Properties

Label 798.2.cj.a
Level $798$
Weight $2$
Character orbit 798.cj
Analytic conductor $6.372$
Analytic rank $0$
Dimension $72$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(241,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.cj (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(12\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72 q + 12 q^{7} + 12 q^{10} - 12 q^{11} - 72 q^{12} - 30 q^{13} - 18 q^{14} + 36 q^{19} - 6 q^{21} + 12 q^{22} - 6 q^{23} - 30 q^{25} - 36 q^{27} - 12 q^{28} - 6 q^{31} - 12 q^{33} - 6 q^{34} - 6 q^{35}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1 −0.342020 + 0.939693i 0.766044 0.642788i −0.766044 0.642788i −2.44248 2.91084i 0.342020 + 0.939693i 0.986551 + 2.45494i 0.866025 0.500000i 0.173648 0.984808i 3.57067 1.29962i
241.2 −0.342020 + 0.939693i 0.766044 0.642788i −0.766044 0.642788i −2.32511 2.77095i 0.342020 + 0.939693i 0.361533 2.62093i 0.866025 0.500000i 0.173648 0.984808i 3.39908 1.23716i
241.3 −0.342020 + 0.939693i 0.766044 0.642788i −0.766044 0.642788i −0.407192 0.485273i 0.342020 + 0.939693i 2.62355 + 0.342002i 0.866025 0.500000i 0.173648 0.984808i 0.595276 0.216663i
241.4 −0.342020 + 0.939693i 0.766044 0.642788i −0.766044 0.642788i 0.488281 + 0.581911i 0.342020 + 0.939693i −1.91382 + 1.82683i 0.866025 0.500000i 0.173648 0.984808i −0.713819 + 0.259809i
241.5 −0.342020 + 0.939693i 0.766044 0.642788i −0.766044 0.642788i 0.613531 + 0.731177i 0.342020 + 0.939693i −1.23088 2.34200i 0.866025 0.500000i 0.173648 0.984808i −0.896922 + 0.326453i
241.6 −0.342020 + 0.939693i 0.766044 0.642788i −0.766044 0.642788i 1.75158 + 2.08746i 0.342020 + 0.939693i 0.836062 + 2.51018i 0.866025 0.500000i 0.173648 0.984808i −2.56064 + 0.931998i
241.7 0.342020 0.939693i 0.766044 0.642788i −0.766044 0.642788i −1.56574 1.86598i −0.342020 0.939693i 0.777597 2.52890i −0.866025 + 0.500000i 0.173648 0.984808i −2.28896 + 0.833113i
241.8 0.342020 0.939693i 0.766044 0.642788i −0.766044 0.642788i −0.922719 1.09965i −0.342020 0.939693i −2.61280 + 0.416244i −0.866025 + 0.500000i 0.173648 0.984808i −1.34892 + 0.490968i
241.9 0.342020 0.939693i 0.766044 0.642788i −0.766044 0.642788i −0.636249 0.758252i −0.342020 0.939693i 2.63863 0.194020i −0.866025 + 0.500000i 0.173648 0.984808i −0.930134 + 0.338541i
241.10 0.342020 0.939693i 0.766044 0.642788i −0.766044 0.642788i 0.0726343 + 0.0865622i −0.342020 0.939693i 0.514120 2.59532i −0.866025 + 0.500000i 0.173648 0.984808i 0.106184 0.0386479i
241.11 0.342020 0.939693i 0.766044 0.642788i −0.766044 0.642788i 0.852222 + 1.01564i −0.342020 0.939693i 0.520870 + 2.59397i −0.866025 + 0.500000i 0.173648 0.984808i 1.24586 0.453458i
241.12 0.342020 0.939693i 0.766044 0.642788i −0.766044 0.642788i 2.29456 + 2.73455i −0.342020 0.939693i 2.60465 0.464526i −0.866025 + 0.500000i 0.173648 0.984808i 3.35442 1.22091i
409.1 −0.642788 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i −3.13360 + 0.552538i 0.642788 0.766044i 1.71656 + 2.01331i 0.866025 0.500000i −0.939693 + 0.342020i 2.43751 + 2.04531i
409.2 −0.642788 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i −1.73735 + 0.306342i 0.642788 0.766044i −0.975065 + 2.45952i 0.866025 0.500000i −0.939693 + 0.342020i 1.35142 + 1.13397i
409.3 −0.642788 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i −1.36826 + 0.241262i 0.642788 0.766044i −1.08530 2.41291i 0.866025 0.500000i −0.939693 + 0.342020i 1.06432 + 0.893070i
409.4 −0.642788 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i 1.29426 0.228214i 0.642788 0.766044i 1.70106 2.02642i 0.866025 0.500000i −0.939693 + 0.342020i −1.00676 0.844771i
409.5 −0.642788 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i 2.30738 0.406854i 0.642788 0.766044i −2.44133 1.01977i 0.866025 0.500000i −0.939693 + 0.342020i −1.79483 1.50604i
409.6 −0.642788 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i 2.83448 0.499796i 0.642788 0.766044i −1.47698 + 2.19512i 0.866025 0.500000i −0.939693 + 0.342020i −2.20484 1.85008i
409.7 0.642788 + 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i −2.20172 + 0.388223i −0.642788 + 0.766044i −1.18056 2.36776i −0.866025 + 0.500000i −0.939693 + 0.342020i −1.71263 1.43707i
409.8 0.642788 + 0.766044i 0.173648 + 0.984808i −0.173648 + 0.984808i −1.40284 + 0.247359i −0.642788 + 0.766044i 0.846253 + 2.50676i −0.866025 + 0.500000i −0.939693 + 0.342020i −1.09122 0.915640i
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 241.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.bf even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 798.2.cj.a yes 72
7.d odd 6 1 798.2.ca.a 72
19.f odd 18 1 798.2.ca.a 72
133.bf even 18 1 inner 798.2.cj.a yes 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.2.ca.a 72 7.d odd 6 1
798.2.ca.a 72 19.f odd 18 1
798.2.cj.a yes 72 1.a even 1 1 trivial
798.2.cj.a yes 72 133.bf even 18 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{72} + 15 T_{5}^{70} - 90 T_{5}^{69} + 213 T_{5}^{68} - 876 T_{5}^{67} + 2715 T_{5}^{66} + \cdots + 6080412529 \) acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\). Copy content Toggle raw display