Defining parameters
Level: | \( N \) | \(=\) | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 798.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(798))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 17 | 151 |
Cusp forms | 153 | 17 | 136 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(19\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | $+$ | \(1\) |
\(+\) | \(+\) | \(+\) | \(-\) | $-$ | \(2\) |
\(+\) | \(+\) | \(-\) | \(+\) | $-$ | \(2\) |
\(+\) | \(-\) | \(+\) | \(+\) | $-$ | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | $+$ | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | $+$ | \(1\) |
\(+\) | \(-\) | \(-\) | \(-\) | $-$ | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | $+$ | \(1\) |
\(-\) | \(+\) | \(-\) | \(-\) | $-$ | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | $+$ | \(1\) |
\(-\) | \(-\) | \(+\) | \(-\) | $-$ | \(1\) |
\(-\) | \(-\) | \(-\) | \(+\) | $-$ | \(2\) |
Plus space | \(+\) | \(5\) | |||
Minus space | \(-\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(798))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(798))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(798)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 2}\)