Properties

Label 798.2.j.l.457.3
Level $798$
Weight $2$
Character 798.457
Analytic conductor $6.372$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
Defining polynomial: \(x^{8} + 11 x^{6} + 36 x^{4} + 32 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 457.3
Root \(-2.06288i\) of defining polynomial
Character \(\chi\) \(=\) 798.457
Dual form 798.2.j.l.571.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.574618 - 0.995268i) q^{5} +1.00000 q^{6} +(0.00953166 + 2.64573i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.574618 - 0.995268i) q^{5} +1.00000 q^{6} +(0.00953166 + 2.64573i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.574618 - 0.995268i) q^{10} +(1.08415 + 1.87780i) q^{11} +(0.500000 - 0.866025i) q^{12} +2.29847 q^{13} +(2.29604 + 1.31461i) q^{14} +1.14924 q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.49840 + 4.32735i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-0.500000 + 0.866025i) q^{19} -1.14924 q^{20} +(-2.28651 + 1.33112i) q^{21} +2.16830 q^{22} +(3.45783 - 5.98914i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(1.83963 + 3.18633i) q^{25} +(1.14924 - 1.99054i) q^{26} -1.00000 q^{27} +(2.28651 - 1.33112i) q^{28} +3.76643 q^{29} +(0.574618 - 0.995268i) q^{30} +(-2.19283 - 3.79808i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-1.08415 + 1.87780i) q^{33} +4.99679 q^{34} +(2.63869 + 1.51080i) q^{35} +1.00000 q^{36} +(-0.330096 + 0.571742i) q^{37} +(0.500000 + 0.866025i) q^{38} +(1.14924 + 1.99054i) q^{39} +(-0.574618 + 0.995268i) q^{40} +0.806583 q^{41} +(0.00953166 + 2.64573i) q^{42} -2.08397 q^{43} +(1.08415 - 1.87780i) q^{44} +(0.574618 + 0.995268i) q^{45} +(-3.45783 - 5.98914i) q^{46} +(1.86113 - 3.22356i) q^{47} -1.00000 q^{48} +(-6.99982 + 0.0504365i) q^{49} +3.67925 q^{50} +(-2.49840 + 4.32735i) q^{51} +(-1.14924 - 1.99054i) q^{52} +(5.63567 + 9.76126i) q^{53} +(-0.500000 + 0.866025i) q^{54} +2.49189 q^{55} +(-0.00953166 - 2.64573i) q^{56} -1.00000 q^{57} +(1.88322 - 3.26183i) q^{58} +(-5.21331 - 9.02972i) q^{59} +(-0.574618 - 0.995268i) q^{60} +(-1.28811 + 2.23107i) q^{61} -4.38565 q^{62} +(-2.29604 - 1.31461i) q^{63} +1.00000 q^{64} +(1.32075 - 2.28760i) q^{65} +(1.08415 + 1.87780i) q^{66} +(-4.44284 - 7.69523i) q^{67} +(2.49840 - 4.32735i) q^{68} +6.91567 q^{69} +(2.62774 - 1.52977i) q^{70} -0.323591 q^{71} +(0.500000 - 0.866025i) q^{72} +(2.36415 + 4.09483i) q^{73} +(0.330096 + 0.571742i) q^{74} +(-1.83963 + 3.18633i) q^{75} +1.00000 q^{76} +(-4.95783 + 2.88627i) q^{77} +2.29847 q^{78} +(3.79604 - 6.57493i) q^{79} +(0.574618 + 0.995268i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.403292 - 0.698521i) q^{82} +3.17435 q^{83} +(2.29604 + 1.31461i) q^{84} +5.74250 q^{85} +(-1.04198 + 1.80477i) q^{86} +(1.88322 + 3.26183i) q^{87} +(-1.08415 - 1.87780i) q^{88} +(-6.18879 + 10.7193i) q^{89} +1.14924 q^{90} +(0.0219083 + 6.08115i) q^{91} -6.91567 q^{92} +(2.19283 - 3.79808i) q^{93} +(-1.86113 - 3.22356i) q^{94} +(0.574618 + 0.995268i) q^{95} +(-0.500000 + 0.866025i) q^{96} -5.91567 q^{97} +(-3.45623 + 6.08724i) q^{98} -2.16830 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 8 q^{6} - 2 q^{7} - 8 q^{8} - 4 q^{9} + O(q^{10}) \) \( 8 q + 4 q^{2} + 4 q^{3} - 4 q^{4} + 8 q^{6} - 2 q^{7} - 8 q^{8} - 4 q^{9} + 2 q^{11} + 4 q^{12} - q^{14} - 4 q^{16} - 10 q^{17} + 4 q^{18} - 4 q^{19} - q^{21} + 4 q^{22} + 5 q^{23} - 4 q^{24} - 4 q^{25} - 8 q^{27} + q^{28} - 6 q^{29} - 9 q^{31} + 4 q^{32} - 2 q^{33} - 20 q^{34} - 9 q^{35} + 8 q^{36} + 14 q^{37} + 4 q^{38} + 8 q^{41} - 2 q^{42} + 42 q^{43} + 2 q^{44} - 5 q^{46} - 7 q^{47} - 8 q^{48} - 4 q^{49} - 8 q^{50} + 10 q^{51} + 7 q^{53} - 4 q^{54} + 2 q^{56} - 8 q^{57} - 3 q^{58} - 7 q^{59} - 23 q^{61} - 18 q^{62} + q^{63} + 8 q^{64} + 48 q^{65} + 2 q^{66} - 6 q^{67} - 10 q^{68} + 10 q^{69} + 15 q^{70} + 4 q^{71} + 4 q^{72} + 5 q^{73} - 14 q^{74} + 4 q^{75} + 8 q^{76} - 17 q^{77} + 11 q^{79} - 4 q^{81} + 4 q^{82} + 28 q^{83} - q^{84} + 12 q^{85} + 21 q^{86} - 3 q^{87} - 2 q^{88} - 10 q^{89} - 48 q^{91} - 10 q^{92} + 9 q^{93} + 7 q^{94} - 4 q^{96} - 2 q^{97} + 25 q^{98} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.574618 0.995268i 0.256977 0.445098i −0.708453 0.705758i \(-0.750607\pi\)
0.965431 + 0.260660i \(0.0839401\pi\)
\(6\) 1.00000 0.408248
\(7\) 0.00953166 + 2.64573i 0.00360263 + 0.999994i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.574618 0.995268i −0.181710 0.314732i
\(11\) 1.08415 + 1.87780i 0.326884 + 0.566179i 0.981892 0.189443i \(-0.0606682\pi\)
−0.655008 + 0.755622i \(0.727335\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 2.29847 0.637482 0.318741 0.947842i \(-0.396740\pi\)
0.318741 + 0.947842i \(0.396740\pi\)
\(14\) 2.29604 + 1.31461i 0.613642 + 0.351345i
\(15\) 1.14924 0.296732
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.49840 + 4.32735i 0.605950 + 1.04954i 0.991901 + 0.127017i \(0.0405402\pi\)
−0.385951 + 0.922519i \(0.626126\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i
\(20\) −1.14924 −0.256977
\(21\) −2.28651 + 1.33112i −0.498957 + 0.290475i
\(22\) 2.16830 0.462283
\(23\) 3.45783 5.98914i 0.721008 1.24882i −0.239588 0.970875i \(-0.577012\pi\)
0.960596 0.277948i \(-0.0896544\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 1.83963 + 3.18633i 0.367925 + 0.637266i
\(26\) 1.14924 1.99054i 0.225384 0.390376i
\(27\) −1.00000 −0.192450
\(28\) 2.28651 1.33112i 0.432109 0.251558i
\(29\) 3.76643 0.699409 0.349704 0.936860i \(-0.386282\pi\)
0.349704 + 0.936860i \(0.386282\pi\)
\(30\) 0.574618 0.995268i 0.104911 0.181710i
\(31\) −2.19283 3.79808i −0.393843 0.682156i 0.599110 0.800667i \(-0.295521\pi\)
−0.992953 + 0.118511i \(0.962188\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −1.08415 + 1.87780i −0.188726 + 0.326884i
\(34\) 4.99679 0.856943
\(35\) 2.63869 + 1.51080i 0.446020 + 0.255372i
\(36\) 1.00000 0.166667
\(37\) −0.330096 + 0.571742i −0.0542674 + 0.0939938i −0.891883 0.452266i \(-0.850616\pi\)
0.837616 + 0.546260i \(0.183949\pi\)
\(38\) 0.500000 + 0.866025i 0.0811107 + 0.140488i
\(39\) 1.14924 + 1.99054i 0.184025 + 0.318741i
\(40\) −0.574618 + 0.995268i −0.0908552 + 0.157366i
\(41\) 0.806583 0.125967 0.0629836 0.998015i \(-0.479938\pi\)
0.0629836 + 0.998015i \(0.479938\pi\)
\(42\) 0.00953166 + 2.64573i 0.00147077 + 0.408246i
\(43\) −2.08397 −0.317802 −0.158901 0.987295i \(-0.550795\pi\)
−0.158901 + 0.987295i \(0.550795\pi\)
\(44\) 1.08415 1.87780i 0.163442 0.283089i
\(45\) 0.574618 + 0.995268i 0.0856591 + 0.148366i
\(46\) −3.45783 5.98914i −0.509830 0.883051i
\(47\) 1.86113 3.22356i 0.271473 0.470205i −0.697766 0.716326i \(-0.745823\pi\)
0.969239 + 0.246120i \(0.0791559\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.99982 + 0.0504365i −0.999974 + 0.00720521i
\(50\) 3.67925 0.520325
\(51\) −2.49840 + 4.32735i −0.349845 + 0.605950i
\(52\) −1.14924 1.99054i −0.159370 0.276038i
\(53\) 5.63567 + 9.76126i 0.774118 + 1.34081i 0.935289 + 0.353886i \(0.115140\pi\)
−0.161170 + 0.986927i \(0.551527\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 2.49189 0.336006
\(56\) −0.00953166 2.64573i −0.00127372 0.353551i
\(57\) −1.00000 −0.132453
\(58\) 1.88322 3.26183i 0.247278 0.428299i
\(59\) −5.21331 9.02972i −0.678715 1.17557i −0.975368 0.220584i \(-0.929204\pi\)
0.296653 0.954985i \(-0.404130\pi\)
\(60\) −0.574618 0.995268i −0.0741829 0.128489i
\(61\) −1.28811 + 2.23107i −0.164926 + 0.285660i −0.936629 0.350323i \(-0.886072\pi\)
0.771703 + 0.635983i \(0.219405\pi\)
\(62\) −4.38565 −0.556978
\(63\) −2.29604 1.31461i −0.289274 0.165626i
\(64\) 1.00000 0.125000
\(65\) 1.32075 2.28760i 0.163818 0.283742i
\(66\) 1.08415 + 1.87780i 0.133450 + 0.231142i
\(67\) −4.44284 7.69523i −0.542779 0.940121i −0.998743 0.0501231i \(-0.984039\pi\)
0.455964 0.889998i \(-0.349295\pi\)
\(68\) 2.49840 4.32735i 0.302975 0.524768i
\(69\) 6.91567 0.832549
\(70\) 2.62774 1.52977i 0.314075 0.182843i
\(71\) −0.323591 −0.0384031 −0.0192016 0.999816i \(-0.506112\pi\)
−0.0192016 + 0.999816i \(0.506112\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 2.36415 + 4.09483i 0.276703 + 0.479264i 0.970563 0.240846i \(-0.0774248\pi\)
−0.693860 + 0.720110i \(0.744091\pi\)
\(74\) 0.330096 + 0.571742i 0.0383728 + 0.0664637i
\(75\) −1.83963 + 3.18633i −0.212422 + 0.367925i
\(76\) 1.00000 0.114708
\(77\) −4.95783 + 2.88627i −0.564998 + 0.328921i
\(78\) 2.29847 0.260251
\(79\) 3.79604 6.57493i 0.427088 0.739738i −0.569525 0.821974i \(-0.692873\pi\)
0.996613 + 0.0822363i \(0.0262062\pi\)
\(80\) 0.574618 + 0.995268i 0.0642443 + 0.111274i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.403292 0.698521i 0.0445361 0.0771388i
\(83\) 3.17435 0.348431 0.174215 0.984708i \(-0.444261\pi\)
0.174215 + 0.984708i \(0.444261\pi\)
\(84\) 2.29604 + 1.31461i 0.250518 + 0.143436i
\(85\) 5.74250 0.622861
\(86\) −1.04198 + 1.80477i −0.112360 + 0.194613i
\(87\) 1.88322 + 3.26183i 0.201902 + 0.349704i
\(88\) −1.08415 1.87780i −0.115571 0.200174i
\(89\) −6.18879 + 10.7193i −0.656010 + 1.13624i 0.325630 + 0.945497i \(0.394424\pi\)
−0.981640 + 0.190745i \(0.938910\pi\)
\(90\) 1.14924 0.121140
\(91\) 0.0219083 + 6.08115i 0.00229661 + 0.637478i
\(92\) −6.91567 −0.721008
\(93\) 2.19283 3.79808i 0.227385 0.393843i
\(94\) −1.86113 3.22356i −0.191960 0.332485i
\(95\) 0.574618 + 0.995268i 0.0589546 + 0.102112i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) −5.91567 −0.600645 −0.300323 0.953838i \(-0.597094\pi\)
−0.300323 + 0.953838i \(0.597094\pi\)
\(98\) −3.45623 + 6.08724i −0.349132 + 0.614904i
\(99\) −2.16830 −0.217922
\(100\) 1.83963 3.18633i 0.183963 0.318633i
\(101\) 6.43414 + 11.1443i 0.640221 + 1.10890i 0.985383 + 0.170352i \(0.0544905\pi\)
−0.345162 + 0.938543i \(0.612176\pi\)
\(102\) 2.49840 + 4.32735i 0.247378 + 0.428471i
\(103\) −3.47791 + 6.02392i −0.342689 + 0.593554i −0.984931 0.172947i \(-0.944671\pi\)
0.642242 + 0.766502i \(0.278004\pi\)
\(104\) −2.29847 −0.225384
\(105\) 0.0109541 + 3.04058i 0.00106901 + 0.296730i
\(106\) 11.2713 1.09477
\(107\) 6.19933 10.7376i 0.599312 1.03804i −0.393611 0.919277i \(-0.628774\pi\)
0.992923 0.118762i \(-0.0378924\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) −9.02841 15.6377i −0.864765 1.49782i −0.867280 0.497820i \(-0.834134\pi\)
0.00251502 0.999997i \(-0.499199\pi\)
\(110\) 1.24595 2.15804i 0.118796 0.205761i
\(111\) −0.660191 −0.0626626
\(112\) −2.29604 1.31461i −0.216955 0.124219i
\(113\) −8.63792 −0.812587 −0.406294 0.913743i \(-0.633179\pi\)
−0.406294 + 0.913743i \(0.633179\pi\)
\(114\) −0.500000 + 0.866025i −0.0468293 + 0.0811107i
\(115\) −3.97387 6.88295i −0.370565 0.641838i
\(116\) −1.88322 3.26183i −0.174852 0.302853i
\(117\) −1.14924 + 1.99054i −0.106247 + 0.184025i
\(118\) −10.4266 −0.959848
\(119\) −11.4252 + 6.65134i −1.04735 + 0.609727i
\(120\) −1.14924 −0.104911
\(121\) 3.14924 5.45464i 0.286294 0.495876i
\(122\) 1.28811 + 2.23107i 0.116620 + 0.201992i
\(123\) 0.403292 + 0.698521i 0.0363636 + 0.0629836i
\(124\) −2.19283 + 3.79808i −0.196922 + 0.341078i
\(125\) 9.97452 0.892148
\(126\) −2.28651 + 1.33112i −0.203698 + 0.118586i
\(127\) −13.8683 −1.23061 −0.615305 0.788289i \(-0.710967\pi\)
−0.615305 + 0.788289i \(0.710967\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −1.04198 1.80477i −0.0917416 0.158901i
\(130\) −1.32075 2.28760i −0.115837 0.200636i
\(131\) −6.10565 + 10.5753i −0.533453 + 0.923968i 0.465784 + 0.884899i \(0.345773\pi\)
−0.999237 + 0.0390690i \(0.987561\pi\)
\(132\) 2.16830 0.188726
\(133\) −2.29604 1.31461i −0.199092 0.113991i
\(134\) −8.88568 −0.767606
\(135\) −0.574618 + 0.995268i −0.0494553 + 0.0856591i
\(136\) −2.49840 4.32735i −0.214236 0.371067i
\(137\) −5.54038 9.59622i −0.473347 0.819860i 0.526188 0.850368i \(-0.323621\pi\)
−0.999535 + 0.0305079i \(0.990288\pi\)
\(138\) 3.45783 5.98914i 0.294350 0.509830i
\(139\) −11.0175 −0.934494 −0.467247 0.884127i \(-0.654754\pi\)
−0.467247 + 0.884127i \(0.654754\pi\)
\(140\) −0.0109541 3.04058i −0.000925793 0.256976i
\(141\) 3.72225 0.313470
\(142\) −0.161795 + 0.280238i −0.0135776 + 0.0235170i
\(143\) 2.49189 + 4.31608i 0.208382 + 0.360929i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 2.16426 3.74861i 0.179732 0.311305i
\(146\) 4.72830 0.391317
\(147\) −3.54359 6.03680i −0.292270 0.497907i
\(148\) 0.660191 0.0542674
\(149\) 10.6085 18.3744i 0.869082 1.50529i 0.00614520 0.999981i \(-0.498044\pi\)
0.862936 0.505312i \(-0.168623\pi\)
\(150\) 1.83963 + 3.18633i 0.150205 + 0.260163i
\(151\) −4.70093 8.14226i −0.382557 0.662608i 0.608870 0.793270i \(-0.291623\pi\)
−0.991427 + 0.130662i \(0.958290\pi\)
\(152\) 0.500000 0.866025i 0.0405554 0.0702439i
\(153\) −4.99679 −0.403967
\(154\) 0.0206675 + 5.73675i 0.00166543 + 0.462280i
\(155\) −5.04015 −0.404835
\(156\) 1.14924 1.99054i 0.0920126 0.159370i
\(157\) −3.07361 5.32364i −0.245300 0.424873i 0.716916 0.697160i \(-0.245553\pi\)
−0.962216 + 0.272287i \(0.912220\pi\)
\(158\) −3.79604 6.57493i −0.301997 0.523074i
\(159\) −5.63567 + 9.76126i −0.446937 + 0.774118i
\(160\) 1.14924 0.0908552
\(161\) 15.8786 + 9.09142i 1.25141 + 0.716505i
\(162\) −1.00000 −0.0785674
\(163\) 4.30397 7.45469i 0.337113 0.583896i −0.646776 0.762680i \(-0.723883\pi\)
0.983888 + 0.178784i \(0.0572163\pi\)
\(164\) −0.403292 0.698521i −0.0314918 0.0545454i
\(165\) 1.24595 + 2.15804i 0.0969967 + 0.168003i
\(166\) 1.58718 2.74907i 0.123189 0.213369i
\(167\) 11.9749 0.926644 0.463322 0.886190i \(-0.346657\pi\)
0.463322 + 0.886190i \(0.346657\pi\)
\(168\) 2.28651 1.33112i 0.176408 0.102698i
\(169\) −7.71702 −0.593617
\(170\) 2.87125 4.97315i 0.220215 0.381423i
\(171\) −0.500000 0.866025i −0.0382360 0.0662266i
\(172\) 1.04198 + 1.80477i 0.0794506 + 0.137612i
\(173\) −4.05092 + 7.01641i −0.307986 + 0.533448i −0.977922 0.208972i \(-0.932988\pi\)
0.669936 + 0.742419i \(0.266322\pi\)
\(174\) 3.76643 0.285532
\(175\) −8.41264 + 4.89754i −0.635936 + 0.370219i
\(176\) −2.16830 −0.163442
\(177\) 5.21331 9.02972i 0.391856 0.678715i
\(178\) 6.18879 + 10.7193i 0.463869 + 0.803445i
\(179\) 3.42378 + 5.93016i 0.255905 + 0.443241i 0.965141 0.261731i \(-0.0842932\pi\)
−0.709236 + 0.704971i \(0.750960\pi\)
\(180\) 0.574618 0.995268i 0.0428295 0.0741829i
\(181\) −16.5905 −1.23316 −0.616582 0.787291i \(-0.711483\pi\)
−0.616582 + 0.787291i \(0.711483\pi\)
\(182\) 5.27739 + 3.02160i 0.391186 + 0.223976i
\(183\) −2.57622 −0.190440
\(184\) −3.45783 + 5.98914i −0.254915 + 0.441526i
\(185\) 0.379358 + 0.657067i 0.0278910 + 0.0483086i
\(186\) −2.19283 3.79808i −0.160786 0.278489i
\(187\) −5.41727 + 9.38299i −0.396150 + 0.686152i
\(188\) −3.72225 −0.271473
\(189\) −0.00953166 2.64573i −0.000693326 0.192449i
\(190\) 1.14924 0.0833744
\(191\) −7.94509 + 13.7613i −0.574887 + 0.995733i 0.421167 + 0.906983i \(0.361621\pi\)
−0.996054 + 0.0887501i \(0.971713\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −3.24838 5.62636i −0.233824 0.404994i 0.725107 0.688637i \(-0.241790\pi\)
−0.958930 + 0.283642i \(0.908457\pi\)
\(194\) −2.95783 + 5.12312i −0.212360 + 0.367819i
\(195\) 2.64149 0.189161
\(196\) 3.54359 + 6.03680i 0.253113 + 0.431200i
\(197\) 1.06491 0.0758713 0.0379357 0.999280i \(-0.487922\pi\)
0.0379357 + 0.999280i \(0.487922\pi\)
\(198\) −1.08415 + 1.87780i −0.0770472 + 0.133450i
\(199\) −11.7959 20.4310i −0.836186 1.44832i −0.893061 0.449936i \(-0.851447\pi\)
0.0568749 0.998381i \(-0.481886\pi\)
\(200\) −1.83963 3.18633i −0.130081 0.225307i
\(201\) 4.44284 7.69523i 0.313374 0.542779i
\(202\) 12.8683 0.905409
\(203\) 0.0359003 + 9.96498i 0.00251971 + 0.699404i
\(204\) 4.99679 0.349845
\(205\) 0.463478 0.802767i 0.0323707 0.0560677i
\(206\) 3.47791 + 6.02392i 0.242317 + 0.419706i
\(207\) 3.45783 + 5.98914i 0.240336 + 0.416274i
\(208\) −1.14924 + 1.99054i −0.0796852 + 0.138019i
\(209\) −2.16830 −0.149984
\(210\) 2.63869 + 1.51080i 0.182087 + 0.104255i
\(211\) 17.8699 1.23022 0.615109 0.788442i \(-0.289112\pi\)
0.615109 + 0.788442i \(0.289112\pi\)
\(212\) 5.63567 9.76126i 0.387059 0.670406i
\(213\) −0.161795 0.280238i −0.0110860 0.0192016i
\(214\) −6.19933 10.7376i −0.423777 0.734004i
\(215\) −1.19749 + 2.07411i −0.0816679 + 0.141453i
\(216\) 1.00000 0.0680414
\(217\) 10.0278 5.83783i 0.680733 0.396298i
\(218\) −18.0568 −1.22296
\(219\) −2.36415 + 4.09483i −0.159755 + 0.276703i
\(220\) −1.24595 2.15804i −0.0840016 0.145495i
\(221\) 5.74250 + 9.94630i 0.386282 + 0.669060i
\(222\) −0.330096 + 0.571742i −0.0221546 + 0.0383728i
\(223\) 4.44605 0.297729 0.148865 0.988858i \(-0.452438\pi\)
0.148865 + 0.988858i \(0.452438\pi\)
\(224\) −2.28651 + 1.33112i −0.152774 + 0.0889393i
\(225\) −3.67925 −0.245284
\(226\) −4.31896 + 7.48066i −0.287293 + 0.497606i
\(227\) −10.0469 17.4017i −0.666835 1.15499i −0.978784 0.204894i \(-0.934315\pi\)
0.311949 0.950099i \(-0.399018\pi\)
\(228\) 0.500000 + 0.866025i 0.0331133 + 0.0573539i
\(229\) −8.97773 + 15.5499i −0.593265 + 1.02757i 0.400524 + 0.916286i \(0.368828\pi\)
−0.993789 + 0.111279i \(0.964505\pi\)
\(230\) −7.94774 −0.524059
\(231\) −4.97850 2.85047i −0.327561 0.187547i
\(232\) −3.76643 −0.247278
\(233\) −5.12697 + 8.88016i −0.335879 + 0.581759i −0.983653 0.180073i \(-0.942367\pi\)
0.647775 + 0.761832i \(0.275700\pi\)
\(234\) 1.14924 + 1.99054i 0.0751280 + 0.130125i
\(235\) −2.13887 3.70464i −0.139525 0.241664i
\(236\) −5.21331 + 9.02972i −0.339358 + 0.587785i
\(237\) 7.59208 0.493158
\(238\) 0.0476277 + 13.2202i 0.00308724 + 0.856937i
\(239\) 1.73965 0.112529 0.0562644 0.998416i \(-0.482081\pi\)
0.0562644 + 0.998416i \(0.482081\pi\)
\(240\) −0.574618 + 0.995268i −0.0370915 + 0.0642443i
\(241\) 10.4246 + 18.0560i 0.671508 + 1.16309i 0.977476 + 0.211044i \(0.0676865\pi\)
−0.305968 + 0.952042i \(0.598980\pi\)
\(242\) −3.14924 5.45464i −0.202441 0.350637i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 2.57622 0.164926
\(245\) −3.97203 + 6.99568i −0.253764 + 0.446938i
\(246\) 0.806583 0.0514259
\(247\) −1.14924 + 1.99054i −0.0731242 + 0.126655i
\(248\) 2.19283 + 3.79808i 0.139245 + 0.241179i
\(249\) 1.58718 + 2.74907i 0.100583 + 0.174215i
\(250\) 4.98726 8.63819i 0.315422 0.546327i
\(251\) 3.19663 0.201769 0.100885 0.994898i \(-0.467833\pi\)
0.100885 + 0.994898i \(0.467833\pi\)
\(252\) 0.00953166 + 2.64573i 0.000600438 + 0.166666i
\(253\) 14.9952 0.942743
\(254\) −6.93414 + 12.0103i −0.435087 + 0.753592i
\(255\) 2.87125 + 4.97315i 0.179805 + 0.311431i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.51095 13.0094i 0.468520 0.811501i −0.530832 0.847477i \(-0.678121\pi\)
0.999353 + 0.0359757i \(0.0114539\pi\)
\(258\) −2.08397 −0.129742
\(259\) −1.51582 0.867895i −0.0941887 0.0539284i
\(260\) −2.64149 −0.163818
\(261\) −1.88322 + 3.26183i −0.116568 + 0.201902i
\(262\) 6.10565 + 10.5753i 0.377208 + 0.653344i
\(263\) −5.33802 9.24573i −0.329157 0.570116i 0.653188 0.757196i \(-0.273431\pi\)
−0.982345 + 0.187080i \(0.940098\pi\)
\(264\) 1.08415 1.87780i 0.0667248 0.115571i
\(265\) 12.9534 0.795723
\(266\) −2.28651 + 1.33112i −0.140195 + 0.0816163i
\(267\) −12.3776 −0.757495
\(268\) −4.44284 + 7.69523i −0.271390 + 0.470061i
\(269\) 1.62453 + 2.81377i 0.0990494 + 0.171559i 0.911291 0.411762i \(-0.135086\pi\)
−0.812242 + 0.583321i \(0.801753\pi\)
\(270\) 0.574618 + 0.995268i 0.0349702 + 0.0605701i
\(271\) −9.01746 + 15.6187i −0.547772 + 0.948768i 0.450655 + 0.892698i \(0.351190\pi\)
−0.998427 + 0.0560702i \(0.982143\pi\)
\(272\) −4.99679 −0.302975
\(273\) −5.25548 + 3.05955i −0.318076 + 0.185172i
\(274\) −11.0808 −0.669413
\(275\) −3.98886 + 6.90892i −0.240538 + 0.416623i
\(276\) −3.45783 5.98914i −0.208137 0.360504i
\(277\) −11.1420 19.2984i −0.669455 1.15953i −0.978057 0.208339i \(-0.933194\pi\)
0.308601 0.951192i \(-0.400139\pi\)
\(278\) −5.50876 + 9.54145i −0.330393 + 0.572258i
\(279\) 4.38565 0.262562
\(280\) −2.63869 1.51080i −0.157692 0.0902876i
\(281\) 7.10790 0.424022 0.212011 0.977267i \(-0.431999\pi\)
0.212011 + 0.977267i \(0.431999\pi\)
\(282\) 1.86113 3.22356i 0.110828 0.191960i
\(283\) 7.87368 + 13.6376i 0.468042 + 0.810672i 0.999333 0.0365169i \(-0.0116263\pi\)
−0.531291 + 0.847189i \(0.678293\pi\)
\(284\) 0.161795 + 0.280238i 0.00960078 + 0.0166290i
\(285\) −0.574618 + 0.995268i −0.0340375 + 0.0589546i
\(286\) 4.98378 0.294697
\(287\) 0.00768807 + 2.13400i 0.000453813 + 0.125966i
\(288\) −1.00000 −0.0589256
\(289\) −3.98396 + 6.90043i −0.234351 + 0.405907i
\(290\) −2.16426 3.74861i −0.127090 0.220126i
\(291\) −2.95783 5.12312i −0.173391 0.300323i
\(292\) 2.36415 4.09483i 0.138352 0.239632i
\(293\) 22.0139 1.28607 0.643034 0.765837i \(-0.277675\pi\)
0.643034 + 0.765837i \(0.277675\pi\)
\(294\) −6.99982 + 0.0504365i −0.408238 + 0.00294151i
\(295\) −11.9827 −0.697657
\(296\) 0.330096 0.571742i 0.0191864 0.0332318i
\(297\) −1.08415 1.87780i −0.0629088 0.108961i
\(298\) −10.6085 18.3744i −0.614534 1.06440i
\(299\) 7.94774 13.7659i 0.459630 0.796102i
\(300\) 3.67925 0.212422
\(301\) −0.0198637 5.51363i −0.00114492 0.317800i
\(302\) −9.40187 −0.541017
\(303\) −6.43414 + 11.1443i −0.369632 + 0.640221i
\(304\) −0.500000 0.866025i −0.0286770 0.0496700i
\(305\) 1.48035 + 2.56403i 0.0847643 + 0.146816i
\(306\) −2.49840 + 4.32735i −0.142824 + 0.247378i
\(307\) 14.3776 0.820571 0.410286 0.911957i \(-0.365429\pi\)
0.410286 + 0.911957i \(0.365429\pi\)
\(308\) 4.97850 + 2.85047i 0.283676 + 0.162421i
\(309\) −6.95582 −0.395703
\(310\) −2.52008 + 4.36490i −0.143131 + 0.247910i
\(311\) 1.48726 + 2.57601i 0.0843348 + 0.146072i 0.905108 0.425183i \(-0.139790\pi\)
−0.820773 + 0.571255i \(0.806457\pi\)
\(312\) −1.14924 1.99054i −0.0650627 0.112692i
\(313\) 8.37942 14.5136i 0.473633 0.820356i −0.525912 0.850539i \(-0.676276\pi\)
0.999544 + 0.0301834i \(0.00960914\pi\)
\(314\) −6.14721 −0.346907
\(315\) −2.62774 + 1.52977i −0.148056 + 0.0861930i
\(316\) −7.59208 −0.427088
\(317\) 1.40531 2.43406i 0.0789298 0.136710i −0.823859 0.566795i \(-0.808183\pi\)
0.902788 + 0.430085i \(0.141516\pi\)
\(318\) 5.63567 + 9.76126i 0.316032 + 0.547384i
\(319\) 4.08338 + 7.07262i 0.228625 + 0.395990i
\(320\) 0.574618 0.995268i 0.0321221 0.0556372i
\(321\) 12.3987 0.692026
\(322\) 15.8127 9.20560i 0.881209 0.513008i
\(323\) −4.99679 −0.278029
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 4.22834 + 7.32369i 0.234546 + 0.406245i
\(326\) −4.30397 7.45469i −0.238375 0.412877i
\(327\) 9.02841 15.6377i 0.499272 0.864765i
\(328\) −0.806583 −0.0445361
\(329\) 8.54643 + 4.89332i 0.471180 + 0.269777i
\(330\) 2.49189 0.137174
\(331\) 5.06954 8.78069i 0.278647 0.482631i −0.692402 0.721512i \(-0.743447\pi\)
0.971049 + 0.238882i \(0.0767808\pi\)
\(332\) −1.58718 2.74907i −0.0871076 0.150875i
\(333\) −0.330096 0.571742i −0.0180891 0.0313313i
\(334\) 5.98744 10.3706i 0.327618 0.567451i
\(335\) −10.2118 −0.557928
\(336\) −0.00953166 2.64573i −0.000519994 0.144337i
\(337\) 21.4364 1.16772 0.583858 0.811856i \(-0.301542\pi\)
0.583858 + 0.811856i \(0.301542\pi\)
\(338\) −3.85851 + 6.68313i −0.209875 + 0.363515i
\(339\) −4.31896 7.48066i −0.234574 0.406294i
\(340\) −2.87125 4.97315i −0.155715 0.269707i
\(341\) 4.75470 8.23539i 0.257482 0.445971i
\(342\) −1.00000 −0.0540738
\(343\) −0.200161 18.5192i −0.0108077 0.999942i
\(344\) 2.08397 0.112360
\(345\) 3.97387 6.88295i 0.213946 0.370565i
\(346\) 4.05092 + 7.01641i 0.217779 + 0.377204i
\(347\) −14.5913 25.2729i −0.783302 1.35672i −0.930008 0.367539i \(-0.880200\pi\)
0.146706 0.989180i \(-0.453133\pi\)
\(348\) 1.88322 3.26183i 0.100951 0.174852i
\(349\) 9.36208 0.501141 0.250570 0.968098i \(-0.419382\pi\)
0.250570 + 0.968098i \(0.419382\pi\)
\(350\) 0.0350694 + 9.73433i 0.00187454 + 0.520322i
\(351\) −2.29847 −0.122683
\(352\) −1.08415 + 1.87780i −0.0577854 + 0.100087i
\(353\) −16.7997 29.0980i −0.894159 1.54873i −0.834843 0.550489i \(-0.814441\pi\)
−0.0593161 0.998239i \(-0.518892\pi\)
\(354\) −5.21331 9.02972i −0.277084 0.479924i
\(355\) −0.185941 + 0.322059i −0.00986873 + 0.0170931i
\(356\) 12.3776 0.656010
\(357\) −11.4728 6.56884i −0.607206 0.347660i
\(358\) 6.84755 0.361905
\(359\) 12.1815 21.0990i 0.642915 1.11356i −0.341863 0.939750i \(-0.611058\pi\)
0.984779 0.173812i \(-0.0556087\pi\)
\(360\) −0.574618 0.995268i −0.0302851 0.0524553i
\(361\) −0.500000 0.866025i −0.0263158 0.0455803i
\(362\) −8.29527 + 14.3678i −0.435989 + 0.755156i
\(363\) 6.29847 0.330584
\(364\) 5.25548 3.05955i 0.275462 0.160364i
\(365\) 5.43394 0.284426
\(366\) −1.28811 + 2.23107i −0.0673307 + 0.116620i
\(367\) 16.5786 + 28.7149i 0.865394 + 1.49891i 0.866655 + 0.498907i \(0.166265\pi\)
−0.00126140 + 0.999999i \(0.500402\pi\)
\(368\) 3.45783 + 5.98914i 0.180252 + 0.312206i
\(369\) −0.403292 + 0.698521i −0.0209945 + 0.0363636i
\(370\) 0.758716 0.0394438
\(371\) −25.7720 + 15.0035i −1.33801 + 0.778944i
\(372\) −4.38565 −0.227385
\(373\) 11.2730 19.5254i 0.583693 1.01099i −0.411343 0.911480i \(-0.634940\pi\)
0.995037 0.0995064i \(-0.0317264\pi\)
\(374\) 5.41727 + 9.38299i 0.280120 + 0.485183i
\(375\) 4.98726 + 8.63819i 0.257541 + 0.446074i
\(376\) −1.86113 + 3.22356i −0.0959802 + 0.166243i
\(377\) 8.65704 0.445860
\(378\) −2.29604 1.31461i −0.118095 0.0676164i
\(379\) 18.7616 0.963717 0.481858 0.876249i \(-0.339962\pi\)
0.481858 + 0.876249i \(0.339962\pi\)
\(380\) 0.574618 0.995268i 0.0294773 0.0510562i
\(381\) −6.93414 12.0103i −0.355247 0.615305i
\(382\) 7.94509 + 13.7613i 0.406506 + 0.704090i
\(383\) 4.05885 7.03014i 0.207398 0.359223i −0.743496 0.668740i \(-0.766834\pi\)
0.950894 + 0.309517i \(0.100167\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.0237518 + 6.59288i 0.00121051 + 0.336004i
\(386\) −6.49676 −0.330676
\(387\) 1.04198 1.80477i 0.0529670 0.0917416i
\(388\) 2.95783 + 5.12312i 0.150161 + 0.260087i
\(389\) 17.5017 + 30.3138i 0.887371 + 1.53697i 0.842972 + 0.537958i \(0.180804\pi\)
0.0443993 + 0.999014i \(0.485863\pi\)
\(390\) 1.32075 2.28760i 0.0668786 0.115837i
\(391\) 34.5562 1.74758
\(392\) 6.99982 0.0504365i 0.353544 0.00254743i
\(393\) −12.2113 −0.615978
\(394\) 0.532453 0.922235i 0.0268246 0.0464615i
\(395\) −4.36255 7.55615i −0.219504 0.380191i
\(396\) 1.08415 + 1.87780i 0.0544806 + 0.0943632i
\(397\) −7.51095 + 13.0094i −0.376964 + 0.652921i −0.990619 0.136654i \(-0.956365\pi\)
0.613655 + 0.789574i \(0.289699\pi\)
\(398\) −23.5917 −1.18255
\(399\) −0.00953166 2.64573i −0.000477180 0.132452i
\(400\) −3.67925 −0.183963
\(401\) 13.3143 23.0611i 0.664886 1.15162i −0.314430 0.949281i \(-0.601814\pi\)
0.979316 0.202336i \(-0.0648532\pi\)
\(402\) −4.44284 7.69523i −0.221589 0.383803i
\(403\) −5.04015 8.72980i −0.251068 0.434862i
\(404\) 6.43414 11.1443i 0.320110 0.554448i
\(405\) −1.14924 −0.0571060
\(406\) 8.64787 + 4.95140i 0.429187 + 0.245734i
\(407\) −1.43149 −0.0709565
\(408\) 2.49840 4.32735i 0.123689 0.214236i
\(409\) −13.8245 23.9447i −0.683575 1.18399i −0.973882 0.227053i \(-0.927091\pi\)
0.290307 0.956934i \(-0.406243\pi\)
\(410\) −0.463478 0.802767i −0.0228895 0.0396458i
\(411\) 5.54038 9.59622i 0.273287 0.473347i
\(412\) 6.95582 0.342689
\(413\) 23.8405 13.8791i 1.17312 0.682946i
\(414\) 6.91567 0.339887
\(415\) 1.82404 3.15933i 0.0895387 0.155086i
\(416\) 1.14924 + 1.99054i 0.0563460 + 0.0975941i
\(417\) −5.50876 9.54145i −0.269765 0.467247i
\(418\) −1.08415 + 1.87780i −0.0530275 + 0.0918464i
\(419\) 1.91888 0.0937433 0.0468716 0.998901i \(-0.485075\pi\)
0.0468716 + 0.998901i \(0.485075\pi\)
\(420\) 2.62774 1.52977i 0.128221 0.0746453i
\(421\) 25.9815 1.26626 0.633130 0.774046i \(-0.281770\pi\)
0.633130 + 0.774046i \(0.281770\pi\)
\(422\) 8.93497 15.4758i 0.434948 0.753351i
\(423\) 1.86113 + 3.22356i 0.0904910 + 0.156735i
\(424\) −5.63567 9.76126i −0.273692 0.474049i
\(425\) −9.19223 + 15.9214i −0.445889 + 0.772302i
\(426\) −0.323591 −0.0156780
\(427\) −5.91511 3.38673i −0.286252 0.163896i
\(428\) −12.3987 −0.599312
\(429\) −2.49189 + 4.31608i −0.120310 + 0.208382i
\(430\) 1.19749 + 2.07411i 0.0577479 + 0.100022i
\(431\) −0.482541 0.835785i −0.0232432 0.0402584i 0.854170 0.519994i \(-0.174066\pi\)
−0.877413 + 0.479736i \(0.840733\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −5.93960 −0.285439 −0.142720 0.989763i \(-0.545585\pi\)
−0.142720 + 0.989763i \(0.545585\pi\)
\(434\) −0.0418025 11.6033i −0.00200658 0.556975i
\(435\) 4.32852 0.207537
\(436\) −9.02841 + 15.6377i −0.432383 + 0.748909i
\(437\) 3.45783 + 5.98914i 0.165411 + 0.286500i
\(438\) 2.36415 + 4.09483i 0.112964 + 0.195659i
\(439\) −10.7960 + 18.6993i −0.515267 + 0.892468i 0.484576 + 0.874749i \(0.338974\pi\)
−0.999843 + 0.0177192i \(0.994359\pi\)
\(440\) −2.49189 −0.118796
\(441\) 3.45623 6.08724i 0.164582 0.289869i
\(442\) 11.4850 0.546286
\(443\) −6.96718 + 12.0675i −0.331021 + 0.573345i −0.982712 0.185139i \(-0.940726\pi\)
0.651691 + 0.758484i \(0.274060\pi\)
\(444\) 0.330096 + 0.571742i 0.0156656 + 0.0271337i
\(445\) 7.11238 + 12.3190i 0.337159 + 0.583977i
\(446\) 2.22302 3.85039i 0.105263 0.182321i
\(447\) 21.2170 1.00353
\(448\) 0.00953166 + 2.64573i 0.000450328 + 0.124999i
\(449\) 14.3273 0.676149 0.338074 0.941119i \(-0.390224\pi\)
0.338074 + 0.941119i \(0.390224\pi\)
\(450\) −1.83963 + 3.18633i −0.0867209 + 0.150205i
\(451\) 0.874457 + 1.51460i 0.0411766 + 0.0713199i
\(452\) 4.31896 + 7.48066i 0.203147 + 0.351861i
\(453\) 4.70093 8.14226i 0.220869 0.382557i
\(454\) −20.0938 −0.943047
\(455\) 6.06497 + 3.47254i 0.284330 + 0.162795i
\(456\) 1.00000 0.0468293
\(457\) −16.1491 + 27.9710i −0.755421 + 1.30843i 0.189744 + 0.981834i \(0.439234\pi\)
−0.945165 + 0.326594i \(0.894099\pi\)
\(458\) 8.97773 + 15.5499i 0.419502 + 0.726598i
\(459\) −2.49840 4.32735i −0.116615 0.201983i
\(460\) −3.97387 + 6.88295i −0.185283 + 0.320919i
\(461\) 0.375849 0.0175050 0.00875252 0.999962i \(-0.497214\pi\)
0.00875252 + 0.999962i \(0.497214\pi\)
\(462\) −4.95783 + 2.88627i −0.230659 + 0.134282i
\(463\) 7.80824 0.362880 0.181440 0.983402i \(-0.441924\pi\)
0.181440 + 0.983402i \(0.441924\pi\)
\(464\) −1.88322 + 3.26183i −0.0874261 + 0.151426i
\(465\) −2.52008 4.36490i −0.116866 0.202417i
\(466\) 5.12697 + 8.88016i 0.237502 + 0.411366i
\(467\) 6.12774 10.6136i 0.283558 0.491137i −0.688701 0.725046i \(-0.741819\pi\)
0.972258 + 0.233909i \(0.0751518\pi\)
\(468\) 2.29847 0.106247
\(469\) 20.3172 11.8279i 0.938160 0.546163i
\(470\) −4.27775 −0.197318
\(471\) 3.07361 5.32364i 0.141624 0.245300i
\(472\) 5.21331 + 9.02972i 0.239962 + 0.415627i
\(473\) −2.25933 3.91328i −0.103884 0.179933i
\(474\) 3.79604 6.57493i 0.174358 0.301997i
\(475\) −3.67925 −0.168816
\(476\) 11.4728 + 6.56884i 0.525856 + 0.301082i
\(477\) −11.2713 −0.516079
\(478\) 0.869826 1.50658i 0.0397849 0.0689095i
\(479\) −13.5375 23.4477i −0.618546 1.07135i −0.989751 0.142802i \(-0.954389\pi\)
0.371206 0.928551i \(-0.378945\pi\)
\(480\) 0.574618 + 0.995268i 0.0262276 + 0.0454276i
\(481\) −0.758716 + 1.31413i −0.0345945 + 0.0599194i
\(482\) 20.8492 0.949656
\(483\) 0.0659178 + 18.2970i 0.00299936 + 0.832543i
\(484\) −6.29847 −0.286294
\(485\) −3.39925 + 5.88768i −0.154352 + 0.267346i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −14.8749 25.7641i −0.674047 1.16748i −0.976746 0.214398i \(-0.931221\pi\)
0.302699 0.953086i \(-0.402112\pi\)
\(488\) 1.28811 2.23107i 0.0583101 0.100996i
\(489\) 8.60793 0.389264
\(490\) 4.07242 + 6.93772i 0.183973 + 0.313414i
\(491\) 18.4381 0.832099 0.416050 0.909342i \(-0.363414\pi\)
0.416050 + 0.909342i \(0.363414\pi\)
\(492\) 0.403292 0.698521i 0.0181818 0.0314918i
\(493\) 9.41004 + 16.2987i 0.423807 + 0.734055i
\(494\) 1.14924 + 1.99054i 0.0517066 + 0.0895585i
\(495\) −1.24595 + 2.15804i −0.0560011 + 0.0969967i
\(496\) 4.38565 0.196922
\(497\) −0.00308435 0.856135i −0.000138352 0.0384029i
\(498\) 3.17435 0.142246
\(499\) −16.5785 + 28.7148i −0.742156 + 1.28545i 0.209356 + 0.977840i \(0.432863\pi\)
−0.951512 + 0.307612i \(0.900470\pi\)
\(500\) −4.98726 8.63819i −0.223037 0.386311i
\(501\) 5.98744 + 10.3706i 0.267499 + 0.463322i
\(502\) 1.59831 2.76836i 0.0713362 0.123558i
\(503\) 12.8678 0.573747 0.286873 0.957968i \(-0.407384\pi\)
0.286873 + 0.957968i \(0.407384\pi\)
\(504\) 2.29604 + 1.31461i 0.102274 + 0.0585575i
\(505\) 14.7887 0.658089
\(506\) 7.49762 12.9863i 0.333310 0.577310i
\(507\) −3.85851 6.68313i −0.171362 0.296808i
\(508\) 6.93414 + 12.0103i 0.307653 + 0.532870i
\(509\) −4.35117 + 7.53645i −0.192862 + 0.334047i −0.946198 0.323589i \(-0.895110\pi\)
0.753335 + 0.657637i \(0.228444\pi\)
\(510\) 5.74250 0.254282
\(511\) −10.8113 + 6.29395i −0.478264 + 0.278428i
\(512\) −1.00000 −0.0441942
\(513\) 0.500000 0.866025i 0.0220755 0.0382360i
\(514\) −7.51095 13.0094i −0.331294 0.573818i
\(515\) 3.99694 + 6.92291i 0.176126 + 0.305060i
\(516\) −1.04198 + 1.80477i −0.0458708 + 0.0794506i
\(517\) 8.07096 0.354960
\(518\) −1.50953 + 0.878795i −0.0663250 + 0.0386120i
\(519\) −8.10185 −0.355632
\(520\) −1.32075 + 2.28760i −0.0579185 + 0.100318i
\(521\) −18.8983 32.7328i −0.827948 1.43405i −0.899645 0.436622i \(-0.856175\pi\)
0.0716971 0.997426i \(-0.477159\pi\)
\(522\) 1.88322 + 3.26183i 0.0824261 + 0.142766i
\(523\) −21.1682 + 36.6644i −0.925620 + 1.60322i −0.135058 + 0.990838i \(0.543122\pi\)
−0.790561 + 0.612383i \(0.790211\pi\)
\(524\) 12.2113 0.533453
\(525\) −8.44771 4.83679i −0.368688 0.211095i
\(526\) −10.6760 −0.465498
\(527\) 10.9571 18.9782i 0.477298 0.826705i
\(528\) −1.08415 1.87780i −0.0471816 0.0817209i
\(529\) −12.4132 21.5004i −0.539706 0.934798i
\(530\) 6.47672 11.2180i 0.281331 0.487279i
\(531\) 10.4266 0.452477
\(532\) 0.00953166 + 2.64573i 0.000413250 + 0.114707i
\(533\) 1.85391 0.0803018
\(534\) −6.18879 + 10.7193i −0.267815 + 0.463869i
\(535\) −7.12450 12.3400i −0.308019 0.533505i
\(536\) 4.44284 + 7.69523i 0.191901 + 0.332383i
\(537\) −3.42378 + 5.93016i −0.147747 + 0.255905i
\(538\) 3.24906 0.140077
\(539\) −7.68356 13.0896i −0.330955 0.563809i
\(540\) 1.14924 0.0494553
\(541\) −4.00573 + 6.93813i −0.172220 + 0.298294i −0.939196 0.343382i \(-0.888427\pi\)
0.766976 + 0.641676i \(0.221761\pi\)
\(542\) 9.01746 + 15.6187i 0.387333 + 0.670880i
\(543\) −8.29527 14.3678i −0.355984 0.616582i
\(544\) −2.49840 + 4.32735i −0.107118 + 0.185534i
\(545\) −20.7516 −0.888900
\(546\) 0.0219083 + 6.08115i 0.000937587 + 0.260249i
\(547\) −34.1587 −1.46052 −0.730260 0.683170i \(-0.760601\pi\)
−0.730260 + 0.683170i \(0.760601\pi\)
\(548\) −5.54038 + 9.59622i −0.236673 + 0.409930i
\(549\) −1.28811 2.23107i −0.0549753 0.0952199i
\(550\) 3.98886 + 6.90892i 0.170086 + 0.294597i
\(551\) −1.88322 + 3.26183i −0.0802277 + 0.138958i
\(552\) −6.91567 −0.294350
\(553\) 17.4317 + 9.98064i 0.741271 + 0.424420i
\(554\) −22.2839 −0.946753
\(555\) −0.379358 + 0.657067i −0.0161029 + 0.0278910i
\(556\) 5.50876 + 9.54145i 0.233623 + 0.404648i
\(557\) 20.2395 + 35.0559i 0.857576 + 1.48537i 0.874234 + 0.485505i \(0.161364\pi\)
−0.0166578 + 0.999861i \(0.505303\pi\)
\(558\) 2.19283 3.79808i 0.0928297 0.160786i
\(559\) −4.78995 −0.202593
\(560\) −2.62774 + 1.52977i −0.111042 + 0.0646448i
\(561\) −10.8345 −0.457435
\(562\) 3.55395 6.15562i 0.149914 0.259659i
\(563\) −9.10220 15.7655i −0.383612 0.664436i 0.607964 0.793965i \(-0.291987\pi\)
−0.991576 + 0.129529i \(0.958653\pi\)
\(564\) −1.86113 3.22356i −0.0783675 0.135737i
\(565\) −4.96351 + 8.59705i −0.208816 + 0.361681i
\(566\) 15.7474 0.661911
\(567\) 2.28651 1.33112i 0.0960243 0.0559019i
\(568\) 0.323591 0.0135776
\(569\) 8.01265 13.8783i 0.335908 0.581809i −0.647751 0.761852i \(-0.724290\pi\)
0.983659 + 0.180043i \(0.0576237\pi\)
\(570\) 0.574618 + 0.995268i 0.0240681 + 0.0416872i
\(571\) −3.51315 6.08495i −0.147021 0.254647i 0.783104 0.621890i \(-0.213635\pi\)
−0.930125 + 0.367243i \(0.880302\pi\)
\(572\) 2.49189 4.31608i 0.104191 0.180464i
\(573\) −15.8902 −0.663822
\(574\) 1.85195 + 1.06034i 0.0772987 + 0.0442579i
\(575\) 25.4445 1.06111
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −11.4555 19.8414i −0.476897 0.826010i 0.522753 0.852484i \(-0.324905\pi\)
−0.999649 + 0.0264748i \(0.991572\pi\)
\(578\) 3.98396 + 6.90043i 0.165711 + 0.287020i
\(579\) 3.24838 5.62636i 0.134998 0.233824i
\(580\) −4.32852 −0.179732
\(581\) 0.0302568 + 8.39850i 0.00125527 + 0.348428i
\(582\) −5.91567 −0.245212
\(583\) −12.2198 + 21.1653i −0.506093 + 0.876579i
\(584\) −2.36415 4.09483i −0.0978293 0.169445i
\(585\) 1.32075 + 2.28760i 0.0546061 + 0.0945806i
\(586\) 11.0070 19.0646i 0.454694 0.787553i
\(587\) −9.55395 −0.394334 −0.197167 0.980370i \(-0.563174\pi\)
−0.197167 + 0.980370i \(0.563174\pi\)
\(588\) −3.45623 + 6.08724i −0.142533 + 0.251033i
\(589\) 4.38565 0.180708
\(590\) −5.99133 + 10.3773i −0.246659 + 0.427226i
\(591\) 0.532453 + 0.922235i 0.0219022 + 0.0379357i
\(592\) −0.330096 0.571742i −0.0135668 0.0234985i
\(593\) −4.05336 + 7.02062i −0.166452 + 0.288302i −0.937170 0.348874i \(-0.886564\pi\)
0.770718 + 0.637176i \(0.219898\pi\)
\(594\) −2.16830 −0.0889664
\(595\) 0.0547355 + 15.1931i 0.00224394 + 0.622857i
\(596\) −21.2170 −0.869082
\(597\) 11.7959 20.4310i 0.482772 0.836186i
\(598\) −7.94774 13.7659i −0.325007 0.562929i
\(599\) 9.15859 + 15.8631i 0.374210 + 0.648150i 0.990208 0.139597i \(-0.0445807\pi\)
−0.615999 + 0.787747i \(0.711247\pi\)
\(600\) 1.83963 3.18633i 0.0751025 0.130081i
\(601\) 15.5629 0.634824 0.317412 0.948288i \(-0.397186\pi\)
0.317412 + 0.948288i \(0.397186\pi\)
\(602\) −4.78487 2.73961i −0.195017 0.111658i
\(603\) 8.88568 0.361853
\(604\) −4.70093 + 8.14226i −0.191278 + 0.331304i
\(605\) −3.61922 6.26867i −0.147142 0.254858i
\(606\) 6.43414 + 11.1443i 0.261369 + 0.452705i
\(607\) −14.1959 + 24.5880i −0.576193 + 0.997996i 0.419718 + 0.907655i \(0.362129\pi\)
−0.995911 + 0.0903411i \(0.971204\pi\)
\(608\) −1.00000 −0.0405554
\(609\) −8.61197 + 5.01358i −0.348975 + 0.203160i
\(610\) 2.96069 0.119875
\(611\) 4.27775 7.40928i 0.173059 0.299747i
\(612\) 2.49840 + 4.32735i 0.100992 + 0.174923i
\(613\) 17.7205 + 30.6927i 0.715723 + 1.23967i 0.962680 + 0.270642i \(0.0872360\pi\)
−0.246957 + 0.969026i \(0.579431\pi\)
\(614\) 7.18879 12.4513i 0.290116 0.502495i
\(615\) 0.926955 0.0373784
\(616\) 4.95783 2.88627i 0.199757 0.116291i
\(617\) 27.6964 1.11502 0.557508 0.830172i \(-0.311758\pi\)
0.557508 + 0.830172i \(0.311758\pi\)
\(618\) −3.47791 + 6.02392i −0.139902 + 0.242317i
\(619\) 13.1957 + 22.8556i 0.530380 + 0.918645i 0.999372 + 0.0354425i \(0.0112841\pi\)
−0.468992 + 0.883203i \(0.655383\pi\)
\(620\) 2.52008 + 4.36490i 0.101209 + 0.175299i
\(621\) −3.45783 + 5.98914i −0.138758 + 0.240336i
\(622\) 2.97452 0.119267
\(623\) −28.4194 16.2717i −1.13860 0.651912i
\(624\) −2.29847 −0.0920126
\(625\) −3.46659 + 6.00431i −0.138664 + 0.240173i
\(626\) −8.37942 14.5136i −0.334909 0.580079i
\(627\) −1.08415 1.87780i −0.0432968 0.0749922i
\(628\) −3.07361 + 5.32364i −0.122650 + 0.212436i
\(629\) −3.29884 −0.131533
\(630\) 0.0109541 + 3.04058i 0.000436423 + 0.121139i
\(631\) 21.3293 0.849105 0.424553 0.905403i \(-0.360431\pi\)
0.424553 + 0.905403i \(0.360431\pi\)
\(632\) −3.79604 + 6.57493i −0.150998 + 0.261537i
\(633\) 8.93497 + 15.4758i 0.355133 + 0.615109i
\(634\) −1.40531 2.43406i −0.0558118 0.0966689i
\(635\) −7.96897 + 13.8027i −0.316239 + 0.547742i
\(636\) 11.2713 0.446937
\(637\) −16.0889 + 0.115927i −0.637465 + 0.00459319i
\(638\) 8.16675 0.323325
\(639\) 0.161795 0.280238i 0.00640052 0.0110860i
\(640\) −0.574618 0.995268i −0.0227138 0.0393414i
\(641\) −9.50348 16.4605i −0.375365 0.650151i 0.615017 0.788514i \(-0.289149\pi\)
−0.990382 + 0.138363i \(0.955816\pi\)
\(642\) 6.19933 10.7376i 0.244668 0.423777i
\(643\) 3.46630 0.136697 0.0683487 0.997661i \(-0.478227\pi\)
0.0683487 + 0.997661i \(0.478227\pi\)
\(644\) −0.0659178 18.2970i −0.00259752 0.721004i
\(645\) −2.39497 −0.0943020
\(646\) −2.49840 + 4.32735i −0.0982981 + 0.170257i
\(647\) −6.18045 10.7049i −0.242979 0.420851i 0.718583 0.695441i \(-0.244791\pi\)
−0.961561 + 0.274590i \(0.911458\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 11.3040 19.5791i 0.443722 0.768549i
\(650\) 8.45667 0.331698
\(651\) 10.0696 + 5.76543i 0.394660 + 0.225965i
\(652\) −8.60793 −0.337113
\(653\) −25.3561 + 43.9181i −0.992262 + 1.71865i −0.388605 + 0.921405i \(0.627043\pi\)
−0.603658 + 0.797244i \(0.706291\pi\)
\(654\) −9.02841 15.6377i −0.353039 0.611481i
\(655\) 7.01684 + 12.1535i 0.274171 + 0.474877i
\(656\) −0.403292 + 0.698521i −0.0157459 + 0.0272727i
\(657\) −4.72830 −0.184469
\(658\) 8.51095 4.95477i 0.331792 0.193157i
\(659\) −29.4985 −1.14910 −0.574549 0.818470i \(-0.694822\pi\)
−0.574549 + 0.818470i \(0.694822\pi\)
\(660\) 1.24595 2.15804i 0.0484984 0.0840016i
\(661\) 18.9490 + 32.8205i 0.737029 + 1.27657i 0.953827 + 0.300355i \(0.0971051\pi\)
−0.216799 + 0.976216i \(0.569562\pi\)
\(662\) −5.06954 8.78069i −0.197033 0.341271i
\(663\) −5.74250 + 9.94630i −0.223020 + 0.386282i
\(664\) −3.17435 −0.123189
\(665\) −2.62774 + 1.52977i −0.101899 + 0.0593221i
\(666\) −0.660191 −0.0255819
\(667\) 13.0237 22.5577i 0.504279 0.873438i
\(668\) −5.98744 10.3706i −0.231661 0.401249i
\(669\) 2.22302 + 3.85039i 0.0859471 + 0.148865i
\(670\) −5.10588 + 8.84364i −0.197257 + 0.341660i
\(671\) −5.58602 −0.215646
\(672\) −2.29604 1.31461i −0.0885716 0.0507123i
\(673\) −0.234048 −0.00902187 −0.00451094 0.999990i \(-0.501436\pi\)
−0.00451094 + 0.999990i \(0.501436\pi\)
\(674\) 10.7182 18.5645i 0.412850 0.715077i
\(675\) −1.83963 3.18633i −0.0708073 0.122642i
\(676\) 3.85851 + 6.68313i 0.148404 + 0.257044i
\(677\) 5.61173 9.71981i 0.215676 0.373562i −0.737805 0.675014i \(-0.764138\pi\)
0.953482 + 0.301451i \(0.0974710\pi\)
\(678\) −8.63792 −0.331737
\(679\) −0.0563861 15.6513i −0.00216390 0.600641i
\(680\) −5.74250 −0.220215
\(681\) 10.0469 17.4017i 0.384997 0.666835i
\(682\) −4.75470 8.23539i −0.182067 0.315349i
\(683\) −8.25937 14.3056i −0.316036 0.547390i 0.663621 0.748069i \(-0.269019\pi\)
−0.979657 + 0.200679i \(0.935685\pi\)
\(684\) −0.500000 + 0.866025i −0.0191180 + 0.0331133i
\(685\) −12.7344 −0.486557
\(686\) −16.1382 9.08624i −0.616158 0.346914i
\(687\) −17.9555 −0.685043
\(688\) 1.04198 1.80477i 0.0397253 0.0688062i
\(689\) 12.9534 + 22.4360i 0.493486 + 0.854744i
\(690\) −3.97387 6.88295i −0.151283 0.262029i
\(691\) −20.7288 + 35.9033i −0.788559 + 1.36582i 0.138291 + 0.990392i \(0.455839\pi\)
−0.926850 + 0.375433i \(0.877494\pi\)
\(692\) 8.10185 0.307986
\(693\) −0.0206675 5.73675i −0.000785093 0.217921i
\(694\) −29.1826 −1.10776
\(695\) −6.33087 + 10.9654i −0.240144 + 0.415941i
\(696\) −1.88322 3.26183i −0.0713831 0.123639i
\(697\) 2.01516 + 3.49037i 0.0763298 + 0.132207i
\(698\) 4.68104 8.10780i 0.177180 0.306885i
\(699\) −10.2539 −0.387839
\(700\) 8.44771 + 4.83679i 0.319293 + 0.182814i
\(701\) 26.9202 1.01676 0.508380 0.861133i \(-0.330244\pi\)
0.508380 + 0.861133i \(0.330244\pi\)
\(702\) −1.14924 + 1.99054i −0.0433752 + 0.0751280i
\(703\) −0.330096 0.571742i −0.0124498 0.0215637i
\(704\) 1.08415 + 1.87780i 0.0408604 + 0.0707724i
\(705\) 2.13887 3.70464i 0.0805547 0.139525i
\(706\) −33.5994 −1.26453
\(707\) −29.4234 + 17.1292i −1.10658 + 0.644212i
\(708\) −10.4266 −0.391856
\(709\) −14.8103 + 25.6522i −0.556212 + 0.963388i 0.441596 + 0.897214i \(0.354412\pi\)
−0.997808 + 0.0661736i \(0.978921\pi\)
\(710\) 0.185941 + 0.322059i 0.00697825 + 0.0120867i
\(711\) 3.79604 + 6.57493i 0.142363 + 0.246579i
\(712\) 6.18879 10.7193i 0.231935 0.401722i
\(713\) −30.3297 −1.13586
\(714\) −11.4252 + 6.65134i −0.427577 + 0.248920i
\(715\) 5.72755 0.214198
\(716\) 3.42378 5.93016i 0.127953 0.221620i
\(717\) 0.869826 + 1.50658i 0.0324843 + 0.0562644i
\(718\) −12.1815 21.0990i −0.454610 0.787407i
\(719\) 13.2519 22.9530i 0.494213 0.856001i −0.505765 0.862671i \(-0.668790\pi\)
0.999978 + 0.00666979i \(0.00212307\pi\)
\(720\) −1.14924 −0.0428295
\(721\) −15.9708 9.14421i −0.594785 0.340548i
\(722\) −1.00000 −0.0372161
\(723\) −10.4246 + 18.0560i −0.387695 + 0.671508i
\(724\) 8.29527 + 14.3678i 0.308291 + 0.533976i
\(725\) 6.92883 + 12.0011i 0.257330 + 0.445709i
\(726\) 3.14924 5.45464i 0.116879 0.202441i
\(727\) 27.4510 1.01810 0.509051 0.860736i \(-0.329996\pi\)
0.509051 + 0.860736i \(0.329996\pi\)
\(728\) −0.0219083 6.08115i −0.000811974 0.225382i
\(729\) 1.00000 0.0370370
\(730\) 2.71697 4.70593i 0.100560 0.174174i
\(731\) −5.20658 9.01806i −0.192572 0.333545i
\(732\) 1.28811 + 2.23107i 0.0476100 + 0.0824629i
\(733\) 7.08255 12.2673i 0.261600 0.453104i −0.705067 0.709140i \(-0.749083\pi\)
0.966667 + 0.256036i \(0.0824166\pi\)
\(734\) 33.1571 1.22385
\(735\) −8.04445 + 0.0579634i −0.296724 + 0.00213801i
\(736\) 6.91567 0.254915
\(737\) 9.63341 16.6856i 0.354851 0.614621i
\(738\) 0.403292 + 0.698521i 0.0148454 + 0.0257129i
\(739\) −3.77009 6.52999i −0.138685 0.240210i 0.788314 0.615273i \(-0.210954\pi\)
−0.926999 + 0.375063i \(0.877621\pi\)
\(740\) 0.379358 0.657067i 0.0139455 0.0241543i
\(741\) −2.29847 −0.0844365
\(742\) 0.107434 + 29.8209i 0.00394404 + 1.09476i
\(743\) −53.8226 −1.97456 −0.987279 0.158997i \(-0.949174\pi\)
−0.987279 + 0.158997i \(0.949174\pi\)
\(744\) −2.19283 + 3.79808i −0.0803929 + 0.139245i
\(745\) −12.1917 21.1166i −0.446668 0.773652i
\(746\) −11.2730 19.5254i −0.412734 0.714876i
\(747\) −1.58718 + 2.74907i −0.0580718 + 0.100583i
\(748\) 10.8345 0.396150
\(749\) 28.4678 + 16.2994i 1.04019 + 0.595568i
\(750\) 9.97452 0.364218
\(751\) −10.3881 + 17.9927i −0.379068 + 0.656565i −0.990927 0.134402i \(-0.957089\pi\)
0.611859 + 0.790967i \(0.290422\pi\)
\(752\) 1.86113 + 3.22356i 0.0678683 + 0.117551i
\(753\) 1.59831 + 2.76836i 0.0582458 + 0.100885i
\(754\) 4.32852 7.49722i 0.157635 0.273033i
\(755\) −10.8050 −0.393233
\(756\) −2.28651 + 1.33112i −0.0831595 + 0.0484124i
\(757\) −15.9757 −0.580647 −0.290323 0.956929i \(-0.593763\pi\)
−0.290323 + 0.956929i \(0.593763\pi\)
\(758\) 9.38078 16.2480i 0.340725 0.590154i
\(759\) 7.49762 + 12.9863i 0.272146 + 0.471371i
\(760\) −0.574618 0.995268i −0.0208436 0.0361022i
\(761\) −7.09149 + 12.2828i −0.257066 + 0.445252i −0.965455 0.260571i \(-0.916089\pi\)
0.708388 + 0.705823i \(0.249422\pi\)
\(762\) −13.8683 −0.502395
\(763\) 41.2871 24.0358i 1.49469 0.870156i
\(764\) 15.8902 0.574887
\(765\) −2.87125 + 4.97315i −0.103810 + 0.179805i
\(766\) −4.05885 7.03014i −0.146652 0.254009i
\(767\) −11.9827 20.7546i −0.432669 0.749404i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −39.7426 −1.43316 −0.716578 0.697507i \(-0.754292\pi\)
−0.716578 + 0.697507i \(0.754292\pi\)
\(770\) 5.72148 + 3.27587i 0.206188 + 0.118054i
\(771\) 15.0219 0.541001
\(772\) −3.24838 + 5.62636i −0.116912 + 0.202497i
\(773\) −0.0918959 0.159168i −0.00330527 0.00572489i 0.864368 0.502860i \(-0.167719\pi\)
−0.867673 + 0.497135i \(0.834385\pi\)
\(774\) −1.04198 1.80477i −0.0374533 0.0648711i
\(775\) 8.06796 13.9741i 0.289810 0.501965i
\(776\) 5.91567 0.212360
\(777\) −0.00629271 1.74669i −0.000225750 0.0626622i