Properties

Label 798.2.i
Level $798$
Weight $2$
Character orbit 798.i
Rep. character $\chi_{798}(163,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $56$
Newform subspaces $4$
Sturm bound $320$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(320\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(798, [\chi])\).

Total New Old
Modular forms 336 56 280
Cusp forms 304 56 248
Eisenstein series 32 0 32

Trace form

\( 56 q - 28 q^{4} - 4 q^{5} + 4 q^{7} + 56 q^{9} + 8 q^{10} + 8 q^{13} - 20 q^{14} - 28 q^{16} - 24 q^{17} - 8 q^{19} + 8 q^{20} - 4 q^{21} + 24 q^{23} - 52 q^{25} - 8 q^{26} + 4 q^{28} - 4 q^{29} - 4 q^{30}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(798, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
798.2.i.a 798.i 133.g $14$ $6.372$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 798.2.i.a \(-7\) \(-14\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{8})q^{2}-q^{3}+\beta _{8}q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
798.2.i.b 798.i 133.g $14$ $6.372$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 798.2.i.b \(-7\) \(14\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{3})q^{2}+q^{3}+\beta _{3}q^{4}-\beta _{1}q^{5}+\cdots\)
798.2.i.c 798.i 133.g $14$ $6.372$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 798.2.i.c \(7\) \(-14\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}-q^{3}+(-1-\beta _{4})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
798.2.i.d 798.i 133.g $14$ $6.372$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 798.2.i.d \(7\) \(14\) \(-2\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{6})q^{2}+q^{3}-\beta _{6}q^{4}-\beta _{7}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(798, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(798, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 2}\)