Newspace parameters
Level: | \( N \) | \(=\) | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 798.cj (of order \(18\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.37206208130\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
241.1 | −0.342020 | + | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | −2.44248 | − | 2.91084i | 0.342020 | + | 0.939693i | 0.986551 | + | 2.45494i | 0.866025 | − | 0.500000i | 0.173648 | − | 0.984808i | 3.57067 | − | 1.29962i |
241.2 | −0.342020 | + | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | −2.32511 | − | 2.77095i | 0.342020 | + | 0.939693i | 0.361533 | − | 2.62093i | 0.866025 | − | 0.500000i | 0.173648 | − | 0.984808i | 3.39908 | − | 1.23716i |
241.3 | −0.342020 | + | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | −0.407192 | − | 0.485273i | 0.342020 | + | 0.939693i | 2.62355 | + | 0.342002i | 0.866025 | − | 0.500000i | 0.173648 | − | 0.984808i | 0.595276 | − | 0.216663i |
241.4 | −0.342020 | + | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | 0.488281 | + | 0.581911i | 0.342020 | + | 0.939693i | −1.91382 | + | 1.82683i | 0.866025 | − | 0.500000i | 0.173648 | − | 0.984808i | −0.713819 | + | 0.259809i |
241.5 | −0.342020 | + | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | 0.613531 | + | 0.731177i | 0.342020 | + | 0.939693i | −1.23088 | − | 2.34200i | 0.866025 | − | 0.500000i | 0.173648 | − | 0.984808i | −0.896922 | + | 0.326453i |
241.6 | −0.342020 | + | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | 1.75158 | + | 2.08746i | 0.342020 | + | 0.939693i | 0.836062 | + | 2.51018i | 0.866025 | − | 0.500000i | 0.173648 | − | 0.984808i | −2.56064 | + | 0.931998i |
241.7 | 0.342020 | − | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | −1.56574 | − | 1.86598i | −0.342020 | − | 0.939693i | 0.777597 | − | 2.52890i | −0.866025 | + | 0.500000i | 0.173648 | − | 0.984808i | −2.28896 | + | 0.833113i |
241.8 | 0.342020 | − | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | −0.922719 | − | 1.09965i | −0.342020 | − | 0.939693i | −2.61280 | + | 0.416244i | −0.866025 | + | 0.500000i | 0.173648 | − | 0.984808i | −1.34892 | + | 0.490968i |
241.9 | 0.342020 | − | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | −0.636249 | − | 0.758252i | −0.342020 | − | 0.939693i | 2.63863 | − | 0.194020i | −0.866025 | + | 0.500000i | 0.173648 | − | 0.984808i | −0.930134 | + | 0.338541i |
241.10 | 0.342020 | − | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | 0.0726343 | + | 0.0865622i | −0.342020 | − | 0.939693i | 0.514120 | − | 2.59532i | −0.866025 | + | 0.500000i | 0.173648 | − | 0.984808i | 0.106184 | − | 0.0386479i |
241.11 | 0.342020 | − | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | 0.852222 | + | 1.01564i | −0.342020 | − | 0.939693i | 0.520870 | + | 2.59397i | −0.866025 | + | 0.500000i | 0.173648 | − | 0.984808i | 1.24586 | − | 0.453458i |
241.12 | 0.342020 | − | 0.939693i | 0.766044 | − | 0.642788i | −0.766044 | − | 0.642788i | 2.29456 | + | 2.73455i | −0.342020 | − | 0.939693i | 2.60465 | − | 0.464526i | −0.866025 | + | 0.500000i | 0.173648 | − | 0.984808i | 3.35442 | − | 1.22091i |
409.1 | −0.642788 | − | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | −3.13360 | + | 0.552538i | 0.642788 | − | 0.766044i | 1.71656 | + | 2.01331i | 0.866025 | − | 0.500000i | −0.939693 | + | 0.342020i | 2.43751 | + | 2.04531i |
409.2 | −0.642788 | − | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | −1.73735 | + | 0.306342i | 0.642788 | − | 0.766044i | −0.975065 | + | 2.45952i | 0.866025 | − | 0.500000i | −0.939693 | + | 0.342020i | 1.35142 | + | 1.13397i |
409.3 | −0.642788 | − | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | −1.36826 | + | 0.241262i | 0.642788 | − | 0.766044i | −1.08530 | − | 2.41291i | 0.866025 | − | 0.500000i | −0.939693 | + | 0.342020i | 1.06432 | + | 0.893070i |
409.4 | −0.642788 | − | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | 1.29426 | − | 0.228214i | 0.642788 | − | 0.766044i | 1.70106 | − | 2.02642i | 0.866025 | − | 0.500000i | −0.939693 | + | 0.342020i | −1.00676 | − | 0.844771i |
409.5 | −0.642788 | − | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | 2.30738 | − | 0.406854i | 0.642788 | − | 0.766044i | −2.44133 | − | 1.01977i | 0.866025 | − | 0.500000i | −0.939693 | + | 0.342020i | −1.79483 | − | 1.50604i |
409.6 | −0.642788 | − | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | 2.83448 | − | 0.499796i | 0.642788 | − | 0.766044i | −1.47698 | + | 2.19512i | 0.866025 | − | 0.500000i | −0.939693 | + | 0.342020i | −2.20484 | − | 1.85008i |
409.7 | 0.642788 | + | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | −2.20172 | + | 0.388223i | −0.642788 | + | 0.766044i | −1.18056 | − | 2.36776i | −0.866025 | + | 0.500000i | −0.939693 | + | 0.342020i | −1.71263 | − | 1.43707i |
409.8 | 0.642788 | + | 0.766044i | 0.173648 | + | 0.984808i | −0.173648 | + | 0.984808i | −1.40284 | + | 0.247359i | −0.642788 | + | 0.766044i | 0.846253 | + | 2.50676i | −0.866025 | + | 0.500000i | −0.939693 | + | 0.342020i | −1.09122 | − | 0.915640i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
133.bf | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 798.2.cj.a | yes | 72 |
7.d | odd | 6 | 1 | 798.2.ca.a | ✓ | 72 | |
19.f | odd | 18 | 1 | 798.2.ca.a | ✓ | 72 | |
133.bf | even | 18 | 1 | inner | 798.2.cj.a | yes | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
798.2.ca.a | ✓ | 72 | 7.d | odd | 6 | 1 | |
798.2.ca.a | ✓ | 72 | 19.f | odd | 18 | 1 | |
798.2.cj.a | yes | 72 | 1.a | even | 1 | 1 | trivial |
798.2.cj.a | yes | 72 | 133.bf | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} + 15 T_{5}^{70} - 90 T_{5}^{69} + 213 T_{5}^{68} - 876 T_{5}^{67} + 2715 T_{5}^{66} + \cdots + 6080412529 \)
acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\).