
\(719\) −2.51399 4.35435i −0.0937559 0.162390i 0.815333 0.578993i \(-0.196554\pi\)
−0.909089 + 0.416603i \(0.863221\pi\)
\(720\) 2.11806 0.0789355
\(721\) −19.6456 + 1.72832i −0.731639 + 0.0643660i
\(722\) −1.00000 −0.0372161
\(723\) 1.49781 + 2.59428i 0.0557040 + 0.0964821i
\(724\) −10.1924 + 17.6538i −0.378798 + 0.656097i
\(725\) 1.87510 3.24776i 0.0696393 0.120619i
\(726\) −0.118062 0.204490i −0.00438171 0.00758934i
\(727\) −12.6690 −0.469866 −0.234933 0.972012i \(-0.575487\pi\)
−0.234933 + 0.972012i \(0.575487\pi\)
\(728\) −4.73169 + 10.1599i −0.175368 + 0.376552i
\(729\) 1.00000 0.0370370
\(730\) −13.5203 23.4179i −0.500410 0.866736i
\(731\) −11.0303 + 19.1051i −0.407972 + 0.706627i
\(732\) 3.45956 5.99213i 0.127869 0.221475i
\(733\) −1.65416 2.86509i −0.0610977 0.105824i 0.833859 0.551978i \(-0.186127\pi\)
−0.894956 + 0.446154i \(0.852793\pi\)
\(734\) −35.3346 −1.30422
\(735\) 9.54121 + 11.3485i 0.351933 + 0.418596i
\(736\) 7.18070 0.264684
\(737\) 7.21720 + 12.5006i 0.265849 + 0.460464i
\(738\) −5.16797 + 8.95119i −0.190236 + 0.329498i
\(739\) 10.2448 17.7446i 0.376863 0.652746i −0.613741 0.789507i \(-0.710336\pi\)
0.990604 + 0.136762i \(0.0436695\pi\)
\(740\) 0.267107 + 0.462642i 0.00981904 + 0.0170071i
\(741\) 4.23612 0.155618
\(742\) 1.96291 4.21479i 0.0720608 0.154730i
\(743\) 13.7973 0.506172 0.253086 0.967444i \(-0.418554\pi\)
0.253086 + 0.967444i \(0.418554\pi\)
\(744\) −2.27442 3.93940i −0.0833841 0.144426i
\(745\) 23.2036 40.1899i 0.850115 1.47244i
\(746\) 16.9147 29.2972i 0.619292 1.07265i
\(747\) −8.28496 14.3500i −0.303131 0.525038i
\(748\) 23.3177 0.852579
\(749\) 22.6846 1.99568i 0.828877 0.0729205i
\(750\) −11.6786 −0.426442
\(751\) 4.40672 + 7.63266i 0.160803 + 0.278520i 0.935157 0.354233i \(-0.115258\pi\)
−0.774354 + 0.632753i \(0.781925\pi\)
\(752\) −3.57762 + 6.19662i −0.130462 + 0.225967i
\(753\) 13.1461 22.7697i 0.479071 0.829775i
\(754\) −15.4592 26.7762i −0.562992 0.975132i
\(755\) 0.739628 0.0269178
\(756\) 1.51859 + 2.16654i 0.0552305 + 0.0787963i
\(757\) −16.4445 −0.597684 −0.298842 0.954303i \(-0.596600\pi\)
−0.298842 + 0.954303i \(0.596600\pi\)
\(758\) 12.7499 + 22.0835i 0.463099 + 0.802110i
\(759\) −12.0350 + 20.8452i −0.436842 + 0.756633i
\(760\) 1.05903 1.83430i 0.0384151 0.0665369i
\(761\) 13.8327 + 23.9589i 0.501434 + 0.868509i 0.999999 + 0.00165644i \(0.000527262\pi\)
−0.498565 + 0.866852i \(0.666139\pi\)
\(762\) 12.2296 0.443031
\(763\) −9.57843 13.6654i −0.346762 0.494720i
\(764\) −5.49789 −0.198907
\(765\) −7.36692 12.7599i −0.266352 0.461335i
\(766\) 17.8593 30.9332i 0.645283 1.11766i
\(767\) 27.6334 47.8625i 0.997784 1.72821i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −6.46278 −0.233054 −0.116527 0.993188i \(-0.537176\pi\)
−0.116527 + 0.993188i \(0.537176\pi\)
\(770\) −18.7121 + 1.64620i −0.674336 + 0.0593248i
\(771\) 19.7317 0.710619
\(772\) −3.94935 6.84048i −0.142140 0.246194i
\(773\) 12.2665 21.2461i 0.441194 0.764170i −0.556585 0.830791i \(-0.687888\pi\)
0.997778 + 0.0666209i \(0.0212218\pi\)
\(774\) 1.58566 2.74645i 0.0569955 0.0987191i
\(775\) 1.16862 + 2.02411i 0.0419781 + 0.0727082i
\(776\) 6.18070 0.221874
\(777\) −0.281724 + 0.604921i −0.0101068 + 0.0217014