Properties

Label 798.2.j.h.571.1
Level $798$
Weight $2$
Character 798.571
Analytic conductor $6.372$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 571.1
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 798.571
Dual form 798.2.j.h.457.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.792893 + 1.37333i) q^{5} -1.00000 q^{6} +(-2.62132 - 0.358719i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.792893 + 1.37333i) q^{5} -1.00000 q^{6} +(-2.62132 - 0.358719i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.792893 - 1.37333i) q^{10} +(0.500000 - 0.866025i) q^{11} +(0.500000 + 0.866025i) q^{12} +2.82843 q^{13} +(1.00000 + 2.44949i) q^{14} +1.58579 q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.12132 - 3.67423i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.500000 - 0.866025i) q^{19} -1.58579 q^{20} +(-1.62132 + 2.09077i) q^{21} -1.00000 q^{22} +(-1.70711 - 2.95680i) q^{23} +(0.500000 - 0.866025i) q^{24} +(1.24264 - 2.15232i) q^{25} +(-1.41421 - 2.44949i) q^{26} -1.00000 q^{27} +(1.62132 - 2.09077i) q^{28} +2.17157 q^{29} +(-0.792893 - 1.37333i) q^{30} +(5.32843 - 9.22911i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.500000 - 0.866025i) q^{33} -4.24264 q^{34} +(-1.58579 - 3.88437i) q^{35} +1.00000 q^{36} +(-0.121320 - 0.210133i) q^{37} +(-0.500000 + 0.866025i) q^{38} +(1.41421 - 2.44949i) q^{39} +(0.792893 + 1.37333i) q^{40} -0.585786 q^{41} +(2.62132 + 0.358719i) q^{42} +6.24264 q^{43} +(0.500000 + 0.866025i) q^{44} +(0.792893 - 1.37333i) q^{45} +(-1.70711 + 2.95680i) q^{46} +(-1.58579 - 2.74666i) q^{47} -1.00000 q^{48} +(6.74264 + 1.88064i) q^{49} -2.48528 q^{50} +(-2.12132 - 3.67423i) q^{51} +(-1.41421 + 2.44949i) q^{52} +(-0.914214 + 1.58346i) q^{53} +(0.500000 + 0.866025i) q^{54} +1.58579 q^{55} +(-2.62132 - 0.358719i) q^{56} -1.00000 q^{57} +(-1.08579 - 1.88064i) q^{58} +(-3.03553 + 5.25770i) q^{59} +(-0.792893 + 1.37333i) q^{60} +(2.41421 + 4.18154i) q^{61} -10.6569 q^{62} +(1.00000 + 2.44949i) q^{63} +1.00000 q^{64} +(2.24264 + 3.88437i) q^{65} +(-0.500000 + 0.866025i) q^{66} +(1.00000 - 1.73205i) q^{67} +(2.12132 + 3.67423i) q^{68} -3.41421 q^{69} +(-2.57107 + 3.31552i) q^{70} -7.89949 q^{71} +(-0.500000 - 0.866025i) q^{72} +(7.41421 - 12.8418i) q^{73} +(-0.121320 + 0.210133i) q^{74} +(-1.24264 - 2.15232i) q^{75} +1.00000 q^{76} +(-1.62132 + 2.09077i) q^{77} -2.82843 q^{78} +(0.0857864 + 0.148586i) q^{79} +(0.792893 - 1.37333i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(0.292893 + 0.507306i) q^{82} -17.1421 q^{83} +(-1.00000 - 2.44949i) q^{84} +6.72792 q^{85} +(-3.12132 - 5.40629i) q^{86} +(1.08579 - 1.88064i) q^{87} +(0.500000 - 0.866025i) q^{88} +(-1.87868 - 3.25397i) q^{89} -1.58579 q^{90} +(-7.41421 - 1.01461i) q^{91} +3.41421 q^{92} +(-5.32843 - 9.22911i) q^{93} +(-1.58579 + 2.74666i) q^{94} +(0.792893 - 1.37333i) q^{95} +(0.500000 + 0.866025i) q^{96} -5.58579 q^{97} +(-1.74264 - 6.77962i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 6 q^{5} - 4 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9} + O(q^{10}) \) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 6 q^{5} - 4 q^{6} - 2 q^{7} + 4 q^{8} - 2 q^{9} + 6 q^{10} + 2 q^{11} + 2 q^{12} + 4 q^{14} + 12 q^{15} - 2 q^{16} - 2 q^{18} - 2 q^{19} - 12 q^{20} + 2 q^{21} - 4 q^{22} - 4 q^{23} + 2 q^{24} - 12 q^{25} - 4 q^{27} - 2 q^{28} + 20 q^{29} - 6 q^{30} + 10 q^{31} - 2 q^{32} - 2 q^{33} - 12 q^{35} + 4 q^{36} + 8 q^{37} - 2 q^{38} + 6 q^{40} - 8 q^{41} + 2 q^{42} + 8 q^{43} + 2 q^{44} + 6 q^{45} - 4 q^{46} - 12 q^{47} - 4 q^{48} + 10 q^{49} + 24 q^{50} + 2 q^{53} + 2 q^{54} + 12 q^{55} - 2 q^{56} - 4 q^{57} - 10 q^{58} + 2 q^{59} - 6 q^{60} + 4 q^{61} - 20 q^{62} + 4 q^{63} + 4 q^{64} - 8 q^{65} - 2 q^{66} + 4 q^{67} - 8 q^{69} + 18 q^{70} + 8 q^{71} - 2 q^{72} + 24 q^{73} + 8 q^{74} + 12 q^{75} + 4 q^{76} + 2 q^{77} + 6 q^{79} + 6 q^{80} - 2 q^{81} + 4 q^{82} - 12 q^{83} - 4 q^{84} - 24 q^{85} - 4 q^{86} + 10 q^{87} + 2 q^{88} - 16 q^{89} - 12 q^{90} - 24 q^{91} + 8 q^{92} - 10 q^{93} - 12 q^{94} + 6 q^{95} + 2 q^{96} - 28 q^{97} + 10 q^{98} - 4 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.792893 + 1.37333i 0.354593 + 0.614172i 0.987048 0.160424i \(-0.0512862\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) −1.00000 −0.408248
\(7\) −2.62132 0.358719i −0.990766 0.135583i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.792893 1.37333i 0.250735 0.434286i
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 1.00000 + 2.44949i 0.267261 + 0.654654i
\(15\) 1.58579 0.409448
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.12132 3.67423i 0.514496 0.891133i −0.485363 0.874313i \(-0.661312\pi\)
0.999859 0.0168199i \(-0.00535420\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −0.500000 0.866025i −0.114708 0.198680i
\(20\) −1.58579 −0.354593
\(21\) −1.62132 + 2.09077i −0.353801 + 0.456243i
\(22\) −1.00000 −0.213201
\(23\) −1.70711 2.95680i −0.355956 0.616535i 0.631325 0.775519i \(-0.282511\pi\)
−0.987281 + 0.158984i \(0.949178\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 1.24264 2.15232i 0.248528 0.430463i
\(26\) −1.41421 2.44949i −0.277350 0.480384i
\(27\) −1.00000 −0.192450
\(28\) 1.62132 2.09077i 0.306401 0.395118i
\(29\) 2.17157 0.403251 0.201625 0.979463i \(-0.435378\pi\)
0.201625 + 0.979463i \(0.435378\pi\)
\(30\) −0.792893 1.37333i −0.144762 0.250735i
\(31\) 5.32843 9.22911i 0.957014 1.65760i 0.227323 0.973819i \(-0.427003\pi\)
0.729691 0.683777i \(-0.239664\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.500000 0.866025i −0.0870388 0.150756i
\(34\) −4.24264 −0.727607
\(35\) −1.58579 3.88437i −0.268047 0.656578i
\(36\) 1.00000 0.166667
\(37\) −0.121320 0.210133i −0.0199449 0.0345457i 0.855881 0.517173i \(-0.173016\pi\)
−0.875826 + 0.482628i \(0.839682\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 1.41421 2.44949i 0.226455 0.392232i
\(40\) 0.792893 + 1.37333i 0.125367 + 0.217143i
\(41\) −0.585786 −0.0914845 −0.0457422 0.998953i \(-0.514565\pi\)
−0.0457422 + 0.998953i \(0.514565\pi\)
\(42\) 2.62132 + 0.358719i 0.404479 + 0.0553516i
\(43\) 6.24264 0.951994 0.475997 0.879447i \(-0.342087\pi\)
0.475997 + 0.879447i \(0.342087\pi\)
\(44\) 0.500000 + 0.866025i 0.0753778 + 0.130558i
\(45\) 0.792893 1.37333i 0.118198 0.204724i
\(46\) −1.70711 + 2.95680i −0.251699 + 0.435956i
\(47\) −1.58579 2.74666i −0.231311 0.400642i 0.726883 0.686761i \(-0.240968\pi\)
−0.958194 + 0.286119i \(0.907635\pi\)
\(48\) −1.00000 −0.144338
\(49\) 6.74264 + 1.88064i 0.963234 + 0.268662i
\(50\) −2.48528 −0.351472
\(51\) −2.12132 3.67423i −0.297044 0.514496i
\(52\) −1.41421 + 2.44949i −0.196116 + 0.339683i
\(53\) −0.914214 + 1.58346i −0.125577 + 0.217506i −0.921958 0.387289i \(-0.873412\pi\)
0.796381 + 0.604795i \(0.206745\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) 1.58579 0.213827
\(56\) −2.62132 0.358719i −0.350289 0.0479359i
\(57\) −1.00000 −0.132453
\(58\) −1.08579 1.88064i −0.142571 0.246940i
\(59\) −3.03553 + 5.25770i −0.395193 + 0.684494i −0.993126 0.117052i \(-0.962656\pi\)
0.597933 + 0.801546i \(0.295989\pi\)
\(60\) −0.792893 + 1.37333i −0.102362 + 0.177296i
\(61\) 2.41421 + 4.18154i 0.309108 + 0.535391i 0.978168 0.207818i \(-0.0666361\pi\)
−0.669059 + 0.743209i \(0.733303\pi\)
\(62\) −10.6569 −1.35342
\(63\) 1.00000 + 2.44949i 0.125988 + 0.308607i
\(64\) 1.00000 0.125000
\(65\) 2.24264 + 3.88437i 0.278165 + 0.481797i
\(66\) −0.500000 + 0.866025i −0.0615457 + 0.106600i
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) 2.12132 + 3.67423i 0.257248 + 0.445566i
\(69\) −3.41421 −0.411023
\(70\) −2.57107 + 3.31552i −0.307301 + 0.396280i
\(71\) −7.89949 −0.937498 −0.468749 0.883332i \(-0.655295\pi\)
−0.468749 + 0.883332i \(0.655295\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 7.41421 12.8418i 0.867768 1.50302i 0.00349590 0.999994i \(-0.498887\pi\)
0.864272 0.503024i \(-0.167779\pi\)
\(74\) −0.121320 + 0.210133i −0.0141032 + 0.0244275i
\(75\) −1.24264 2.15232i −0.143488 0.248528i
\(76\) 1.00000 0.114708
\(77\) −1.62132 + 2.09077i −0.184767 + 0.238265i
\(78\) −2.82843 −0.320256
\(79\) 0.0857864 + 0.148586i 0.00965173 + 0.0167173i 0.870811 0.491618i \(-0.163594\pi\)
−0.861159 + 0.508335i \(0.830261\pi\)
\(80\) 0.792893 1.37333i 0.0886482 0.153543i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0.292893 + 0.507306i 0.0323446 + 0.0560226i
\(83\) −17.1421 −1.88159 −0.940797 0.338971i \(-0.889921\pi\)
−0.940797 + 0.338971i \(0.889921\pi\)
\(84\) −1.00000 2.44949i −0.109109 0.267261i
\(85\) 6.72792 0.729746
\(86\) −3.12132 5.40629i −0.336581 0.582975i
\(87\) 1.08579 1.88064i 0.116409 0.201625i
\(88\) 0.500000 0.866025i 0.0533002 0.0923186i
\(89\) −1.87868 3.25397i −0.199140 0.344920i 0.749110 0.662446i \(-0.230481\pi\)
−0.948250 + 0.317526i \(0.897148\pi\)
\(90\) −1.58579 −0.167157
\(91\) −7.41421 1.01461i −0.777221 0.106360i
\(92\) 3.41421 0.355956
\(93\) −5.32843 9.22911i −0.552532 0.957014i
\(94\) −1.58579 + 2.74666i −0.163561 + 0.283297i
\(95\) 0.792893 1.37333i 0.0813491 0.140901i
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) −5.58579 −0.567151 −0.283575 0.958950i \(-0.591521\pi\)
−0.283575 + 0.958950i \(0.591521\pi\)
\(98\) −1.74264 6.77962i −0.176033 0.684845i
\(99\) −1.00000 −0.100504
\(100\) 1.24264 + 2.15232i 0.124264 + 0.215232i
\(101\) −7.48528 + 12.9649i −0.744813 + 1.29005i 0.205469 + 0.978664i \(0.434128\pi\)
−0.950282 + 0.311391i \(0.899205\pi\)
\(102\) −2.12132 + 3.67423i −0.210042 + 0.363803i
\(103\) 9.24264 + 16.0087i 0.910704 + 1.57739i 0.813071 + 0.582164i \(0.197794\pi\)
0.0976330 + 0.995222i \(0.468873\pi\)
\(104\) 2.82843 0.277350
\(105\) −4.15685 0.568852i −0.405667 0.0555143i
\(106\) 1.82843 0.177593
\(107\) −5.86396 10.1567i −0.566891 0.981883i −0.996871 0.0790450i \(-0.974813\pi\)
0.429981 0.902838i \(-0.358520\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) −0.878680 + 1.52192i −0.0841622 + 0.145773i −0.905034 0.425339i \(-0.860155\pi\)
0.820872 + 0.571113i \(0.193488\pi\)
\(110\) −0.792893 1.37333i −0.0755994 0.130942i
\(111\) −0.242641 −0.0230304
\(112\) 1.00000 + 2.44949i 0.0944911 + 0.231455i
\(113\) 10.2426 0.963547 0.481773 0.876296i \(-0.339993\pi\)
0.481773 + 0.876296i \(0.339993\pi\)
\(114\) 0.500000 + 0.866025i 0.0468293 + 0.0811107i
\(115\) 2.70711 4.68885i 0.252439 0.437237i
\(116\) −1.08579 + 1.88064i −0.100813 + 0.174613i
\(117\) −1.41421 2.44949i −0.130744 0.226455i
\(118\) 6.07107 0.558887
\(119\) −6.87868 + 8.87039i −0.630568 + 0.813147i
\(120\) 1.58579 0.144762
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 2.41421 4.18154i 0.218573 0.378579i
\(123\) −0.292893 + 0.507306i −0.0264093 + 0.0457422i
\(124\) 5.32843 + 9.22911i 0.478507 + 0.828798i
\(125\) 11.8701 1.06169
\(126\) 1.62132 2.09077i 0.144439 0.186261i
\(127\) −5.82843 −0.517189 −0.258595 0.965986i \(-0.583259\pi\)
−0.258595 + 0.965986i \(0.583259\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 3.12132 5.40629i 0.274817 0.475997i
\(130\) 2.24264 3.88437i 0.196693 0.340682i
\(131\) −2.15685 3.73578i −0.188445 0.326397i 0.756287 0.654240i \(-0.227011\pi\)
−0.944732 + 0.327843i \(0.893678\pi\)
\(132\) 1.00000 0.0870388
\(133\) 1.00000 + 2.44949i 0.0867110 + 0.212398i
\(134\) −2.00000 −0.172774
\(135\) −0.792893 1.37333i −0.0682414 0.118198i
\(136\) 2.12132 3.67423i 0.181902 0.315063i
\(137\) 0.171573 0.297173i 0.0146585 0.0253892i −0.858603 0.512641i \(-0.828667\pi\)
0.873262 + 0.487252i \(0.162001\pi\)
\(138\) 1.70711 + 2.95680i 0.145319 + 0.251699i
\(139\) 7.89949 0.670026 0.335013 0.942213i \(-0.391259\pi\)
0.335013 + 0.942213i \(0.391259\pi\)
\(140\) 4.15685 + 0.568852i 0.351318 + 0.0480768i
\(141\) −3.17157 −0.267095
\(142\) 3.94975 + 6.84116i 0.331455 + 0.574098i
\(143\) 1.41421 2.44949i 0.118262 0.204837i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 1.72183 + 2.98229i 0.142990 + 0.247666i
\(146\) −14.8284 −1.22721
\(147\) 5.00000 4.89898i 0.412393 0.404061i
\(148\) 0.242641 0.0199449
\(149\) 9.24264 + 16.0087i 0.757187 + 1.31149i 0.944280 + 0.329144i \(0.106760\pi\)
−0.187093 + 0.982342i \(0.559907\pi\)
\(150\) −1.24264 + 2.15232i −0.101461 + 0.175736i
\(151\) 5.67157 9.82345i 0.461546 0.799421i −0.537492 0.843269i \(-0.680628\pi\)
0.999038 + 0.0438475i \(0.0139616\pi\)
\(152\) −0.500000 0.866025i −0.0405554 0.0702439i
\(153\) −4.24264 −0.342997
\(154\) 2.62132 + 0.358719i 0.211232 + 0.0289064i
\(155\) 16.8995 1.35740
\(156\) 1.41421 + 2.44949i 0.113228 + 0.196116i
\(157\) 2.24264 3.88437i 0.178982 0.310006i −0.762550 0.646929i \(-0.776053\pi\)
0.941532 + 0.336923i \(0.109386\pi\)
\(158\) 0.0857864 0.148586i 0.00682480 0.0118209i
\(159\) 0.914214 + 1.58346i 0.0725019 + 0.125577i
\(160\) −1.58579 −0.125367
\(161\) 3.41421 + 8.36308i 0.269078 + 0.659103i
\(162\) 1.00000 0.0785674
\(163\) 5.41421 + 9.37769i 0.424074 + 0.734518i 0.996333 0.0855550i \(-0.0272663\pi\)
−0.572260 + 0.820073i \(0.693933\pi\)
\(164\) 0.292893 0.507306i 0.0228711 0.0396139i
\(165\) 0.792893 1.37333i 0.0617267 0.106914i
\(166\) 8.57107 + 14.8455i 0.665244 + 1.15224i
\(167\) −6.72792 −0.520622 −0.260311 0.965525i \(-0.583825\pi\)
−0.260311 + 0.965525i \(0.583825\pi\)
\(168\) −1.62132 + 2.09077i −0.125088 + 0.161306i
\(169\) −5.00000 −0.384615
\(170\) −3.36396 5.82655i −0.258004 0.446876i
\(171\) −0.500000 + 0.866025i −0.0382360 + 0.0662266i
\(172\) −3.12132 + 5.40629i −0.237998 + 0.412225i
\(173\) 7.89949 + 13.6823i 0.600587 + 1.04025i 0.992732 + 0.120344i \(0.0383999\pi\)
−0.392145 + 0.919904i \(0.628267\pi\)
\(174\) −2.17157 −0.164627
\(175\) −4.02944 + 5.19615i −0.304597 + 0.392792i
\(176\) −1.00000 −0.0753778
\(177\) 3.03553 + 5.25770i 0.228165 + 0.395193i
\(178\) −1.87868 + 3.25397i −0.140813 + 0.243895i
\(179\) 3.75736 6.50794i 0.280838 0.486426i −0.690753 0.723091i \(-0.742721\pi\)
0.971591 + 0.236665i \(0.0760542\pi\)
\(180\) 0.792893 + 1.37333i 0.0590988 + 0.102362i
\(181\) −20.4853 −1.52266 −0.761329 0.648365i \(-0.775453\pi\)
−0.761329 + 0.648365i \(0.775453\pi\)
\(182\) 2.82843 + 6.92820i 0.209657 + 0.513553i
\(183\) 4.82843 0.356928
\(184\) −1.70711 2.95680i −0.125850 0.217978i
\(185\) 0.192388 0.333226i 0.0141447 0.0244993i
\(186\) −5.32843 + 9.22911i −0.390699 + 0.676711i
\(187\) −2.12132 3.67423i −0.155126 0.268687i
\(188\) 3.17157 0.231311
\(189\) 2.62132 + 0.358719i 0.190673 + 0.0260930i
\(190\) −1.58579 −0.115045
\(191\) 9.07107 + 15.7116i 0.656359 + 1.13685i 0.981551 + 0.191200i \(0.0612378\pi\)
−0.325192 + 0.945648i \(0.605429\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 11.8640 20.5490i 0.853987 1.47915i −0.0235954 0.999722i \(-0.507511\pi\)
0.877582 0.479427i \(-0.159155\pi\)
\(194\) 2.79289 + 4.83743i 0.200518 + 0.347307i
\(195\) 4.48528 0.321198
\(196\) −5.00000 + 4.89898i −0.357143 + 0.349927i
\(197\) 1.17157 0.0834711 0.0417356 0.999129i \(-0.486711\pi\)
0.0417356 + 0.999129i \(0.486711\pi\)
\(198\) 0.500000 + 0.866025i 0.0355335 + 0.0615457i
\(199\) −4.24264 + 7.34847i −0.300753 + 0.520919i −0.976307 0.216391i \(-0.930571\pi\)
0.675554 + 0.737311i \(0.263905\pi\)
\(200\) 1.24264 2.15232i 0.0878680 0.152192i
\(201\) −1.00000 1.73205i −0.0705346 0.122169i
\(202\) 14.9706 1.05333
\(203\) −5.69239 0.778985i −0.399527 0.0546741i
\(204\) 4.24264 0.297044
\(205\) −0.464466 0.804479i −0.0324397 0.0561872i
\(206\) 9.24264 16.0087i 0.643965 1.11538i
\(207\) −1.70711 + 2.95680i −0.118652 + 0.205512i
\(208\) −1.41421 2.44949i −0.0980581 0.169842i
\(209\) −1.00000 −0.0691714
\(210\) 1.58579 + 3.88437i 0.109430 + 0.268047i
\(211\) −15.0711 −1.03754 −0.518768 0.854915i \(-0.673609\pi\)
−0.518768 + 0.854915i \(0.673609\pi\)
\(212\) −0.914214 1.58346i −0.0627884 0.108753i
\(213\) −3.94975 + 6.84116i −0.270632 + 0.468749i
\(214\) −5.86396 + 10.1567i −0.400852 + 0.694296i
\(215\) 4.94975 + 8.57321i 0.337570 + 0.584688i
\(216\) −1.00000 −0.0680414
\(217\) −17.2782 + 22.2810i −1.17292 + 1.51254i
\(218\) 1.75736 0.119023
\(219\) −7.41421 12.8418i −0.501006 0.867768i
\(220\) −0.792893 + 1.37333i −0.0534568 + 0.0925900i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0.121320 + 0.210133i 0.00814249 + 0.0141032i
\(223\) 23.4853 1.57269 0.786345 0.617787i \(-0.211971\pi\)
0.786345 + 0.617787i \(0.211971\pi\)
\(224\) 1.62132 2.09077i 0.108329 0.139695i
\(225\) −2.48528 −0.165685
\(226\) −5.12132 8.87039i −0.340665 0.590049i
\(227\) −0.550253 + 0.953065i −0.0365215 + 0.0632572i −0.883708 0.468038i \(-0.844961\pi\)
0.847187 + 0.531295i \(0.178294\pi\)
\(228\) 0.500000 0.866025i 0.0331133 0.0573539i
\(229\) 9.89949 + 17.1464i 0.654177 + 1.13307i 0.982099 + 0.188363i \(0.0603182\pi\)
−0.327922 + 0.944705i \(0.606348\pi\)
\(230\) −5.41421 −0.357003
\(231\) 1.00000 + 2.44949i 0.0657952 + 0.161165i
\(232\) 2.17157 0.142571
\(233\) 2.58579 + 4.47871i 0.169401 + 0.293410i 0.938209 0.346069i \(-0.112484\pi\)
−0.768809 + 0.639479i \(0.779150\pi\)
\(234\) −1.41421 + 2.44949i −0.0924500 + 0.160128i
\(235\) 2.51472 4.35562i 0.164042 0.284129i
\(236\) −3.03553 5.25770i −0.197596 0.342247i
\(237\) 0.171573 0.0111449
\(238\) 11.1213 + 1.52192i 0.720888 + 0.0986513i
\(239\) 28.2843 1.82956 0.914779 0.403955i \(-0.132365\pi\)
0.914779 + 0.403955i \(0.132365\pi\)
\(240\) −0.792893 1.37333i −0.0511810 0.0886482i
\(241\) −0.278175 + 0.481813i −0.0179188 + 0.0310363i −0.874846 0.484402i \(-0.839037\pi\)
0.856927 + 0.515438i \(0.172371\pi\)
\(242\) 5.00000 8.66025i 0.321412 0.556702i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −4.82843 −0.309108
\(245\) 2.76346 + 10.7510i 0.176551 + 0.686858i
\(246\) 0.585786 0.0373484
\(247\) −1.41421 2.44949i −0.0899843 0.155857i
\(248\) 5.32843 9.22911i 0.338355 0.586049i
\(249\) −8.57107 + 14.8455i −0.543169 + 0.940797i
\(250\) −5.93503 10.2798i −0.375364 0.650150i
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) −2.62132 0.358719i −0.165128 0.0225972i
\(253\) −3.41421 −0.214650
\(254\) 2.91421 + 5.04757i 0.182854 + 0.316712i
\(255\) 3.36396 5.82655i 0.210659 0.364873i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) −6.24264 −0.388650
\(259\) 0.242641 + 0.594346i 0.0150770 + 0.0369309i
\(260\) −4.48528 −0.278165
\(261\) −1.08579 1.88064i −0.0672085 0.116409i
\(262\) −2.15685 + 3.73578i −0.133251 + 0.230797i
\(263\) 5.77817 10.0081i 0.356298 0.617125i −0.631042 0.775749i \(-0.717372\pi\)
0.987339 + 0.158624i \(0.0507056\pi\)
\(264\) −0.500000 0.866025i −0.0307729 0.0533002i
\(265\) −2.89949 −0.178115
\(266\) 1.62132 2.09077i 0.0994095 0.128193i
\(267\) −3.75736 −0.229947
\(268\) 1.00000 + 1.73205i 0.0610847 + 0.105802i
\(269\) −0.500000 + 0.866025i −0.0304855 + 0.0528025i −0.880866 0.473366i \(-0.843039\pi\)
0.850380 + 0.526169i \(0.176372\pi\)
\(270\) −0.792893 + 1.37333i −0.0482539 + 0.0835783i
\(271\) −4.44975 7.70719i −0.270303 0.468178i 0.698636 0.715477i \(-0.253791\pi\)
−0.968939 + 0.247298i \(0.920457\pi\)
\(272\) −4.24264 −0.257248
\(273\) −4.58579 + 5.91359i −0.277544 + 0.357907i
\(274\) −0.343146 −0.0207302
\(275\) −1.24264 2.15232i −0.0749341 0.129790i
\(276\) 1.70711 2.95680i 0.102756 0.177978i
\(277\) 6.87868 11.9142i 0.413300 0.715856i −0.581949 0.813226i \(-0.697709\pi\)
0.995248 + 0.0973694i \(0.0310428\pi\)
\(278\) −3.94975 6.84116i −0.236890 0.410306i
\(279\) −10.6569 −0.638009
\(280\) −1.58579 3.88437i −0.0947689 0.232135i
\(281\) −1.31371 −0.0783693 −0.0391846 0.999232i \(-0.512476\pi\)
−0.0391846 + 0.999232i \(0.512476\pi\)
\(282\) 1.58579 + 2.74666i 0.0944322 + 0.163561i
\(283\) −10.7782 + 18.6683i −0.640696 + 1.10972i 0.344582 + 0.938756i \(0.388021\pi\)
−0.985278 + 0.170962i \(0.945313\pi\)
\(284\) 3.94975 6.84116i 0.234374 0.405948i
\(285\) −0.792893 1.37333i −0.0469669 0.0813491i
\(286\) −2.82843 −0.167248
\(287\) 1.53553 + 0.210133i 0.0906397 + 0.0124038i
\(288\) 1.00000 0.0589256
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 1.72183 2.98229i 0.101109 0.175126i
\(291\) −2.79289 + 4.83743i −0.163722 + 0.283575i
\(292\) 7.41421 + 12.8418i 0.433884 + 0.751509i
\(293\) −23.0000 −1.34367 −0.671837 0.740699i \(-0.734495\pi\)
−0.671837 + 0.740699i \(0.734495\pi\)
\(294\) −6.74264 1.88064i −0.393239 0.109681i
\(295\) −9.62742 −0.560530
\(296\) −0.121320 0.210133i −0.00705160 0.0122137i
\(297\) −0.500000 + 0.866025i −0.0290129 + 0.0502519i
\(298\) 9.24264 16.0087i 0.535412 0.927360i
\(299\) −4.82843 8.36308i −0.279235 0.483649i
\(300\) 2.48528 0.143488
\(301\) −16.3640 2.23936i −0.943203 0.129074i
\(302\) −11.3431 −0.652725
\(303\) 7.48528 + 12.9649i 0.430018 + 0.744813i
\(304\) −0.500000 + 0.866025i −0.0286770 + 0.0496700i
\(305\) −3.82843 + 6.63103i −0.219215 + 0.379692i
\(306\) 2.12132 + 3.67423i 0.121268 + 0.210042i
\(307\) 7.41421 0.423152 0.211576 0.977362i \(-0.432140\pi\)
0.211576 + 0.977362i \(0.432140\pi\)
\(308\) −1.00000 2.44949i −0.0569803 0.139573i
\(309\) 18.4853 1.05159
\(310\) −8.44975 14.6354i −0.479913 0.831234i
\(311\) −11.1213 + 19.2627i −0.630632 + 1.09229i 0.356790 + 0.934184i \(0.383871\pi\)
−0.987423 + 0.158103i \(0.949462\pi\)
\(312\) 1.41421 2.44949i 0.0800641 0.138675i
\(313\) 1.91421 + 3.31552i 0.108198 + 0.187404i 0.915040 0.403363i \(-0.132159\pi\)
−0.806842 + 0.590767i \(0.798825\pi\)
\(314\) −4.48528 −0.253119
\(315\) −2.57107 + 3.31552i −0.144863 + 0.186808i
\(316\) −0.171573 −0.00965173
\(317\) 4.74264 + 8.21449i 0.266373 + 0.461372i 0.967922 0.251249i \(-0.0808413\pi\)
−0.701549 + 0.712621i \(0.747508\pi\)
\(318\) 0.914214 1.58346i 0.0512666 0.0887963i
\(319\) 1.08579 1.88064i 0.0607924 0.105295i
\(320\) 0.792893 + 1.37333i 0.0443241 + 0.0767716i
\(321\) −11.7279 −0.654589
\(322\) 5.53553 7.13834i 0.308483 0.397804i
\(323\) −4.24264 −0.236067
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 3.51472 6.08767i 0.194962 0.337683i
\(326\) 5.41421 9.37769i 0.299866 0.519382i
\(327\) 0.878680 + 1.52192i 0.0485911 + 0.0841622i
\(328\) −0.585786 −0.0323446
\(329\) 3.17157 + 7.76874i 0.174854 + 0.428304i
\(330\) −1.58579 −0.0872947
\(331\) 2.19239 + 3.79733i 0.120505 + 0.208720i 0.919967 0.391996i \(-0.128215\pi\)
−0.799462 + 0.600716i \(0.794882\pi\)
\(332\) 8.57107 14.8455i 0.470398 0.814754i
\(333\) −0.121320 + 0.210133i −0.00664831 + 0.0115152i
\(334\) 3.36396 + 5.82655i 0.184068 + 0.318815i
\(335\) 3.17157 0.173282
\(336\) 2.62132 + 0.358719i 0.143005 + 0.0195698i
\(337\) 2.07107 0.112818 0.0564091 0.998408i \(-0.482035\pi\)
0.0564091 + 0.998408i \(0.482035\pi\)
\(338\) 2.50000 + 4.33013i 0.135982 + 0.235528i
\(339\) 5.12132 8.87039i 0.278152 0.481773i
\(340\) −3.36396 + 5.82655i −0.182436 + 0.315989i
\(341\) −5.32843 9.22911i −0.288551 0.499784i
\(342\) 1.00000 0.0540738
\(343\) −17.0000 7.34847i −0.917914 0.396780i
\(344\) 6.24264 0.336581
\(345\) −2.70711 4.68885i −0.145746 0.252439i
\(346\) 7.89949 13.6823i 0.424679 0.735566i
\(347\) 17.0000 29.4449i 0.912608 1.58068i 0.102241 0.994760i \(-0.467399\pi\)
0.810366 0.585923i \(-0.199268\pi\)
\(348\) 1.08579 + 1.88064i 0.0582043 + 0.100813i
\(349\) −7.75736 −0.415242 −0.207621 0.978209i \(-0.566572\pi\)
−0.207621 + 0.978209i \(0.566572\pi\)
\(350\) 6.51472 + 0.891519i 0.348226 + 0.0476537i
\(351\) −2.82843 −0.150970
\(352\) 0.500000 + 0.866025i 0.0266501 + 0.0461593i
\(353\) −7.05025 + 12.2114i −0.375247 + 0.649947i −0.990364 0.138489i \(-0.955775\pi\)
0.615117 + 0.788436i \(0.289109\pi\)
\(354\) 3.03553 5.25770i 0.161337 0.279444i
\(355\) −6.26346 10.8486i −0.332430 0.575785i
\(356\) 3.75736 0.199140
\(357\) 4.24264 + 10.3923i 0.224544 + 0.550019i
\(358\) −7.51472 −0.397165
\(359\) −5.00000 8.66025i −0.263890 0.457071i 0.703382 0.710812i \(-0.251672\pi\)
−0.967272 + 0.253741i \(0.918339\pi\)
\(360\) 0.792893 1.37333i 0.0417891 0.0723809i
\(361\) −0.500000 + 0.866025i −0.0263158 + 0.0455803i
\(362\) 10.2426 + 17.7408i 0.538341 + 0.932434i
\(363\) 10.0000 0.524864
\(364\) 4.58579 5.91359i 0.240361 0.309956i
\(365\) 23.5147 1.23082
\(366\) −2.41421 4.18154i −0.126193 0.218573i
\(367\) −2.62132 + 4.54026i −0.136832 + 0.237000i −0.926296 0.376797i \(-0.877025\pi\)
0.789464 + 0.613797i \(0.210359\pi\)
\(368\) −1.70711 + 2.95680i −0.0889891 + 0.154134i
\(369\) 0.292893 + 0.507306i 0.0152474 + 0.0264093i
\(370\) −0.384776 −0.0200036
\(371\) 2.96447 3.82282i 0.153907 0.198471i
\(372\) 10.6569 0.552532
\(373\) −0.242641 0.420266i −0.0125635 0.0217605i 0.859675 0.510841i \(-0.170666\pi\)
−0.872239 + 0.489080i \(0.837333\pi\)
\(374\) −2.12132 + 3.67423i −0.109691 + 0.189990i
\(375\) 5.93503 10.2798i 0.306484 0.530845i
\(376\) −1.58579 2.74666i −0.0817807 0.141648i
\(377\) 6.14214 0.316336
\(378\) −1.00000 2.44949i −0.0514344 0.125988i
\(379\) 3.31371 0.170214 0.0851069 0.996372i \(-0.472877\pi\)
0.0851069 + 0.996372i \(0.472877\pi\)
\(380\) 0.792893 + 1.37333i 0.0406746 + 0.0704504i
\(381\) −2.91421 + 5.04757i −0.149300 + 0.258595i
\(382\) 9.07107 15.7116i 0.464116 0.803873i
\(383\) −7.82843 13.5592i −0.400014 0.692844i 0.593713 0.804677i \(-0.297661\pi\)
−0.993727 + 0.111832i \(0.964328\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −4.15685 0.568852i −0.211853 0.0289914i
\(386\) −23.7279 −1.20772
\(387\) −3.12132 5.40629i −0.158666 0.274817i
\(388\) 2.79289 4.83743i 0.141788 0.245583i
\(389\) −11.5858 + 20.0672i −0.587423 + 1.01745i 0.407146 + 0.913363i \(0.366524\pi\)
−0.994569 + 0.104083i \(0.966809\pi\)
\(390\) −2.24264 3.88437i −0.113561 0.196693i
\(391\) −14.4853 −0.732552
\(392\) 6.74264 + 1.88064i 0.340555 + 0.0949865i
\(393\) −4.31371 −0.217598
\(394\) −0.585786 1.01461i −0.0295115 0.0511154i
\(395\) −0.136039 + 0.235626i −0.00684486 + 0.0118557i
\(396\) 0.500000 0.866025i 0.0251259 0.0435194i
\(397\) 5.41421 + 9.37769i 0.271732 + 0.470653i 0.969305 0.245860i \(-0.0790704\pi\)
−0.697574 + 0.716513i \(0.745737\pi\)
\(398\) 8.48528 0.425329
\(399\) 2.62132 + 0.358719i 0.131230 + 0.0179584i
\(400\) −2.48528 −0.124264
\(401\) −7.07107 12.2474i −0.353112 0.611608i 0.633681 0.773595i \(-0.281543\pi\)
−0.986793 + 0.161986i \(0.948210\pi\)
\(402\) −1.00000 + 1.73205i −0.0498755 + 0.0863868i
\(403\) 15.0711 26.1039i 0.750743 1.30033i
\(404\) −7.48528 12.9649i −0.372407 0.645027i
\(405\) −1.58579 −0.0787984
\(406\) 2.17157 + 5.31925i 0.107773 + 0.263990i
\(407\) −0.242641 −0.0120273
\(408\) −2.12132 3.67423i −0.105021 0.181902i
\(409\) −15.4497 + 26.7597i −0.763941 + 1.32318i 0.176864 + 0.984235i \(0.443405\pi\)
−0.940805 + 0.338949i \(0.889929\pi\)
\(410\) −0.464466 + 0.804479i −0.0229383 + 0.0397304i
\(411\) −0.171573 0.297173i −0.00846307 0.0146585i
\(412\) −18.4853 −0.910704
\(413\) 9.84315 12.6932i 0.484350 0.624592i
\(414\) 3.41421 0.167799
\(415\) −13.5919 23.5418i −0.667199 1.15562i
\(416\) −1.41421 + 2.44949i −0.0693375 + 0.120096i
\(417\) 3.94975 6.84116i 0.193420 0.335013i
\(418\) 0.500000 + 0.866025i 0.0244558 + 0.0423587i
\(419\) −30.9706 −1.51301 −0.756505 0.653987i \(-0.773095\pi\)
−0.756505 + 0.653987i \(0.773095\pi\)
\(420\) 2.57107 3.31552i 0.125455 0.161781i
\(421\) 15.1716 0.739417 0.369709 0.929148i \(-0.379458\pi\)
0.369709 + 0.929148i \(0.379458\pi\)
\(422\) 7.53553 + 13.0519i 0.366824 + 0.635358i
\(423\) −1.58579 + 2.74666i −0.0771036 + 0.133547i
\(424\) −0.914214 + 1.58346i −0.0443981 + 0.0768998i
\(425\) −5.27208 9.13151i −0.255733 0.442943i
\(426\) 7.89949 0.382732
\(427\) −4.82843 11.8272i −0.233664 0.572357i
\(428\) 11.7279 0.566891
\(429\) −1.41421 2.44949i −0.0682789 0.118262i
\(430\) 4.94975 8.57321i 0.238698 0.413437i
\(431\) 7.05025 12.2114i 0.339599 0.588202i −0.644759 0.764386i \(-0.723042\pi\)
0.984357 + 0.176184i \(0.0563754\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −30.8284 −1.48152 −0.740760 0.671770i \(-0.765534\pi\)
−0.740760 + 0.671770i \(0.765534\pi\)
\(434\) 27.9350 + 3.82282i 1.34092 + 0.183501i
\(435\) 3.44365 0.165110
\(436\) −0.878680 1.52192i −0.0420811 0.0728866i
\(437\) −1.70711 + 2.95680i −0.0816620 + 0.141443i
\(438\) −7.41421 + 12.8418i −0.354265 + 0.613605i
\(439\) −11.2279 19.4473i −0.535879 0.928170i −0.999120 0.0419380i \(-0.986647\pi\)
0.463241 0.886232i \(-0.346687\pi\)
\(440\) 1.58579 0.0755994
\(441\) −1.74264 6.77962i −0.0829829 0.322839i
\(442\) −12.0000 −0.570782
\(443\) 7.32843 + 12.6932i 0.348184 + 0.603073i 0.985927 0.167177i \(-0.0534651\pi\)
−0.637743 + 0.770249i \(0.720132\pi\)
\(444\) 0.121320 0.210133i 0.00575761 0.00997247i
\(445\) 2.97918 5.16010i 0.141227 0.244612i
\(446\) −11.7426 20.3389i −0.556030 0.963072i
\(447\) 18.4853 0.874324
\(448\) −2.62132 0.358719i −0.123846 0.0169479i
\(449\) 14.2426 0.672152 0.336076 0.941835i \(-0.390900\pi\)
0.336076 + 0.941835i \(0.390900\pi\)
\(450\) 1.24264 + 2.15232i 0.0585786 + 0.101461i
\(451\) −0.292893 + 0.507306i −0.0137918 + 0.0238881i
\(452\) −5.12132 + 8.87039i −0.240887 + 0.417228i
\(453\) −5.67157 9.82345i −0.266474 0.461546i
\(454\) 1.10051 0.0516493
\(455\) −4.48528 10.9867i −0.210273 0.515062i
\(456\) −1.00000 −0.0468293
\(457\) −18.0563 31.2745i −0.844640 1.46296i −0.885933 0.463813i \(-0.846481\pi\)
0.0412927 0.999147i \(-0.486852\pi\)
\(458\) 9.89949 17.1464i 0.462573 0.801200i
\(459\) −2.12132 + 3.67423i −0.0990148 + 0.171499i
\(460\) 2.70711 + 4.68885i 0.126220 + 0.218619i
\(461\) −17.3137 −0.806380 −0.403190 0.915116i \(-0.632099\pi\)
−0.403190 + 0.915116i \(0.632099\pi\)
\(462\) 1.62132 2.09077i 0.0754306 0.0972714i
\(463\) 1.65685 0.0770005 0.0385003 0.999259i \(-0.487742\pi\)
0.0385003 + 0.999259i \(0.487742\pi\)
\(464\) −1.08579 1.88064i −0.0504064 0.0873064i
\(465\) 8.44975 14.6354i 0.391848 0.678700i
\(466\) 2.58579 4.47871i 0.119784 0.207472i
\(467\) 7.58579 + 13.1390i 0.351028 + 0.607999i 0.986430 0.164183i \(-0.0524987\pi\)
−0.635402 + 0.772182i \(0.719165\pi\)
\(468\) 2.82843 0.130744
\(469\) −3.24264 + 4.18154i −0.149731 + 0.193086i
\(470\) −5.02944 −0.231991
\(471\) −2.24264 3.88437i −0.103335 0.178982i
\(472\) −3.03553 + 5.25770i −0.139722 + 0.242005i
\(473\) 3.12132 5.40629i 0.143518 0.248581i
\(474\) −0.0857864 0.148586i −0.00394030 0.00682480i
\(475\) −2.48528 −0.114033
\(476\) −4.24264 10.3923i −0.194461 0.476331i
\(477\) 1.82843 0.0837179
\(478\) −14.1421 24.4949i −0.646846 1.12037i
\(479\) −0.656854 + 1.13770i −0.0300124 + 0.0519831i −0.880641 0.473783i \(-0.842888\pi\)
0.850629 + 0.525766i \(0.176221\pi\)
\(480\) −0.792893 + 1.37333i −0.0361905 + 0.0626837i
\(481\) −0.343146 0.594346i −0.0156461 0.0270998i
\(482\) 0.556349 0.0253410
\(483\) 8.94975 + 1.22474i 0.407228 + 0.0557278i
\(484\) −10.0000 −0.454545
\(485\) −4.42893 7.67114i −0.201107 0.348328i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) 19.3995 33.6009i 0.879075 1.52260i 0.0267175 0.999643i \(-0.491495\pi\)
0.852357 0.522960i \(-0.175172\pi\)
\(488\) 2.41421 + 4.18154i 0.109286 + 0.189289i
\(489\) 10.8284 0.489678
\(490\) 7.92893 7.76874i 0.358193 0.350956i
\(491\) −9.14214 −0.412579 −0.206289 0.978491i \(-0.566139\pi\)
−0.206289 + 0.978491i \(0.566139\pi\)
\(492\) −0.292893 0.507306i −0.0132046 0.0228711i
\(493\) 4.60660 7.97887i 0.207471 0.359350i
\(494\) −1.41421 + 2.44949i −0.0636285 + 0.110208i
\(495\) −0.792893 1.37333i −0.0356379 0.0617267i
\(496\) −10.6569 −0.478507
\(497\) 20.7071 + 2.83370i 0.928841 + 0.127109i
\(498\) 17.1421 0.768157
\(499\) −4.65685 8.06591i −0.208469 0.361080i 0.742763 0.669554i \(-0.233515\pi\)
−0.951233 + 0.308475i \(0.900182\pi\)
\(500\) −5.93503 + 10.2798i −0.265423 + 0.459725i
\(501\) −3.36396 + 5.82655i −0.150291 + 0.260311i
\(502\) 10.5000 + 18.1865i 0.468638 + 0.811705i
\(503\) 9.75736 0.435059 0.217530 0.976054i \(-0.430200\pi\)
0.217530 + 0.976054i \(0.430200\pi\)
\(504\) 1.00000 + 2.44949i 0.0445435 + 0.109109i
\(505\) −23.7401 −1.05642
\(506\) 1.70711 + 2.95680i 0.0758902 + 0.131446i
\(507\) −2.50000 + 4.33013i −0.111029 + 0.192308i
\(508\) 2.91421 5.04757i 0.129297 0.223950i
\(509\) 7.15685 + 12.3960i 0.317222 + 0.549445i 0.979907 0.199453i \(-0.0639166\pi\)
−0.662685 + 0.748898i \(0.730583\pi\)
\(510\) −6.72792 −0.297917
\(511\) −24.0416 + 31.0028i −1.06354 + 1.37148i
\(512\) 1.00000 0.0441942
\(513\) 0.500000 + 0.866025i 0.0220755 + 0.0382360i
\(514\) −3.00000 + 5.19615i −0.132324 + 0.229192i
\(515\) −14.6569 + 25.3864i −0.645858 + 1.11866i
\(516\) 3.12132 + 5.40629i 0.137408 + 0.237998i
\(517\) −3.17157 −0.139486
\(518\) 0.393398 0.507306i 0.0172849 0.0222897i
\(519\) 15.7990 0.693499
\(520\) 2.24264 + 3.88437i 0.0983463 + 0.170341i
\(521\) −17.9706 + 31.1259i −0.787305 + 1.36365i 0.140308 + 0.990108i \(0.455191\pi\)
−0.927613 + 0.373544i \(0.878143\pi\)
\(522\) −1.08579 + 1.88064i −0.0475236 + 0.0823133i
\(523\) −2.05025 3.55114i −0.0896513 0.155281i 0.817712 0.575627i \(-0.195242\pi\)
−0.907364 + 0.420346i \(0.861909\pi\)
\(524\) 4.31371 0.188445
\(525\) 2.48528 + 6.08767i 0.108467 + 0.265688i
\(526\) −11.5563 −0.503881
\(527\) −22.6066 39.1558i −0.984759 1.70565i
\(528\) −0.500000 + 0.866025i −0.0217597 + 0.0376889i
\(529\) 5.67157 9.82345i 0.246590 0.427107i
\(530\) 1.44975 + 2.51104i 0.0629730 + 0.109072i
\(531\) 6.07107 0.263462
\(532\) −2.62132 0.358719i −0.113649 0.0155525i
\(533\) −1.65685 −0.0717663
\(534\) 1.87868 + 3.25397i 0.0812984 + 0.140813i
\(535\) 9.29899 16.1063i 0.402030 0.696337i
\(536\) 1.00000 1.73205i 0.0431934 0.0748132i
\(537\) −3.75736 6.50794i −0.162142 0.280838i
\(538\) 1.00000 0.0431131
\(539\) 5.00000 4.89898i 0.215365 0.211014i
\(540\) 1.58579 0.0682414
\(541\) 15.1924 + 26.3140i 0.653172 + 1.13133i 0.982349 + 0.187058i \(0.0598954\pi\)
−0.329177 + 0.944268i \(0.606771\pi\)
\(542\) −4.44975 + 7.70719i −0.191133 + 0.331052i
\(543\) −10.2426 + 17.7408i −0.439554 + 0.761329i
\(544\) 2.12132 + 3.67423i 0.0909509 + 0.157532i
\(545\) −2.78680 −0.119373
\(546\) 7.41421 + 1.01461i 0.317299 + 0.0434214i
\(547\) 10.7279 0.458693 0.229346 0.973345i \(-0.426341\pi\)
0.229346 + 0.973345i \(0.426341\pi\)
\(548\) 0.171573 + 0.297173i 0.00732923 + 0.0126946i
\(549\) 2.41421 4.18154i 0.103036 0.178464i
\(550\) −1.24264 + 2.15232i −0.0529864 + 0.0917751i
\(551\) −1.08579 1.88064i −0.0462561 0.0801178i
\(552\) −3.41421 −0.145319
\(553\) −0.171573 0.420266i −0.00729602 0.0178715i
\(554\) −13.7574 −0.584494
\(555\) −0.192388 0.333226i −0.00816642 0.0141447i
\(556\) −3.94975 + 6.84116i −0.167507 + 0.290130i
\(557\) −12.2071 + 21.1433i −0.517232 + 0.895872i 0.482568 + 0.875859i \(0.339704\pi\)
−0.999800 + 0.0200131i \(0.993629\pi\)
\(558\) 5.32843 + 9.22911i 0.225570 + 0.390699i
\(559\) 17.6569 0.746805
\(560\) −2.57107 + 3.31552i −0.108647 + 0.140106i
\(561\) −4.24264 −0.179124
\(562\) 0.656854 + 1.13770i 0.0277077 + 0.0479912i
\(563\) 17.4497 30.2238i 0.735419 1.27378i −0.219120 0.975698i \(-0.570319\pi\)
0.954539 0.298085i \(-0.0963480\pi\)
\(564\) 1.58579 2.74666i 0.0667737 0.115655i
\(565\) 8.12132 + 14.0665i 0.341667 + 0.591784i
\(566\) 21.5563 0.906081
\(567\) 1.62132 2.09077i 0.0680891 0.0878041i
\(568\) −7.89949 −0.331455
\(569\) 11.3137 + 19.5959i 0.474295 + 0.821504i 0.999567 0.0294311i \(-0.00936956\pi\)
−0.525271 + 0.850935i \(0.676036\pi\)
\(570\) −0.792893 + 1.37333i −0.0332106 + 0.0575225i
\(571\) −17.2635 + 29.9012i −0.722453 + 1.25133i 0.237561 + 0.971373i \(0.423652\pi\)
−0.960014 + 0.279953i \(0.909681\pi\)
\(572\) 1.41421 + 2.44949i 0.0591312 + 0.102418i
\(573\) 18.1421 0.757899
\(574\) −0.585786 1.43488i −0.0244503 0.0598906i
\(575\) −8.48528 −0.353861
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −7.74264 + 13.4106i −0.322330 + 0.558293i −0.980968 0.194167i \(-0.937800\pi\)
0.658638 + 0.752460i \(0.271133\pi\)
\(578\) −0.500000 + 0.866025i −0.0207973 + 0.0360219i
\(579\) −11.8640 20.5490i −0.493049 0.853987i
\(580\) −3.44365 −0.142990
\(581\) 44.9350 + 6.14922i 1.86422 + 0.255113i
\(582\) 5.58579 0.231538
\(583\) 0.914214 + 1.58346i 0.0378629 + 0.0655804i
\(584\) 7.41421 12.8418i 0.306802 0.531397i
\(585\) 2.24264 3.88437i 0.0927218 0.160599i
\(586\) 11.5000 + 19.9186i 0.475061 + 0.822829i
\(587\) 23.6274 0.975208 0.487604 0.873065i \(-0.337871\pi\)
0.487604 + 0.873065i \(0.337871\pi\)
\(588\) 1.74264 + 6.77962i 0.0718653 + 0.279587i
\(589\) −10.6569 −0.439108
\(590\) 4.81371 + 8.33759i 0.198177 + 0.343253i
\(591\) 0.585786 1.01461i 0.0240960 0.0417356i
\(592\) −0.121320 + 0.210133i −0.00498624 + 0.00863641i
\(593\) −14.3848 24.9152i −0.590712 1.02314i −0.994137 0.108130i \(-0.965514\pi\)
0.403425 0.915013i \(-0.367820\pi\)
\(594\) 1.00000 0.0410305
\(595\) −17.6360 2.41344i −0.723007 0.0989413i
\(596\) −18.4853 −0.757187
\(597\) 4.24264 + 7.34847i 0.173640 + 0.300753i
\(598\) −4.82843 + 8.36308i −0.197449 + 0.341992i
\(599\) −19.1213 + 33.1191i −0.781276 + 1.35321i 0.149923 + 0.988698i \(0.452098\pi\)
−0.931199 + 0.364512i \(0.881236\pi\)
\(600\) −1.24264 2.15232i −0.0507306 0.0878680i
\(601\) −29.5858 −1.20683 −0.603415 0.797428i \(-0.706194\pi\)
−0.603415 + 0.797428i \(0.706194\pi\)
\(602\) 6.24264 + 15.2913i 0.254431 + 0.623226i
\(603\) −2.00000 −0.0814463
\(604\) 5.67157 + 9.82345i 0.230773 + 0.399711i
\(605\) −7.92893 + 13.7333i −0.322357 + 0.558339i
\(606\) 7.48528 12.9649i 0.304069 0.526663i
\(607\) 8.39949 + 14.5484i 0.340925 + 0.590499i 0.984605 0.174796i \(-0.0559264\pi\)
−0.643680 + 0.765295i \(0.722593\pi\)
\(608\) 1.00000 0.0405554
\(609\) −3.52082 + 4.54026i −0.142671 + 0.183981i
\(610\) 7.65685 0.310017
\(611\) −4.48528 7.76874i −0.181455 0.314289i
\(612\) 2.12132 3.67423i 0.0857493 0.148522i
\(613\) 12.6777 21.9584i 0.512046 0.886890i −0.487856 0.872924i \(-0.662221\pi\)
0.999902 0.0139661i \(-0.00444570\pi\)
\(614\) −3.70711 6.42090i −0.149607 0.259126i
\(615\) −0.928932 −0.0374582
\(616\) −1.62132 + 2.09077i −0.0653249 + 0.0842395i
\(617\) 30.5269 1.22897 0.614484 0.788930i \(-0.289364\pi\)
0.614484 + 0.788930i \(0.289364\pi\)
\(618\) −9.24264 16.0087i −0.371794 0.643965i
\(619\) 2.89949 5.02207i 0.116541 0.201854i −0.801854 0.597520i \(-0.796153\pi\)
0.918395 + 0.395666i \(0.129486\pi\)
\(620\) −8.44975 + 14.6354i −0.339350 + 0.587771i
\(621\) 1.70711 + 2.95680i 0.0685038 + 0.118652i
\(622\) 22.2426 0.891849
\(623\) 3.75736 + 9.20361i 0.150535 + 0.368735i
\(624\) −2.82843 −0.113228
\(625\) 3.19848 + 5.53994i 0.127939 + 0.221598i
\(626\) 1.91421 3.31552i 0.0765074 0.132515i
\(627\) −0.500000 + 0.866025i −0.0199681 + 0.0345857i
\(628\) 2.24264 + 3.88437i 0.0894911 + 0.155003i
\(629\) −1.02944 −0.0410464
\(630\) 4.15685 + 0.568852i 0.165613 + 0.0226636i
\(631\) −6.55635 −0.261004 −0.130502 0.991448i \(-0.541659\pi\)
−0.130502 + 0.991448i \(0.541659\pi\)
\(632\) 0.0857864 + 0.148586i 0.00341240 + 0.00591045i
\(633\) −7.53553 + 13.0519i −0.299511 + 0.518768i
\(634\) 4.74264 8.21449i 0.188354 0.326239i
\(635\) −4.62132 8.00436i −0.183392 0.317643i
\(636\) −1.82843 −0.0725019
\(637\) 19.0711 + 5.31925i 0.755623 + 0.210756i
\(638\) −2.17157 −0.0859734
\(639\) 3.94975 + 6.84116i 0.156250 + 0.270632i
\(640\) 0.792893 1.37333i 0.0313419 0.0542857i
\(641\) 9.29289 16.0958i 0.367047 0.635744i −0.622055 0.782973i \(-0.713702\pi\)
0.989102 + 0.147229i \(0.0470354\pi\)
\(642\) 5.86396 + 10.1567i 0.231432 + 0.400852i
\(643\) 42.2426 1.66589 0.832944 0.553358i \(-0.186654\pi\)
0.832944 + 0.553358i \(0.186654\pi\)
\(644\) −8.94975 1.22474i −0.352669 0.0482617i
\(645\) 9.89949 0.389792
\(646\) 2.12132 + 3.67423i 0.0834622 + 0.144561i
\(647\) −21.6777 + 37.5468i −0.852237 + 1.47612i 0.0269476 + 0.999637i \(0.491421\pi\)
−0.879185 + 0.476481i \(0.841912\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 3.03553 + 5.25770i 0.119155 + 0.206383i
\(650\) −7.02944 −0.275717
\(651\) 10.6569 + 26.1039i 0.417675 + 1.02309i
\(652\) −10.8284 −0.424074
\(653\) 13.1066 + 22.7013i 0.512901 + 0.888371i 0.999888 + 0.0149614i \(0.00476253\pi\)
−0.486987 + 0.873409i \(0.661904\pi\)
\(654\) 0.878680 1.52192i 0.0343591 0.0595117i
\(655\) 3.42031 5.92415i 0.133643 0.231476i
\(656\) 0.292893 + 0.507306i 0.0114356 + 0.0198070i
\(657\) −14.8284 −0.578512
\(658\) 5.14214 6.63103i 0.200461 0.258504i
\(659\) 2.97056 0.115717 0.0578583 0.998325i \(-0.481573\pi\)
0.0578583 + 0.998325i \(0.481573\pi\)
\(660\) 0.792893 + 1.37333i 0.0308633 + 0.0534568i
\(661\) −16.1924 + 28.0460i −0.629811 + 1.09086i 0.357778 + 0.933806i \(0.383534\pi\)
−0.987589 + 0.157058i \(0.949799\pi\)
\(662\) 2.19239 3.79733i 0.0852096 0.147587i
\(663\) −6.00000 10.3923i −0.233021 0.403604i
\(664\) −17.1421 −0.665244
\(665\) −2.57107 + 3.31552i −0.0997017 + 0.128570i
\(666\) 0.242641 0.00940214
\(667\) −3.70711 6.42090i −0.143540 0.248618i
\(668\) 3.36396 5.82655i 0.130156 0.225436i
\(669\) 11.7426 20.3389i 0.453997 0.786345i
\(670\) −1.58579 2.74666i −0.0612643 0.106113i
\(671\) 4.82843 0.186399
\(672\) −1.00000 2.44949i −0.0385758 0.0944911i
\(673\) −2.27208 −0.0875822 −0.0437911 0.999041i \(-0.513944\pi\)
−0.0437911 + 0.999041i \(0.513944\pi\)
\(674\) −1.03553 1.79360i −0.0398873 0.0690868i
\(675\) −1.24264 + 2.15232i −0.0478293 + 0.0828427i
\(676\) 2.50000 4.33013i 0.0961538 0.166543i
\(677\) 11.1569 + 19.3242i 0.428793 + 0.742691i 0.996766 0.0803560i \(-0.0256057\pi\)
−0.567973 + 0.823047i \(0.692272\pi\)
\(678\) −10.2426 −0.393366
\(679\) 14.6421 + 2.00373i 0.561914 + 0.0768961i
\(680\) 6.72792 0.258004
\(681\) 0.550253 + 0.953065i 0.0210857 + 0.0365215i
\(682\) −5.32843 + 9.22911i −0.204036 + 0.353401i
\(683\) −15.6213 + 27.0569i −0.597733 + 1.03530i 0.395422 + 0.918500i \(0.370598\pi\)
−0.993155 + 0.116805i \(0.962735\pi\)
\(684\) −0.500000 0.866025i −0.0191180 0.0331133i
\(685\) 0.544156 0.0207911
\(686\) 2.13604 + 18.3967i 0.0815543 + 0.702388i
\(687\) 19.7990 0.755379
\(688\) −3.12132 5.40629i −0.118999 0.206113i
\(689\) −2.58579 + 4.47871i −0.0985106 + 0.170625i
\(690\) −2.70711 + 4.68885i −0.103058 + 0.178501i
\(691\) −10.2218 17.7047i −0.388857 0.673519i 0.603439 0.797409i \(-0.293797\pi\)
−0.992296 + 0.123889i \(0.960463\pi\)
\(692\) −15.7990 −0.600587
\(693\) 2.62132 + 0.358719i 0.0995757 + 0.0136266i
\(694\) −34.0000 −1.29062
\(695\) 6.26346 + 10.8486i 0.237586 + 0.411512i
\(696\) 1.08579 1.88064i 0.0411566 0.0712854i
\(697\) −1.24264 + 2.15232i −0.0470684 + 0.0815248i
\(698\) 3.87868 + 6.71807i 0.146810 + 0.254283i
\(699\) 5.17157 0.195607
\(700\) −2.48528 6.08767i −0.0939348 0.230092i
\(701\) 41.0416 1.55012 0.775060 0.631887i \(-0.217719\pi\)
0.775060 + 0.631887i \(0.217719\pi\)
\(702\) 1.41421 + 2.44949i 0.0533761 + 0.0924500i
\(703\) −0.121320 + 0.210133i −0.00457568 + 0.00792532i
\(704\) 0.500000 0.866025i 0.0188445 0.0326396i
\(705\) −2.51472 4.35562i −0.0947098 0.164042i
\(706\) 14.1005 0.530680
\(707\) 24.2721 31.3000i 0.912845 1.17716i
\(708\) −6.07107 −0.228165
\(709\) 25.1924 + 43.6345i 0.946120 + 1.63873i 0.753493 + 0.657456i \(0.228367\pi\)
0.192627 + 0.981272i \(0.438299\pi\)
\(710\) −6.26346 + 10.8486i −0.235063 + 0.407142i
\(711\) 0.0857864 0.148586i 0.00321724 0.00557243i
\(712\) −1.87868 3.25397i −0.0704065 0.121948i
\(713\) −36.3848 −1.36262
\(714\) 6.87868 8.87039i 0.257428 0.331966i
\(715\) 4.48528 0.167740
\(716\) 3.75736 + 6.50794i 0.140419 + 0.243213i
\(717\) 14.1421 24.4949i 0.528148 0.914779i
\(718\) −5.00000 + 8.66025i −0.186598 + 0.323198i
\(719\) −4.41421 7.64564i −0.164622 0.285134i 0.771899 0.635746i \(-0.219307\pi\)
−0.936521 + 0.350611i \(0.885974\pi\)
\(720\) −1.58579 −0.0590988
\(721\) −18.4853 45.2795i −0.688428 1.68630i
\(722\) 1.00000 0.0372161
\(723\) 0.278175 + 0.481813i 0.0103454 + 0.0179188i
\(724\) 10.2426 17.7408i 0.380665 0.659331i
\(725\) 2.69848 4.67391i 0.100219 0.173585i
\(726\) −5.00000 8.66025i −0.185567 0.321412i
\(727\) 43.7279 1.62178 0.810889 0.585199i \(-0.198984\pi\)
0.810889 + 0.585199i \(0.198984\pi\)
\(728\) −7.41421 1.01461i −0.274789 0.0376040i
\(729\) 1.00000 0.0370370
\(730\) −11.7574 20.3643i −0.435159 0.753718i
\(731\) 13.2426 22.9369i 0.489797 0.848353i
\(732\) −2.41421 + 4.18154i −0.0892319 + 0.154554i
\(733\) −17.0919 29.6040i −0.631303 1.09345i −0.987286 0.158956i \(-0.949187\pi\)
0.355982 0.934493i \(-0.384146\pi\)
\(734\) 5.24264 0.193509
\(735\) 10.6924 + 2.98229i 0.394395 + 0.110003i
\(736\) 3.41421 0.125850
\(737\) −1.00000 1.73205i −0.0368355 0.0638009i
\(738\) 0.292893 0.507306i 0.0107815 0.0186742i
\(739\) −16.7782 + 29.0607i −0.617195 + 1.06901i 0.372800 + 0.927912i \(0.378398\pi\)
−0.989995 + 0.141102i \(0.954936\pi\)
\(740\) 0.192388 + 0.333226i 0.00707233 + 0.0122496i
\(741\) −2.82843 −0.103905
\(742\) −4.79289 0.655892i −0.175953 0.0240786i
\(743\) −48.9117 −1.79440 −0.897198 0.441629i \(-0.854401\pi\)
−0.897198 + 0.441629i \(0.854401\pi\)
\(744\) −5.32843 9.22911i −0.195350 0.338355i
\(745\) −14.6569 + 25.3864i −0.536986 + 0.930086i
\(746\) −0.242641 + 0.420266i −0.00888371 + 0.0153870i
\(747\) 8.57107 + 14.8455i 0.313599 + 0.543169i
\(748\) 4.24264 0.155126
\(749\) 11.7279 + 28.7274i 0.428529 + 1.04968i
\(750\) −11.8701 −0.433433
\(751\) 8.05635 + 13.9540i 0.293980 + 0.509189i 0.974747 0.223311i \(-0.0716866\pi\)
−0.680767 + 0.732500i \(0.738353\pi\)
\(752\) −1.58579 + 2.74666i −0.0578277 + 0.100160i
\(753\) −10.5000 + 18.1865i −0.382641 + 0.662754i
\(754\) −3.07107 5.31925i −0.111842 0.193715i
\(755\) 17.9878 0.654643
\(756\) −1.62132 + 2.09077i −0.0589669 + 0.0760406i
\(757\) 1.21320 0.0440946 0.0220473 0.999757i \(-0.492982\pi\)
0.0220473 + 0.999757i \(0.492982\pi\)
\(758\) −1.65685 2.86976i −0.0601797 0.104234i
\(759\) −1.70711 + 2.95680i −0.0619641 + 0.107325i
\(760\) 0.792893 1.37333i 0.0287613 0.0498160i
\(761\) −3.07107 5.31925i −0.111326 0.192822i 0.804979 0.593303i \(-0.202176\pi\)
−0.916305 + 0.400481i \(0.868843\pi\)
\(762\) 5.82843 0.211142
\(763\) 2.84924 3.67423i 0.103150 0.133016i
\(764\) −18.1421 −0.656359
\(765\) −3.36396 5.82655i −0.121624 0.210659i
\(766\) −7.82843 + 13.5592i −0.282853 + 0.489915i
\(767\) −8.58579 + 14.8710i −0.310015 + 0.536961i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 33.3431 1.20238 0.601192 0.799104i \(-0.294693\pi\)
0.601192 + 0.799104i \(0.294693\pi\)
\(770\) 1.58579 + 3.88437i 0.0571478 + 0.139983i
\(771\) −6.00000 −0.216085
\(772\) 11.8640 + 20.5490i 0.426993 + 0.739574i
\(773\) 17.3137 29.9882i 0.622731 1.07860i −0.366244 0.930519i \(-0.619357\pi\)
0.988975 0.148083i \(-0.0473102\pi\)
\(774\) −3.12132 + 5.40629i −0.112194 + 0.194325i
\(775\) −13.2426 22.9369i −0.475690 0.823919i
\(776\) −5.58579