Properties

Label 798.2.j.h.571.2
Level $798$
Weight $2$
Character 798.571
Analytic conductor $6.372$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 571.2
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 798.571
Dual form 798.2.j.h.457.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.20711 + 3.82282i) q^{5} -1.00000 q^{6} +(1.62132 + 2.09077i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.20711 + 3.82282i) q^{5} -1.00000 q^{6} +(1.62132 + 2.09077i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(2.20711 - 3.82282i) q^{10} +(0.500000 - 0.866025i) q^{11} +(0.500000 + 0.866025i) q^{12} -2.82843 q^{13} +(1.00000 - 2.44949i) q^{14} +4.41421 q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.12132 + 3.67423i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.500000 - 0.866025i) q^{19} -4.41421 q^{20} +(2.62132 - 0.358719i) q^{21} -1.00000 q^{22} +(-0.292893 - 0.507306i) q^{23} +(0.500000 - 0.866025i) q^{24} +(-7.24264 + 12.5446i) q^{25} +(1.41421 + 2.44949i) q^{26} -1.00000 q^{27} +(-2.62132 + 0.358719i) q^{28} +7.82843 q^{29} +(-2.20711 - 3.82282i) q^{30} +(-0.328427 + 0.568852i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.500000 - 0.866025i) q^{33} +4.24264 q^{34} +(-4.41421 + 10.8126i) q^{35} +1.00000 q^{36} +(4.12132 + 7.13834i) q^{37} +(-0.500000 + 0.866025i) q^{38} +(-1.41421 + 2.44949i) q^{39} +(2.20711 + 3.82282i) q^{40} -3.41421 q^{41} +(-1.62132 - 2.09077i) q^{42} -2.24264 q^{43} +(0.500000 + 0.866025i) q^{44} +(2.20711 - 3.82282i) q^{45} +(-0.292893 + 0.507306i) q^{46} +(-4.41421 - 7.64564i) q^{47} -1.00000 q^{48} +(-1.74264 + 6.77962i) q^{49} +14.4853 q^{50} +(2.12132 + 3.67423i) q^{51} +(1.41421 - 2.44949i) q^{52} +(1.91421 - 3.31552i) q^{53} +(0.500000 + 0.866025i) q^{54} +4.41421 q^{55} +(1.62132 + 2.09077i) q^{56} -1.00000 q^{57} +(-3.91421 - 6.77962i) q^{58} +(4.03553 - 6.98975i) q^{59} +(-2.20711 + 3.82282i) q^{60} +(-0.414214 - 0.717439i) q^{61} +0.656854 q^{62} +(1.00000 - 2.44949i) q^{63} +1.00000 q^{64} +(-6.24264 - 10.8126i) q^{65} +(-0.500000 + 0.866025i) q^{66} +(1.00000 - 1.73205i) q^{67} +(-2.12132 - 3.67423i) q^{68} -0.585786 q^{69} +(11.5711 - 1.58346i) q^{70} +11.8995 q^{71} +(-0.500000 - 0.866025i) q^{72} +(4.58579 - 7.94282i) q^{73} +(4.12132 - 7.13834i) q^{74} +(7.24264 + 12.5446i) q^{75} +1.00000 q^{76} +(2.62132 - 0.358719i) q^{77} +2.82843 q^{78} +(2.91421 + 5.04757i) q^{79} +(2.20711 - 3.82282i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.70711 + 2.95680i) q^{82} +11.1421 q^{83} +(-1.00000 + 2.44949i) q^{84} -18.7279 q^{85} +(1.12132 + 1.94218i) q^{86} +(3.91421 - 6.77962i) q^{87} +(0.500000 - 0.866025i) q^{88} +(-6.12132 - 10.6024i) q^{89} -4.41421 q^{90} +(-4.58579 - 5.91359i) q^{91} +0.585786 q^{92} +(0.328427 + 0.568852i) q^{93} +(-4.41421 + 7.64564i) q^{94} +(2.20711 - 3.82282i) q^{95} +(0.500000 + 0.866025i) q^{96} -8.41421 q^{97} +(6.74264 - 1.88064i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 6 q^{5} - 4 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9} + O(q^{10}) \) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 6 q^{5} - 4 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9} + 6 q^{10} + 2 q^{11} + 2 q^{12} + 4 q^{14} + 12 q^{15} - 2 q^{16} - 2 q^{18} - 2 q^{19} - 12 q^{20} + 2 q^{21} - 4 q^{22} - 4 q^{23} + 2 q^{24} - 12 q^{25} - 4 q^{27} - 2 q^{28} + 20 q^{29} - 6 q^{30} + 10 q^{31} - 2 q^{32} - 2 q^{33} - 12 q^{35} + 4 q^{36} + 8 q^{37} - 2 q^{38} + 6 q^{40} - 8 q^{41} + 2 q^{42} + 8 q^{43} + 2 q^{44} + 6 q^{45} - 4 q^{46} - 12 q^{47} - 4 q^{48} + 10 q^{49} + 24 q^{50} + 2 q^{53} + 2 q^{54} + 12 q^{55} - 2 q^{56} - 4 q^{57} - 10 q^{58} + 2 q^{59} - 6 q^{60} + 4 q^{61} - 20 q^{62} + 4 q^{63} + 4 q^{64} - 8 q^{65} - 2 q^{66} + 4 q^{67} - 8 q^{69} + 18 q^{70} + 8 q^{71} - 2 q^{72} + 24 q^{73} + 8 q^{74} + 12 q^{75} + 4 q^{76} + 2 q^{77} + 6 q^{79} + 6 q^{80} - 2 q^{81} + 4 q^{82} - 12 q^{83} - 4 q^{84} - 24 q^{85} - 4 q^{86} + 10 q^{87} + 2 q^{88} - 16 q^{89} - 12 q^{90} - 24 q^{91} + 8 q^{92} - 10 q^{93} - 12 q^{94} + 6 q^{95} + 2 q^{96} - 28 q^{97} + 10 q^{98} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.20711 + 3.82282i 0.987048 + 1.70962i 0.632456 + 0.774597i \(0.282047\pi\)
0.354593 + 0.935021i \(0.384620\pi\)
\(6\) −1.00000 −0.408248
\(7\) 1.62132 + 2.09077i 0.612801 + 0.790237i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 2.20711 3.82282i 0.697948 1.20888i
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 1.00000 2.44949i 0.267261 0.654654i
\(15\) 4.41421 1.13975
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.12132 + 3.67423i −0.514496 + 0.891133i 0.485363 + 0.874313i \(0.338688\pi\)
−0.999859 + 0.0168199i \(0.994646\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −0.500000 0.866025i −0.114708 0.198680i
\(20\) −4.41421 −0.987048
\(21\) 2.62132 0.358719i 0.572019 0.0782790i
\(22\) −1.00000 −0.213201
\(23\) −0.292893 0.507306i −0.0610725 0.105781i 0.833873 0.551957i \(-0.186119\pi\)
−0.894945 + 0.446176i \(0.852785\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −7.24264 + 12.5446i −1.44853 + 2.50892i
\(26\) 1.41421 + 2.44949i 0.277350 + 0.480384i
\(27\) −1.00000 −0.192450
\(28\) −2.62132 + 0.358719i −0.495383 + 0.0677916i
\(29\) 7.82843 1.45370 0.726851 0.686795i \(-0.240983\pi\)
0.726851 + 0.686795i \(0.240983\pi\)
\(30\) −2.20711 3.82282i −0.402961 0.697948i
\(31\) −0.328427 + 0.568852i −0.0589873 + 0.102169i −0.894011 0.448045i \(-0.852120\pi\)
0.835024 + 0.550214i \(0.185454\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.500000 0.866025i −0.0870388 0.150756i
\(34\) 4.24264 0.727607
\(35\) −4.41421 + 10.8126i −0.746138 + 1.82766i
\(36\) 1.00000 0.166667
\(37\) 4.12132 + 7.13834i 0.677541 + 1.17354i 0.975719 + 0.219025i \(0.0702877\pi\)
−0.298178 + 0.954510i \(0.596379\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) −1.41421 + 2.44949i −0.226455 + 0.392232i
\(40\) 2.20711 + 3.82282i 0.348974 + 0.604441i
\(41\) −3.41421 −0.533211 −0.266605 0.963806i \(-0.585902\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(42\) −1.62132 2.09077i −0.250175 0.322613i
\(43\) −2.24264 −0.341999 −0.171000 0.985271i \(-0.554700\pi\)
−0.171000 + 0.985271i \(0.554700\pi\)
\(44\) 0.500000 + 0.866025i 0.0753778 + 0.130558i
\(45\) 2.20711 3.82282i 0.329016 0.569873i
\(46\) −0.292893 + 0.507306i −0.0431847 + 0.0747982i
\(47\) −4.41421 7.64564i −0.643879 1.11523i −0.984559 0.175052i \(-0.943991\pi\)
0.340680 0.940179i \(-0.389343\pi\)
\(48\) −1.00000 −0.144338
\(49\) −1.74264 + 6.77962i −0.248949 + 0.968517i
\(50\) 14.4853 2.04853
\(51\) 2.12132 + 3.67423i 0.297044 + 0.514496i
\(52\) 1.41421 2.44949i 0.196116 0.339683i
\(53\) 1.91421 3.31552i 0.262937 0.455421i −0.704084 0.710117i \(-0.748642\pi\)
0.967021 + 0.254696i \(0.0819754\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 4.41421 0.595212
\(56\) 1.62132 + 2.09077i 0.216658 + 0.279391i
\(57\) −1.00000 −0.132453
\(58\) −3.91421 6.77962i −0.513961 0.890207i
\(59\) 4.03553 6.98975i 0.525382 0.909988i −0.474181 0.880427i \(-0.657256\pi\)
0.999563 0.0295606i \(-0.00941082\pi\)
\(60\) −2.20711 + 3.82282i −0.284936 + 0.493524i
\(61\) −0.414214 0.717439i −0.0530346 0.0918586i 0.838289 0.545226i \(-0.183556\pi\)
−0.891324 + 0.453367i \(0.850223\pi\)
\(62\) 0.656854 0.0834206
\(63\) 1.00000 2.44949i 0.125988 0.308607i
\(64\) 1.00000 0.125000
\(65\) −6.24264 10.8126i −0.774304 1.34113i
\(66\) −0.500000 + 0.866025i −0.0615457 + 0.106600i
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) −2.12132 3.67423i −0.257248 0.445566i
\(69\) −0.585786 −0.0705204
\(70\) 11.5711 1.58346i 1.38301 0.189260i
\(71\) 11.8995 1.41221 0.706105 0.708107i \(-0.250451\pi\)
0.706105 + 0.708107i \(0.250451\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 4.58579 7.94282i 0.536726 0.929636i −0.462352 0.886696i \(-0.652994\pi\)
0.999078 0.0429397i \(-0.0136723\pi\)
\(74\) 4.12132 7.13834i 0.479094 0.829815i
\(75\) 7.24264 + 12.5446i 0.836308 + 1.44853i
\(76\) 1.00000 0.114708
\(77\) 2.62132 0.358719i 0.298727 0.0408799i
\(78\) 2.82843 0.320256
\(79\) 2.91421 + 5.04757i 0.327875 + 0.567896i 0.982090 0.188413i \(-0.0603343\pi\)
−0.654215 + 0.756308i \(0.727001\pi\)
\(80\) 2.20711 3.82282i 0.246762 0.427404i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.70711 + 2.95680i 0.188518 + 0.326523i
\(83\) 11.1421 1.22301 0.611504 0.791241i \(-0.290565\pi\)
0.611504 + 0.791241i \(0.290565\pi\)
\(84\) −1.00000 + 2.44949i −0.109109 + 0.267261i
\(85\) −18.7279 −2.03133
\(86\) 1.12132 + 1.94218i 0.120915 + 0.209431i
\(87\) 3.91421 6.77962i 0.419648 0.726851i
\(88\) 0.500000 0.866025i 0.0533002 0.0923186i
\(89\) −6.12132 10.6024i −0.648859 1.12386i −0.983396 0.181474i \(-0.941913\pi\)
0.334537 0.942383i \(-0.391420\pi\)
\(90\) −4.41421 −0.465299
\(91\) −4.58579 5.91359i −0.480721 0.619913i
\(92\) 0.585786 0.0610725
\(93\) 0.328427 + 0.568852i 0.0340563 + 0.0589873i
\(94\) −4.41421 + 7.64564i −0.455291 + 0.788588i
\(95\) 2.20711 3.82282i 0.226444 0.392213i
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) −8.41421 −0.854334 −0.427167 0.904173i \(-0.640488\pi\)
−0.427167 + 0.904173i \(0.640488\pi\)
\(98\) 6.74264 1.88064i 0.681110 0.189973i
\(99\) −1.00000 −0.100504
\(100\) −7.24264 12.5446i −0.724264 1.25446i
\(101\) 9.48528 16.4290i 0.943821 1.63475i 0.185726 0.982602i \(-0.440536\pi\)
0.758095 0.652144i \(-0.226130\pi\)
\(102\) 2.12132 3.67423i 0.210042 0.363803i
\(103\) 0.757359 + 1.31178i 0.0746248 + 0.129254i 0.900923 0.433979i \(-0.142891\pi\)
−0.826298 + 0.563233i \(0.809557\pi\)
\(104\) −2.82843 −0.277350
\(105\) 7.15685 + 9.22911i 0.698437 + 0.900669i
\(106\) −3.82843 −0.371850
\(107\) 6.86396 + 11.8887i 0.663564 + 1.14933i 0.979672 + 0.200604i \(0.0642904\pi\)
−0.316108 + 0.948723i \(0.602376\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) −5.12132 + 8.87039i −0.490534 + 0.849629i −0.999941 0.0108967i \(-0.996531\pi\)
0.509407 + 0.860526i \(0.329865\pi\)
\(110\) −2.20711 3.82282i −0.210439 0.364492i
\(111\) 8.24264 0.782357
\(112\) 1.00000 2.44949i 0.0944911 0.231455i
\(113\) 1.75736 0.165318 0.0826592 0.996578i \(-0.473659\pi\)
0.0826592 + 0.996578i \(0.473659\pi\)
\(114\) 0.500000 + 0.866025i 0.0468293 + 0.0811107i
\(115\) 1.29289 2.23936i 0.120563 0.208821i
\(116\) −3.91421 + 6.77962i −0.363426 + 0.629472i
\(117\) 1.41421 + 2.44949i 0.130744 + 0.226455i
\(118\) −8.07107 −0.743002
\(119\) −11.1213 + 1.52192i −1.01949 + 0.139514i
\(120\) 4.41421 0.402961
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) −0.414214 + 0.717439i −0.0375011 + 0.0649539i
\(123\) −1.70711 + 2.95680i −0.153925 + 0.266605i
\(124\) −0.328427 0.568852i −0.0294936 0.0510845i
\(125\) −41.8701 −3.74497
\(126\) −2.62132 + 0.358719i −0.233526 + 0.0319573i
\(127\) −0.171573 −0.0152246 −0.00761232 0.999971i \(-0.502423\pi\)
−0.00761232 + 0.999971i \(0.502423\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −1.12132 + 1.94218i −0.0987268 + 0.171000i
\(130\) −6.24264 + 10.8126i −0.547516 + 0.948325i
\(131\) 9.15685 + 15.8601i 0.800038 + 1.38571i 0.919590 + 0.392879i \(0.128521\pi\)
−0.119552 + 0.992828i \(0.538146\pi\)
\(132\) 1.00000 0.0870388
\(133\) 1.00000 2.44949i 0.0867110 0.212398i
\(134\) −2.00000 −0.172774
\(135\) −2.20711 3.82282i −0.189958 0.329016i
\(136\) −2.12132 + 3.67423i −0.181902 + 0.315063i
\(137\) 5.82843 10.0951i 0.497956 0.862485i −0.502041 0.864844i \(-0.667417\pi\)
0.999997 + 0.00235845i \(0.000750718\pi\)
\(138\) 0.292893 + 0.507306i 0.0249327 + 0.0431847i
\(139\) −11.8995 −1.00930 −0.504651 0.863323i \(-0.668379\pi\)
−0.504651 + 0.863323i \(0.668379\pi\)
\(140\) −7.15685 9.22911i −0.604865 0.780002i
\(141\) −8.82843 −0.743488
\(142\) −5.94975 10.3053i −0.499292 0.864799i
\(143\) −1.41421 + 2.44949i −0.118262 + 0.204837i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 17.2782 + 29.9267i 1.43487 + 2.48528i
\(146\) −9.17157 −0.759045
\(147\) 5.00000 + 4.89898i 0.412393 + 0.404061i
\(148\) −8.24264 −0.677541
\(149\) 0.757359 + 1.31178i 0.0620453 + 0.107466i 0.895380 0.445304i \(-0.146904\pi\)
−0.833334 + 0.552769i \(0.813571\pi\)
\(150\) 7.24264 12.5446i 0.591359 1.02426i
\(151\) 11.3284 19.6214i 0.921894 1.59677i 0.125413 0.992105i \(-0.459974\pi\)
0.796481 0.604663i \(-0.206692\pi\)
\(152\) −0.500000 0.866025i −0.0405554 0.0702439i
\(153\) 4.24264 0.342997
\(154\) −1.62132 2.09077i −0.130650 0.168479i
\(155\) −2.89949 −0.232893
\(156\) −1.41421 2.44949i −0.113228 0.196116i
\(157\) −6.24264 + 10.8126i −0.498217 + 0.862937i −0.999998 0.00205765i \(-0.999345\pi\)
0.501781 + 0.864995i \(0.332678\pi\)
\(158\) 2.91421 5.04757i 0.231842 0.401563i
\(159\) −1.91421 3.31552i −0.151807 0.262937i
\(160\) −4.41421 −0.348974
\(161\) 0.585786 1.43488i 0.0461664 0.113084i
\(162\) 1.00000 0.0785674
\(163\) 2.58579 + 4.47871i 0.202534 + 0.350800i 0.949344 0.314238i \(-0.101749\pi\)
−0.746810 + 0.665038i \(0.768416\pi\)
\(164\) 1.70711 2.95680i 0.133303 0.230887i
\(165\) 2.20711 3.82282i 0.171823 0.297606i
\(166\) −5.57107 9.64937i −0.432399 0.748937i
\(167\) 18.7279 1.44921 0.724605 0.689164i \(-0.242022\pi\)
0.724605 + 0.689164i \(0.242022\pi\)
\(168\) 2.62132 0.358719i 0.202239 0.0276758i
\(169\) −5.00000 −0.384615
\(170\) 9.36396 + 16.2189i 0.718183 + 1.24393i
\(171\) −0.500000 + 0.866025i −0.0382360 + 0.0662266i
\(172\) 1.12132 1.94218i 0.0854999 0.148090i
\(173\) −11.8995 20.6105i −0.904702 1.56699i −0.821317 0.570472i \(-0.806760\pi\)
−0.0833849 0.996517i \(-0.526573\pi\)
\(174\) −7.82843 −0.593472
\(175\) −37.9706 + 5.19615i −2.87030 + 0.392792i
\(176\) −1.00000 −0.0753778
\(177\) −4.03553 6.98975i −0.303329 0.525382i
\(178\) −6.12132 + 10.6024i −0.458812 + 0.794686i
\(179\) 12.2426 21.2049i 0.915058 1.58493i 0.108241 0.994125i \(-0.465478\pi\)
0.806816 0.590802i \(-0.201189\pi\)
\(180\) 2.20711 + 3.82282i 0.164508 + 0.284936i
\(181\) −3.51472 −0.261247 −0.130623 0.991432i \(-0.541698\pi\)
−0.130623 + 0.991432i \(0.541698\pi\)
\(182\) −2.82843 + 6.92820i −0.209657 + 0.513553i
\(183\) −0.828427 −0.0612391
\(184\) −0.292893 0.507306i −0.0215924 0.0373991i
\(185\) −18.1924 + 31.5101i −1.33753 + 2.31667i
\(186\) 0.328427 0.568852i 0.0240814 0.0417103i
\(187\) 2.12132 + 3.67423i 0.155126 + 0.268687i
\(188\) 8.82843 0.643879
\(189\) −1.62132 2.09077i −0.117934 0.152081i
\(190\) −4.41421 −0.320241
\(191\) −5.07107 8.78335i −0.366930 0.635541i 0.622154 0.782895i \(-0.286258\pi\)
−0.989084 + 0.147354i \(0.952924\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −0.863961 + 1.49642i −0.0621893 + 0.107715i −0.895444 0.445175i \(-0.853142\pi\)
0.833254 + 0.552890i \(0.186475\pi\)
\(194\) 4.20711 + 7.28692i 0.302053 + 0.523171i
\(195\) −12.4853 −0.894090
\(196\) −5.00000 4.89898i −0.357143 0.349927i
\(197\) 6.82843 0.486505 0.243253 0.969963i \(-0.421786\pi\)
0.243253 + 0.969963i \(0.421786\pi\)
\(198\) 0.500000 + 0.866025i 0.0355335 + 0.0615457i
\(199\) 4.24264 7.34847i 0.300753 0.520919i −0.675554 0.737311i \(-0.736095\pi\)
0.976307 + 0.216391i \(0.0694287\pi\)
\(200\) −7.24264 + 12.5446i −0.512132 + 0.887039i
\(201\) −1.00000 1.73205i −0.0705346 0.122169i
\(202\) −18.9706 −1.33476
\(203\) 12.6924 + 16.3674i 0.890831 + 1.14877i
\(204\) −4.24264 −0.297044
\(205\) −7.53553 13.0519i −0.526305 0.911586i
\(206\) 0.757359 1.31178i 0.0527677 0.0913964i
\(207\) −0.292893 + 0.507306i −0.0203575 + 0.0352602i
\(208\) 1.41421 + 2.44949i 0.0980581 + 0.169842i
\(209\) −1.00000 −0.0691714
\(210\) 4.41421 10.8126i 0.304610 0.746138i
\(211\) −0.928932 −0.0639503 −0.0319752 0.999489i \(-0.510180\pi\)
−0.0319752 + 0.999489i \(0.510180\pi\)
\(212\) 1.91421 + 3.31552i 0.131469 + 0.227711i
\(213\) 5.94975 10.3053i 0.407670 0.706105i
\(214\) 6.86396 11.8887i 0.469211 0.812697i
\(215\) −4.94975 8.57321i −0.337570 0.584688i
\(216\) −1.00000 −0.0680414
\(217\) −1.72183 + 0.235626i −0.116885 + 0.0159954i
\(218\) 10.2426 0.693719
\(219\) −4.58579 7.94282i −0.309879 0.536726i
\(220\) −2.20711 + 3.82282i −0.148803 + 0.257735i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) −4.12132 7.13834i −0.276605 0.479094i
\(223\) 6.51472 0.436258 0.218129 0.975920i \(-0.430005\pi\)
0.218129 + 0.975920i \(0.430005\pi\)
\(224\) −2.62132 + 0.358719i −0.175144 + 0.0239680i
\(225\) 14.4853 0.965685
\(226\) −0.878680 1.52192i −0.0584489 0.101236i
\(227\) −10.4497 + 18.0995i −0.693574 + 1.20131i 0.277085 + 0.960845i \(0.410632\pi\)
−0.970659 + 0.240460i \(0.922702\pi\)
\(228\) 0.500000 0.866025i 0.0331133 0.0573539i
\(229\) −9.89949 17.1464i −0.654177 1.13307i −0.982099 0.188363i \(-0.939682\pi\)
0.327922 0.944705i \(-0.393652\pi\)
\(230\) −2.58579 −0.170502
\(231\) 1.00000 2.44949i 0.0657952 0.161165i
\(232\) 7.82843 0.513961
\(233\) 5.41421 + 9.37769i 0.354697 + 0.614353i 0.987066 0.160314i \(-0.0512507\pi\)
−0.632369 + 0.774667i \(0.717917\pi\)
\(234\) 1.41421 2.44949i 0.0924500 0.160128i
\(235\) 19.4853 33.7495i 1.27108 2.20157i
\(236\) 4.03553 + 6.98975i 0.262691 + 0.454994i
\(237\) 5.82843 0.378597
\(238\) 6.87868 + 8.87039i 0.445879 + 0.574982i
\(239\) −28.2843 −1.82956 −0.914779 0.403955i \(-0.867635\pi\)
−0.914779 + 0.403955i \(0.867635\pi\)
\(240\) −2.20711 3.82282i −0.142468 0.246762i
\(241\) 15.2782 26.4626i 0.984154 1.70460i 0.338516 0.940961i \(-0.390075\pi\)
0.645638 0.763644i \(-0.276591\pi\)
\(242\) 5.00000 8.66025i 0.321412 0.556702i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0.828427 0.0530346
\(245\) −29.7635 + 8.30153i −1.90152 + 0.530366i
\(246\) 3.41421 0.217682
\(247\) 1.41421 + 2.44949i 0.0899843 + 0.155857i
\(248\) −0.328427 + 0.568852i −0.0208551 + 0.0361222i
\(249\) 5.57107 9.64937i 0.353052 0.611504i
\(250\) 20.9350 + 36.2605i 1.32405 + 2.29332i
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 1.62132 + 2.09077i 0.102134 + 0.131706i
\(253\) −0.585786 −0.0368281
\(254\) 0.0857864 + 0.148586i 0.00538272 + 0.00932314i
\(255\) −9.36396 + 16.2189i −0.586394 + 1.01566i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) 2.24264 0.139621
\(259\) −8.24264 + 20.1903i −0.512173 + 1.25456i
\(260\) 12.4853 0.774304
\(261\) −3.91421 6.77962i −0.242284 0.419648i
\(262\) 9.15685 15.8601i 0.565712 0.979843i
\(263\) −9.77817 + 16.9363i −0.602948 + 1.04434i 0.389424 + 0.921059i \(0.372674\pi\)
−0.992372 + 0.123278i \(0.960659\pi\)
\(264\) −0.500000 0.866025i −0.0307729 0.0533002i
\(265\) 16.8995 1.03813
\(266\) −2.62132 + 0.358719i −0.160723 + 0.0219945i
\(267\) −12.2426 −0.749237
\(268\) 1.00000 + 1.73205i 0.0610847 + 0.105802i
\(269\) −0.500000 + 0.866025i −0.0304855 + 0.0528025i −0.880866 0.473366i \(-0.843039\pi\)
0.850380 + 0.526169i \(0.176372\pi\)
\(270\) −2.20711 + 3.82282i −0.134320 + 0.232649i
\(271\) 5.44975 + 9.43924i 0.331049 + 0.573393i 0.982718 0.185110i \(-0.0592643\pi\)
−0.651669 + 0.758503i \(0.725931\pi\)
\(272\) 4.24264 0.257248
\(273\) −7.41421 + 1.01461i −0.448729 + 0.0614071i
\(274\) −11.6569 −0.704216
\(275\) 7.24264 + 12.5446i 0.436748 + 0.756469i
\(276\) 0.292893 0.507306i 0.0176301 0.0305362i
\(277\) 11.1213 19.2627i 0.668215 1.15738i −0.310187 0.950675i \(-0.600392\pi\)
0.978403 0.206708i \(-0.0662749\pi\)
\(278\) 5.94975 + 10.3053i 0.356842 + 0.618069i
\(279\) 0.656854 0.0393248
\(280\) −4.41421 + 10.8126i −0.263800 + 0.646175i
\(281\) 21.3137 1.27147 0.635735 0.771908i \(-0.280697\pi\)
0.635735 + 0.771908i \(0.280697\pi\)
\(282\) 4.41421 + 7.64564i 0.262863 + 0.455291i
\(283\) 4.77817 8.27604i 0.284033 0.491960i −0.688341 0.725387i \(-0.741661\pi\)
0.972374 + 0.233427i \(0.0749941\pi\)
\(284\) −5.94975 + 10.3053i −0.353053 + 0.611505i
\(285\) −2.20711 3.82282i −0.130738 0.226444i
\(286\) 2.82843 0.167248
\(287\) −5.53553 7.13834i −0.326752 0.421363i
\(288\) 1.00000 0.0589256
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 17.2782 29.9267i 1.01461 1.75735i
\(291\) −4.20711 + 7.28692i −0.246625 + 0.427167i
\(292\) 4.58579 + 7.94282i 0.268363 + 0.464818i
\(293\) −23.0000 −1.34367 −0.671837 0.740699i \(-0.734495\pi\)
−0.671837 + 0.740699i \(0.734495\pi\)
\(294\) 1.74264 6.77962i 0.101633 0.395395i
\(295\) 35.6274 2.07431
\(296\) 4.12132 + 7.13834i 0.239547 + 0.414907i
\(297\) −0.500000 + 0.866025i −0.0290129 + 0.0502519i
\(298\) 0.757359 1.31178i 0.0438726 0.0759897i
\(299\) 0.828427 + 1.43488i 0.0479092 + 0.0829811i
\(300\) −14.4853 −0.836308
\(301\) −3.63604 4.68885i −0.209578 0.270261i
\(302\) −22.6569 −1.30376
\(303\) −9.48528 16.4290i −0.544915 0.943821i
\(304\) −0.500000 + 0.866025i −0.0286770 + 0.0496700i
\(305\) 1.82843 3.16693i 0.104695 0.181338i
\(306\) −2.12132 3.67423i −0.121268 0.210042i
\(307\) 4.58579 0.261725 0.130862 0.991401i \(-0.458225\pi\)
0.130862 + 0.991401i \(0.458225\pi\)
\(308\) −1.00000 + 2.44949i −0.0569803 + 0.139573i
\(309\) 1.51472 0.0861693
\(310\) 1.44975 + 2.51104i 0.0823401 + 0.142617i
\(311\) −6.87868 + 11.9142i −0.390054 + 0.675594i −0.992456 0.122599i \(-0.960877\pi\)
0.602402 + 0.798193i \(0.294210\pi\)
\(312\) −1.41421 + 2.44949i −0.0800641 + 0.138675i
\(313\) −0.914214 1.58346i −0.0516744 0.0895027i 0.839031 0.544083i \(-0.183122\pi\)
−0.890706 + 0.454581i \(0.849789\pi\)
\(314\) 12.4853 0.704585
\(315\) 11.5711 1.58346i 0.651956 0.0892181i
\(316\) −5.82843 −0.327875
\(317\) −3.74264 6.48244i −0.210208 0.364090i 0.741572 0.670874i \(-0.234081\pi\)
−0.951779 + 0.306783i \(0.900747\pi\)
\(318\) −1.91421 + 3.31552i −0.107344 + 0.185925i
\(319\) 3.91421 6.77962i 0.219154 0.379586i
\(320\) 2.20711 + 3.82282i 0.123381 + 0.213702i
\(321\) 13.7279 0.766218
\(322\) −1.53553 + 0.210133i −0.0855720 + 0.0117103i
\(323\) 4.24264 0.236067
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 20.4853 35.4815i 1.13632 1.96816i
\(326\) 2.58579 4.47871i 0.143213 0.248053i
\(327\) 5.12132 + 8.87039i 0.283210 + 0.490534i
\(328\) −3.41421 −0.188518
\(329\) 8.82843 21.6251i 0.486727 1.19223i
\(330\) −4.41421 −0.242994
\(331\) −16.1924 28.0460i −0.890014 1.54155i −0.839857 0.542808i \(-0.817361\pi\)
−0.0501576 0.998741i \(-0.515972\pi\)
\(332\) −5.57107 + 9.64937i −0.305752 + 0.529578i
\(333\) 4.12132 7.13834i 0.225847 0.391178i
\(334\) −9.36396 16.2189i −0.512373 0.887456i
\(335\) 8.82843 0.482349
\(336\) −1.62132 2.09077i −0.0884503 0.114061i
\(337\) −12.0711 −0.657553 −0.328776 0.944408i \(-0.606636\pi\)
−0.328776 + 0.944408i \(0.606636\pi\)
\(338\) 2.50000 + 4.33013i 0.135982 + 0.235528i
\(339\) 0.878680 1.52192i 0.0477233 0.0826592i
\(340\) 9.36396 16.2189i 0.507832 0.879591i
\(341\) 0.328427 + 0.568852i 0.0177853 + 0.0308051i
\(342\) 1.00000 0.0540738
\(343\) −17.0000 + 7.34847i −0.917914 + 0.396780i
\(344\) −2.24264 −0.120915
\(345\) −1.29289 2.23936i −0.0696070 0.120563i
\(346\) −11.8995 + 20.6105i −0.639721 + 1.10803i
\(347\) 17.0000 29.4449i 0.912608 1.58068i 0.102241 0.994760i \(-0.467399\pi\)
0.810366 0.585923i \(-0.199268\pi\)
\(348\) 3.91421 + 6.77962i 0.209824 + 0.363426i
\(349\) −16.2426 −0.869449 −0.434724 0.900564i \(-0.643154\pi\)
−0.434724 + 0.900564i \(0.643154\pi\)
\(350\) 23.4853 + 30.2854i 1.25534 + 1.61882i
\(351\) 2.82843 0.150970
\(352\) 0.500000 + 0.866025i 0.0266501 + 0.0461593i
\(353\) −16.9497 + 29.3578i −0.902144 + 1.56256i −0.0774384 + 0.996997i \(0.524674\pi\)
−0.824706 + 0.565562i \(0.808659\pi\)
\(354\) −4.03553 + 6.98975i −0.214486 + 0.371501i
\(355\) 26.2635 + 45.4896i 1.39392 + 2.41434i
\(356\) 12.2426 0.648859
\(357\) −4.24264 + 10.3923i −0.224544 + 0.550019i
\(358\) −24.4853 −1.29409
\(359\) −5.00000 8.66025i −0.263890 0.457071i 0.703382 0.710812i \(-0.251672\pi\)
−0.967272 + 0.253741i \(0.918339\pi\)
\(360\) 2.20711 3.82282i 0.116325 0.201480i
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 1.75736 + 3.04384i 0.0923648 + 0.159980i
\(363\) 10.0000 0.524864
\(364\) 7.41421 1.01461i 0.388610 0.0531801i
\(365\) 40.4853 2.11910
\(366\) 0.414214 + 0.717439i 0.0216513 + 0.0375011i
\(367\) 1.62132 2.80821i 0.0846322 0.146587i −0.820602 0.571500i \(-0.806362\pi\)
0.905234 + 0.424912i \(0.139695\pi\)
\(368\) −0.292893 + 0.507306i −0.0152681 + 0.0264452i
\(369\) 1.70711 + 2.95680i 0.0888684 + 0.153925i
\(370\) 36.3848 1.89155
\(371\) 10.0355 1.37333i 0.521019 0.0712998i
\(372\) −0.656854 −0.0340563
\(373\) 8.24264 + 14.2767i 0.426788 + 0.739218i 0.996586 0.0825669i \(-0.0263118\pi\)
−0.569798 + 0.821785i \(0.692978\pi\)
\(374\) 2.12132 3.67423i 0.109691 0.189990i
\(375\) −20.9350 + 36.2605i −1.08108 + 1.87249i
\(376\) −4.41421 7.64564i −0.227646 0.394294i
\(377\) −22.1421 −1.14038
\(378\) −1.00000 + 2.44949i −0.0514344 + 0.125988i
\(379\) −19.3137 −0.992079 −0.496039 0.868300i \(-0.665213\pi\)
−0.496039 + 0.868300i \(0.665213\pi\)
\(380\) 2.20711 + 3.82282i 0.113222 + 0.196107i
\(381\) −0.0857864 + 0.148586i −0.00439497 + 0.00761232i
\(382\) −5.07107 + 8.78335i −0.259458 + 0.449395i
\(383\) −2.17157 3.76127i −0.110962 0.192192i 0.805196 0.593008i \(-0.202060\pi\)
−0.916158 + 0.400816i \(0.868727\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 7.15685 + 9.22911i 0.364747 + 0.470359i
\(386\) 1.72792 0.0879489
\(387\) 1.12132 + 1.94218i 0.0569999 + 0.0987268i
\(388\) 4.20711 7.28692i 0.213583 0.369937i
\(389\) −14.4142 + 24.9662i −0.730830 + 1.26583i 0.225699 + 0.974197i \(0.427533\pi\)
−0.956529 + 0.291637i \(0.905800\pi\)
\(390\) 6.24264 + 10.8126i 0.316108 + 0.547516i
\(391\) 2.48528 0.125686
\(392\) −1.74264 + 6.77962i −0.0880166 + 0.342422i
\(393\) 18.3137 0.923804
\(394\) −3.41421 5.91359i −0.172006 0.297922i
\(395\) −12.8640 + 22.2810i −0.647256 + 1.12108i
\(396\) 0.500000 0.866025i 0.0251259 0.0435194i
\(397\) 2.58579 + 4.47871i 0.129777 + 0.224780i 0.923590 0.383382i \(-0.125241\pi\)
−0.793813 + 0.608162i \(0.791907\pi\)
\(398\) −8.48528 −0.425329
\(399\) −1.62132 2.09077i −0.0811675 0.104669i
\(400\) 14.4853 0.724264
\(401\) 7.07107 + 12.2474i 0.353112 + 0.611608i 0.986793 0.161986i \(-0.0517900\pi\)
−0.633681 + 0.773595i \(0.718457\pi\)
\(402\) −1.00000 + 1.73205i −0.0498755 + 0.0863868i
\(403\) 0.928932 1.60896i 0.0462734 0.0801479i
\(404\) 9.48528 + 16.4290i 0.471910 + 0.817373i
\(405\) −4.41421 −0.219344
\(406\) 7.82843 19.1757i 0.388518 0.951672i
\(407\) 8.24264 0.408573
\(408\) 2.12132 + 3.67423i 0.105021 + 0.181902i
\(409\) −5.55025 + 9.61332i −0.274442 + 0.475348i −0.969994 0.243128i \(-0.921827\pi\)
0.695552 + 0.718476i \(0.255160\pi\)
\(410\) −7.53553 + 13.0519i −0.372153 + 0.644589i
\(411\) −5.82843 10.0951i −0.287495 0.497956i
\(412\) −1.51472 −0.0746248
\(413\) 21.1569 2.89525i 1.04106 0.142466i
\(414\) 0.585786 0.0287898
\(415\) 24.5919 + 42.5944i 1.20717 + 2.09088i
\(416\) 1.41421 2.44949i 0.0693375 0.120096i
\(417\) −5.94975 + 10.3053i −0.291360 + 0.504651i
\(418\) 0.500000 + 0.866025i 0.0244558 + 0.0423587i
\(419\) 2.97056 0.145121 0.0725607 0.997364i \(-0.476883\pi\)
0.0725607 + 0.997364i \(0.476883\pi\)
\(420\) −11.5711 + 1.58346i −0.564610 + 0.0772651i
\(421\) 20.8284 1.01512 0.507558 0.861618i \(-0.330548\pi\)
0.507558 + 0.861618i \(0.330548\pi\)
\(422\) 0.464466 + 0.804479i 0.0226099 + 0.0391614i
\(423\) −4.41421 + 7.64564i −0.214626 + 0.371744i
\(424\) 1.91421 3.31552i 0.0929624 0.161016i
\(425\) −30.7279 53.2223i −1.49052 2.58166i
\(426\) −11.8995 −0.576532
\(427\) 0.828427 2.02922i 0.0400904 0.0982010i
\(428\) −13.7279 −0.663564
\(429\) 1.41421 + 2.44949i 0.0682789 + 0.118262i
\(430\) −4.94975 + 8.57321i −0.238698 + 0.413437i
\(431\) 16.9497 29.3578i 0.816441 1.41412i −0.0918482 0.995773i \(-0.529277\pi\)
0.908289 0.418344i \(-0.137389\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −25.1716 −1.20967 −0.604834 0.796351i \(-0.706761\pi\)
−0.604834 + 0.796351i \(0.706761\pi\)
\(434\) 1.06497 + 1.37333i 0.0511203 + 0.0659220i
\(435\) 34.5563 1.65685
\(436\) −5.12132 8.87039i −0.245267 0.424814i
\(437\) −0.292893 + 0.507306i −0.0140110 + 0.0242677i
\(438\) −4.58579 + 7.94282i −0.219117 + 0.379522i
\(439\) 14.2279 + 24.6435i 0.679062 + 1.17617i 0.975264 + 0.221044i \(0.0709465\pi\)
−0.296202 + 0.955125i \(0.595720\pi\)
\(440\) 4.41421 0.210439
\(441\) 6.74264 1.88064i 0.321078 0.0895542i
\(442\) −12.0000 −0.570782
\(443\) 1.67157 + 2.89525i 0.0794188 + 0.137557i 0.902999 0.429642i \(-0.141360\pi\)
−0.823581 + 0.567199i \(0.808027\pi\)
\(444\) −4.12132 + 7.13834i −0.195589 + 0.338770i
\(445\) 27.0208 46.8014i 1.28091 2.21860i
\(446\) −3.25736 5.64191i −0.154240 0.267152i
\(447\) 1.51472 0.0716437
\(448\) 1.62132 + 2.09077i 0.0766002 + 0.0987796i
\(449\) 5.75736 0.271707 0.135853 0.990729i \(-0.456622\pi\)
0.135853 + 0.990729i \(0.456622\pi\)
\(450\) −7.24264 12.5446i −0.341421 0.591359i
\(451\) −1.70711 + 2.95680i −0.0803845 + 0.139230i
\(452\) −0.878680 + 1.52192i −0.0413296 + 0.0715850i
\(453\) −11.3284 19.6214i −0.532256 0.921894i
\(454\) 20.8995 0.980862
\(455\) 12.4853 30.5826i 0.585319 1.43373i
\(456\) −1.00000 −0.0468293
\(457\) 13.0563 + 22.6143i 0.610750 + 1.05785i 0.991114 + 0.133014i \(0.0424654\pi\)
−0.380364 + 0.924837i \(0.624201\pi\)
\(458\) −9.89949 + 17.1464i −0.462573 + 0.801200i
\(459\) 2.12132 3.67423i 0.0990148 0.171499i
\(460\) 1.29289 + 2.23936i 0.0602815 + 0.104411i
\(461\) 5.31371 0.247484 0.123742 0.992314i \(-0.460510\pi\)
0.123742 + 0.992314i \(0.460510\pi\)
\(462\) −2.62132 + 0.358719i −0.121955 + 0.0166891i
\(463\) −9.65685 −0.448792 −0.224396 0.974498i \(-0.572041\pi\)
−0.224396 + 0.974498i \(0.572041\pi\)
\(464\) −3.91421 6.77962i −0.181713 0.314736i
\(465\) −1.44975 + 2.51104i −0.0672304 + 0.116447i
\(466\) 5.41421 9.37769i 0.250809 0.434413i
\(467\) 10.4142 + 18.0379i 0.481912 + 0.834697i 0.999784 0.0207614i \(-0.00660903\pi\)
−0.517872 + 0.855458i \(0.673276\pi\)
\(468\) −2.82843 −0.130744
\(469\) 5.24264 0.717439i 0.242083 0.0331283i
\(470\) −38.9706 −1.79758
\(471\) 6.24264 + 10.8126i 0.287646 + 0.498217i
\(472\) 4.03553 6.98975i 0.185751 0.321729i
\(473\) −1.12132 + 1.94218i −0.0515584 + 0.0893017i
\(474\) −2.91421 5.04757i −0.133854 0.231842i
\(475\) 14.4853 0.664630
\(476\) 4.24264 10.3923i 0.194461 0.476331i
\(477\) −3.82843 −0.175292
\(478\) 14.1421 + 24.4949i 0.646846 + 1.12037i
\(479\) 10.6569 18.4582i 0.486924 0.843377i −0.512963 0.858411i \(-0.671452\pi\)
0.999887 + 0.0150335i \(0.00478549\pi\)
\(480\) −2.20711 + 3.82282i −0.100740 + 0.174487i
\(481\) −11.6569 20.1903i −0.531507 0.920597i
\(482\) −30.5563 −1.39180
\(483\) −0.949747 1.22474i −0.0432150 0.0557278i
\(484\) −10.0000 −0.454545
\(485\) −18.5711 32.1660i −0.843269 1.46058i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −0.399495 + 0.691946i −0.0181028 + 0.0313550i −0.874935 0.484241i \(-0.839096\pi\)
0.856832 + 0.515596i \(0.172429\pi\)
\(488\) −0.414214 0.717439i −0.0187506 0.0324769i
\(489\) 5.17157 0.233867
\(490\) 22.0711 + 21.6251i 0.997069 + 0.976924i
\(491\) 19.1421 0.863872 0.431936 0.901904i \(-0.357831\pi\)
0.431936 + 0.901904i \(0.357831\pi\)
\(492\) −1.70711 2.95680i −0.0769623 0.133303i
\(493\) −16.6066 + 28.7635i −0.747924 + 1.29544i
\(494\) 1.41421 2.44949i 0.0636285 0.110208i
\(495\) −2.20711 3.82282i −0.0992021 0.171823i
\(496\) 0.656854 0.0294936
\(497\) 19.2929 + 24.8791i 0.865405 + 1.11598i
\(498\) −11.1421 −0.499291
\(499\) 6.65685 + 11.5300i 0.298002 + 0.516154i 0.975679 0.219206i \(-0.0703465\pi\)
−0.677677 + 0.735360i \(0.737013\pi\)
\(500\) 20.9350 36.2605i 0.936243 1.62162i
\(501\) 9.36396 16.2189i 0.418351 0.724605i
\(502\) 10.5000 + 18.1865i 0.468638 + 0.811705i
\(503\) 18.2426 0.813399 0.406700 0.913562i \(-0.366680\pi\)
0.406700 + 0.913562i \(0.366680\pi\)
\(504\) 1.00000 2.44949i 0.0445435 0.109109i
\(505\) 83.7401 3.72639
\(506\) 0.292893 + 0.507306i 0.0130207 + 0.0225525i
\(507\) −2.50000 + 4.33013i −0.111029 + 0.192308i
\(508\) 0.0857864 0.148586i 0.00380616 0.00659246i
\(509\) −4.15685 7.19988i −0.184249 0.319129i 0.759074 0.651004i \(-0.225652\pi\)
−0.943323 + 0.331875i \(0.892319\pi\)
\(510\) 18.7279 0.829286
\(511\) 24.0416 3.29002i 1.06354 0.145542i
\(512\) 1.00000 0.0441942
\(513\) 0.500000 + 0.866025i 0.0220755 + 0.0382360i
\(514\) −3.00000 + 5.19615i −0.132324 + 0.229192i
\(515\) −3.34315 + 5.79050i −0.147317 + 0.255160i
\(516\) −1.12132 1.94218i −0.0493634 0.0854999i
\(517\) −8.82843 −0.388274
\(518\) 21.6066 2.95680i 0.949340 0.129914i
\(519\) −23.7990 −1.04466
\(520\) −6.24264 10.8126i −0.273758 0.474163i
\(521\) 15.9706 27.6618i 0.699683 1.21189i −0.268893 0.963170i \(-0.586658\pi\)
0.968576 0.248717i \(-0.0800088\pi\)
\(522\) −3.91421 + 6.77962i −0.171320 + 0.296736i
\(523\) −11.9497 20.6976i −0.522526 0.905042i −0.999656 0.0262091i \(-0.991656\pi\)
0.477131 0.878832i \(-0.341677\pi\)
\(524\) −18.3137 −0.800038
\(525\) −14.4853 + 35.4815i −0.632190 + 1.54854i
\(526\) 19.5563 0.852697
\(527\) −1.39340 2.41344i −0.0606974 0.105131i
\(528\) −0.500000 + 0.866025i −0.0217597 + 0.0376889i
\(529\) 11.3284 19.6214i 0.492540 0.853105i
\(530\) −8.44975 14.6354i −0.367034 0.635721i
\(531\) −8.07107 −0.350255
\(532\) 1.62132 + 2.09077i 0.0702932 + 0.0906464i
\(533\) 9.65685 0.418285
\(534\) 6.12132 + 10.6024i 0.264895 + 0.458812i
\(535\) −30.2990 + 52.4794i −1.30994 + 2.26888i
\(536\) 1.00000 1.73205i 0.0431934 0.0748132i
\(537\) −12.2426 21.2049i −0.528309 0.915058i
\(538\) 1.00000 0.0431131
\(539\) 5.00000 + 4.89898i 0.215365 + 0.211014i
\(540\) 4.41421 0.189958
\(541\) −3.19239 5.52938i −0.137251 0.237727i 0.789204 0.614131i \(-0.210494\pi\)
−0.926455 + 0.376405i \(0.877160\pi\)
\(542\) 5.44975 9.43924i 0.234087 0.405450i
\(543\) −1.75736 + 3.04384i −0.0754155 + 0.130623i
\(544\) −2.12132 3.67423i −0.0909509 0.157532i
\(545\) −45.2132 −1.93672
\(546\) 4.58579 + 5.91359i 0.196254 + 0.253078i
\(547\) −14.7279 −0.629720 −0.314860 0.949138i \(-0.601958\pi\)
−0.314860 + 0.949138i \(0.601958\pi\)
\(548\) 5.82843 + 10.0951i 0.248978 + 0.431243i
\(549\) −0.414214 + 0.717439i −0.0176782 + 0.0306195i
\(550\) 7.24264 12.5446i 0.308827 0.534904i
\(551\) −3.91421 6.77962i −0.166751 0.288821i
\(552\) −0.585786 −0.0249327
\(553\) −5.82843 + 14.2767i −0.247850 + 0.607106i
\(554\) −22.2426 −0.944999
\(555\) 18.1924 + 31.5101i 0.772224 + 1.33753i
\(556\) 5.94975 10.3053i 0.252325 0.437041i
\(557\) −10.7929 + 18.6938i −0.457310 + 0.792083i −0.998818 0.0486121i \(-0.984520\pi\)
0.541508 + 0.840695i \(0.317854\pi\)
\(558\) −0.328427 0.568852i −0.0139034 0.0240814i
\(559\) 6.34315 0.268286
\(560\) 11.5711 1.58346i 0.488967 0.0669136i
\(561\) 4.24264 0.179124
\(562\) −10.6569 18.4582i −0.449532 0.778613i
\(563\) 7.55025 13.0774i 0.318205 0.551148i −0.661908 0.749585i \(-0.730253\pi\)
0.980114 + 0.198437i \(0.0635866\pi\)
\(564\) 4.41421 7.64564i 0.185872 0.321940i
\(565\) 3.87868 + 6.71807i 0.163177 + 0.282631i
\(566\) −9.55635 −0.401683
\(567\) −2.62132 + 0.358719i −0.110085 + 0.0150648i
\(568\) 11.8995 0.499292
\(569\) −11.3137 19.5959i −0.474295 0.821504i 0.525271 0.850935i \(-0.323964\pi\)
−0.999567 + 0.0294311i \(0.990630\pi\)
\(570\) −2.20711 + 3.82282i −0.0924455 + 0.160120i
\(571\) 15.2635 26.4371i 0.638756 1.10636i −0.346950 0.937883i \(-0.612783\pi\)
0.985706 0.168474i \(-0.0538839\pi\)
\(572\) −1.41421 2.44949i −0.0591312 0.102418i
\(573\) −10.1421 −0.423694
\(574\) −3.41421 + 8.36308i −0.142507 + 0.349068i
\(575\) 8.48528 0.353861
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 0.742641 1.28629i 0.0309165 0.0535490i −0.850153 0.526535i \(-0.823491\pi\)
0.881070 + 0.472986i \(0.156824\pi\)
\(578\) −0.500000 + 0.866025i −0.0207973 + 0.0360219i
\(579\) 0.863961 + 1.49642i 0.0359050 + 0.0621893i
\(580\) −34.5563 −1.43487
\(581\) 18.0650 + 23.2956i 0.749461 + 0.966466i
\(582\) 8.41421 0.348780
\(583\) −1.91421 3.31552i −0.0792786 0.137315i
\(584\) 4.58579 7.94282i 0.189761 0.328676i
\(585\) −6.24264 + 10.8126i −0.258101 + 0.447045i
\(586\) 11.5000 + 19.9186i 0.475061 + 0.822829i
\(587\) −21.6274 −0.892659 −0.446330 0.894869i \(-0.647269\pi\)
−0.446330 + 0.894869i \(0.647269\pi\)
\(588\) −6.74264 + 1.88064i −0.278062 + 0.0775562i
\(589\) 0.656854 0.0270652
\(590\) −17.8137 30.8542i −0.733379 1.27025i
\(591\) 3.41421 5.91359i 0.140442 0.243253i
\(592\) 4.12132 7.13834i 0.169385 0.293384i
\(593\) 22.3848 + 38.7716i 0.919233 + 1.59216i 0.800583 + 0.599221i \(0.204523\pi\)
0.118649 + 0.992936i \(0.462144\pi\)
\(594\) 1.00000 0.0410305
\(595\) −30.3640 39.1558i −1.24480 1.60523i
\(596\) −1.51472 −0.0620453
\(597\) −4.24264 7.34847i −0.173640 0.300753i
\(598\) 0.828427 1.43488i 0.0338769 0.0586765i
\(599\) −14.8787 + 25.7706i −0.607926 + 1.05296i 0.383655 + 0.923476i \(0.374665\pi\)
−0.991582 + 0.129483i \(0.958668\pi\)
\(600\) 7.24264 + 12.5446i 0.295680 + 0.512132i
\(601\) −32.4142 −1.32220 −0.661102 0.750296i \(-0.729911\pi\)
−0.661102 + 0.750296i \(0.729911\pi\)
\(602\) −2.24264 + 5.49333i −0.0914032 + 0.223891i
\(603\) −2.00000 −0.0814463
\(604\) 11.3284 + 19.6214i 0.460947 + 0.798384i
\(605\) −22.0711 + 38.2282i −0.897317 + 1.55420i
\(606\) −9.48528 + 16.4290i −0.385313 + 0.667382i
\(607\) −11.3995 19.7445i −0.462691 0.801405i 0.536403 0.843962i \(-0.319783\pi\)
−0.999094 + 0.0425574i \(0.986449\pi\)
\(608\) 1.00000 0.0405554
\(609\) 20.5208 2.80821i 0.831545 0.113794i
\(610\) −3.65685 −0.148062
\(611\) 12.4853 + 21.6251i 0.505100 + 0.874860i
\(612\) −2.12132 + 3.67423i −0.0857493 + 0.148522i
\(613\) −22.6777 + 39.2789i −0.915942 + 1.58646i −0.110427 + 0.993884i \(0.535222\pi\)
−0.805516 + 0.592575i \(0.798112\pi\)
\(614\) −2.29289 3.97141i −0.0925336 0.160273i
\(615\) −15.0711 −0.607724
\(616\) 2.62132 0.358719i 0.105616 0.0144532i
\(617\) −34.5269 −1.39000 −0.695001 0.719009i \(-0.744596\pi\)
−0.695001 + 0.719009i \(0.744596\pi\)
\(618\) −0.757359 1.31178i −0.0304655 0.0527677i
\(619\) −16.8995 + 29.2708i −0.679248 + 1.17649i 0.295960 + 0.955200i \(0.404361\pi\)
−0.975208 + 0.221292i \(0.928973\pi\)
\(620\) 1.44975 2.51104i 0.0582233 0.100846i
\(621\) 0.292893 + 0.507306i 0.0117534 + 0.0203575i
\(622\) 13.7574 0.551620
\(623\) 12.2426 29.9882i 0.490491 1.20145i
\(624\) 2.82843 0.113228
\(625\) −56.1985 97.3386i −2.24794 3.89355i
\(626\) −0.914214 + 1.58346i −0.0365393 + 0.0632880i
\(627\) −0.500000 + 0.866025i −0.0199681 + 0.0345857i
\(628\) −6.24264 10.8126i −0.249108 0.431469i
\(629\) −34.9706 −1.39437
\(630\) −7.15685 9.22911i −0.285136 0.367696i
\(631\) 24.5563 0.977573 0.488786 0.872403i \(-0.337440\pi\)
0.488786 + 0.872403i \(0.337440\pi\)
\(632\) 2.91421 + 5.04757i 0.115921 + 0.200781i
\(633\) −0.464466 + 0.804479i −0.0184609 + 0.0319752i
\(634\) −3.74264 + 6.48244i −0.148639 + 0.257451i
\(635\) −0.378680 0.655892i −0.0150274 0.0260283i
\(636\) 3.82843 0.151807
\(637\) 4.92893 19.1757i 0.195291 0.759767i
\(638\) −7.82843 −0.309930
\(639\) −5.94975 10.3053i −0.235368 0.407670i
\(640\) 2.20711 3.82282i 0.0872436 0.151110i
\(641\) 10.7071 18.5453i 0.422905 0.732493i −0.573317 0.819334i \(-0.694344\pi\)
0.996222 + 0.0868402i \(0.0276770\pi\)
\(642\) −6.86396 11.8887i −0.270899 0.469211i
\(643\) 33.7574 1.33126 0.665630 0.746282i \(-0.268163\pi\)
0.665630 + 0.746282i \(0.268163\pi\)
\(644\) 0.949747 + 1.22474i 0.0374253 + 0.0482617i
\(645\) −9.89949 −0.389792
\(646\) −2.12132 3.67423i −0.0834622 0.144561i
\(647\) 13.6777 23.6904i 0.537725 0.931366i −0.461301 0.887243i \(-0.652617\pi\)
0.999026 0.0441230i \(-0.0140493\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −4.03553 6.98975i −0.158409 0.274372i
\(650\) −40.9706 −1.60700
\(651\) −0.656854 + 1.60896i −0.0257441 + 0.0630600i
\(652\) −5.17157 −0.202534
\(653\) −8.10660 14.0410i −0.317236 0.549469i 0.662674 0.748908i \(-0.269421\pi\)
−0.979910 + 0.199439i \(0.936088\pi\)
\(654\) 5.12132 8.87039i 0.200259 0.346860i
\(655\) −40.4203 + 70.0100i −1.57935 + 2.73552i
\(656\) 1.70711 + 2.95680i 0.0666513 + 0.115443i
\(657\) −9.17157 −0.357817
\(658\) −23.1421 + 3.16693i −0.902174 + 0.123460i
\(659\) −30.9706 −1.20644 −0.603221 0.797574i \(-0.706116\pi\)
−0.603221 + 0.797574i \(0.706116\pi\)
\(660\) 2.20711 + 3.82282i 0.0859115 + 0.148803i
\(661\) 2.19239 3.79733i 0.0852740 0.147699i −0.820234 0.572028i \(-0.806157\pi\)
0.905508 + 0.424329i \(0.139490\pi\)
\(662\) −16.1924 + 28.0460i −0.629335 + 1.09004i
\(663\) −6.00000 10.3923i −0.233021 0.403604i
\(664\) 11.1421 0.432399
\(665\) 11.5711 1.58346i 0.448707 0.0614041i
\(666\) −8.24264 −0.319396
\(667\) −2.29289 3.97141i −0.0887812 0.153774i
\(668\) −9.36396 + 16.2189i −0.362303 + 0.627526i
\(669\) 3.25736 5.64191i 0.125937 0.218129i
\(670\) −4.41421 7.64564i −0.170536 0.295377i
\(671\) −0.828427 −0.0319811
\(672\) −1.00000 + 2.44949i −0.0385758 + 0.0944911i
\(673\) −27.7279 −1.06883 −0.534416 0.845221i \(-0.679469\pi\)
−0.534416 + 0.845221i \(0.679469\pi\)
\(674\) 6.03553 + 10.4539i 0.232480 + 0.402667i
\(675\) 7.24264 12.5446i 0.278769 0.482843i
\(676\) 2.50000 4.33013i 0.0961538 0.166543i
\(677\) −0.156854 0.271680i −0.00602840 0.0104415i 0.862995 0.505212i \(-0.168586\pi\)
−0.869024 + 0.494770i \(0.835252\pi\)
\(678\) −1.75736 −0.0674910
\(679\) −13.6421 17.5922i −0.523537 0.675126i
\(680\) −18.7279 −0.718183
\(681\) 10.4497 + 18.0995i 0.400435 + 0.693574i
\(682\) 0.328427 0.568852i 0.0125761 0.0217825i
\(683\) −11.3787 + 19.7085i −0.435393 + 0.754123i −0.997328 0.0730588i \(-0.976724\pi\)
0.561935 + 0.827182i \(0.310057\pi\)
\(684\) −0.500000 0.866025i −0.0191180 0.0331133i
\(685\) 51.4558 1.96603
\(686\) 14.8640 + 11.0482i 0.567509 + 0.421822i
\(687\) −19.7990 −0.755379
\(688\) 1.12132 + 1.94218i 0.0427499 + 0.0740451i
\(689\) −5.41421 + 9.37769i −0.206265 + 0.357262i
\(690\) −1.29289 + 2.23936i −0.0492196 + 0.0852509i
\(691\) −25.7782 44.6491i −0.980648 1.69853i −0.659874 0.751376i \(-0.729390\pi\)
−0.320774 0.947156i \(-0.603943\pi\)
\(692\) 23.7990 0.904702
\(693\) −1.62132 2.09077i −0.0615889 0.0794218i
\(694\) −34.0000 −1.29062
\(695\) −26.2635 45.4896i −0.996230 1.72552i
\(696\) 3.91421 6.77962i 0.148368 0.256981i
\(697\) 7.24264 12.5446i 0.274335 0.475161i
\(698\) 8.12132 + 14.0665i 0.307397 + 0.532426i
\(699\) 10.8284 0.409569
\(700\) 14.4853 35.4815i 0.547492 1.34108i
\(701\) −7.04163 −0.265959 −0.132979 0.991119i \(-0.542454\pi\)
−0.132979 + 0.991119i \(0.542454\pi\)
\(702\) −1.41421 2.44949i −0.0533761 0.0924500i
\(703\) 4.12132 7.13834i 0.155439 0.269227i
\(704\) 0.500000 0.866025i 0.0188445 0.0326396i
\(705\) −19.4853 33.7495i −0.733858 1.27108i
\(706\) 33.8995 1.27582
\(707\) 49.7279 6.80511i 1.87021 0.255933i
\(708\) 8.07107 0.303329
\(709\) 6.80761 + 11.7911i 0.255665 + 0.442825i 0.965076 0.261970i \(-0.0843722\pi\)
−0.709411 + 0.704795i \(0.751039\pi\)
\(710\) 26.2635 45.4896i 0.985650 1.70720i
\(711\) 2.91421 5.04757i 0.109292 0.189299i
\(712\) −6.12132 10.6024i −0.229406 0.397343i
\(713\) 0.384776 0.0144100
\(714\) 11.1213 1.52192i 0.416205 0.0569563i
\(715\) −12.4853 −0.466923
\(716\) 12.2426 + 21.2049i 0.457529 + 0.792463i
\(717\) −14.1421 + 24.4949i −0.528148 + 0.914779i
\(718\) −5.00000 + 8.66025i −0.186598 + 0.323198i
\(719\) −1.58579 2.74666i −0.0591399 0.102433i 0.834940 0.550341i \(-0.185502\pi\)
−0.894080 + 0.447908i \(0.852169\pi\)
\(720\) −4.41421 −0.164508
\(721\) −1.51472 + 3.71029i −0.0564111 + 0.138178i
\(722\) 1.00000 0.0372161
\(723\) −15.2782 26.4626i −0.568201 0.984154i
\(724\) 1.75736 3.04384i 0.0653117 0.113123i
\(725\) −56.6985 + 98.2047i −2.10573 + 3.64723i
\(726\) −5.00000 8.66025i −0.185567 0.321412i
\(727\) 18.2721 0.677674 0.338837 0.940845i \(-0.389967\pi\)
0.338837 + 0.940845i \(0.389967\pi\)
\(728\) −4.58579 5.91359i −0.169961 0.219172i
\(729\) 1.00000 0.0370370
\(730\) −20.2426 35.0613i −0.749214 1.29768i
\(731\) 4.75736 8.23999i 0.175957 0.304767i
\(732\) 0.414214 0.717439i 0.0153098 0.0265173i
\(733\) 21.0919 + 36.5322i 0.779046 + 1.34935i 0.932492 + 0.361191i \(0.117630\pi\)
−0.153445 + 0.988157i \(0.549037\pi\)
\(734\) −3.24264 −0.119688
\(735\) −7.69239 + 29.9267i −0.283738 + 1.10386i
\(736\) 0.585786 0.0215924
\(737\) −1.00000 1.73205i −0.0368355 0.0638009i
\(738\) 1.70711 2.95680i 0.0628395 0.108841i
\(739\) −1.22183 + 2.11626i −0.0449456 + 0.0778480i −0.887623 0.460571i \(-0.847645\pi\)
0.842677 + 0.538419i \(0.180978\pi\)
\(740\) −18.1924 31.5101i −0.668765 1.15834i
\(741\) 2.82843 0.103905
\(742\) −6.20711 8.00436i −0.227870 0.293849i
\(743\) 52.9117 1.94114 0.970571 0.240816i \(-0.0774150\pi\)
0.970571 + 0.240816i \(0.0774150\pi\)
\(744\) 0.328427 + 0.568852i 0.0120407 + 0.0208551i
\(745\) −3.34315 + 5.79050i −0.122483 + 0.212147i
\(746\) 8.24264 14.2767i 0.301785 0.522706i
\(747\) −5.57107 9.64937i −0.203835 0.353052i
\(748\) −4.24264 −0.155126
\(749\) −13.7279 + 33.6264i −0.501607 + 1.22868i
\(750\) 41.8701 1.52888
\(751\) −23.0563 39.9348i −0.841338 1.45724i −0.888764 0.458366i \(-0.848435\pi\)
0.0474256 0.998875i \(-0.484898\pi\)
\(752\) −4.41421 + 7.64564i −0.160970 + 0.278808i
\(753\) −10.5000 + 18.1865i −0.382641 + 0.662754i
\(754\) 11.0711 + 19.1757i 0.403185 + 0.698336i
\(755\) 100.012 3.63982
\(756\) 2.62132 0.358719i 0.0953365 0.0130465i
\(757\) −41.2132 −1.49792 −0.748960 0.662616i \(-0.769446\pi\)
−0.748960 + 0.662616i \(0.769446\pi\)
\(758\) 9.65685 + 16.7262i 0.350753 + 0.607522i
\(759\) −0.292893 + 0.507306i −0.0106314 + 0.0184140i
\(760\) 2.20711 3.82282i 0.0800602 0.138668i
\(761\) 11.0711 + 19.1757i 0.401326 + 0.695117i 0.993886 0.110409i \(-0.0352162\pi\)
−0.592560 + 0.805526i \(0.701883\pi\)
\(762\) 0.171573 0.00621543
\(763\) −26.8492 + 3.67423i −0.972008 + 0.133016i
\(764\) 10.1421 0.366930
\(765\) 9.36396 + 16.2189i 0.338555 + 0.586394i
\(766\) −2.17157 + 3.76127i −0.0784621 + 0.135900i
\(767\) −11.4142 + 19.7700i −0.412143 + 0.713853i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 44.6569 1.61037 0.805184 0.593026i \(-0.202067\pi\)
0.805184 + 0.593026i \(0.202067\pi\)
\(770\) 4.41421 10.8126i 0.159077 0.389658i
\(771\) −6.00000 −0.216085
\(772\) −0.863961 1.49642i −0.0310946 0.0538575i
\(773\) −5.31371 + 9.20361i −0.191121 + 0.331031i −0.945622 0.325268i \(-0.894546\pi\)
0.754501 + 0.656299i \(0.227879\pi\)
\(774\) 1.12132 1.94218i 0.0403050 0.0698104i
\(775\) −4.75736 8.23999i −0.170889 0.295989i
\(776\) −8.41421