Properties

Label 7942.2.a.o.1.1
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{5} -4.00000 q^{7} +1.00000 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{5} -4.00000 q^{7} +1.00000 q^{8} -3.00000 q^{9} -4.00000 q^{10} +1.00000 q^{11} +7.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} -3.00000 q^{18} -4.00000 q^{20} +1.00000 q^{22} +4.00000 q^{23} +11.0000 q^{25} +7.00000 q^{26} -4.00000 q^{28} -3.00000 q^{29} +1.00000 q^{32} +16.0000 q^{35} -3.00000 q^{36} +8.00000 q^{37} -4.00000 q^{40} -12.0000 q^{41} +7.00000 q^{43} +1.00000 q^{44} +12.0000 q^{45} +4.00000 q^{46} -5.00000 q^{47} +9.00000 q^{49} +11.0000 q^{50} +7.00000 q^{52} +6.00000 q^{53} -4.00000 q^{55} -4.00000 q^{56} -3.00000 q^{58} +6.00000 q^{59} -5.00000 q^{61} +12.0000 q^{63} +1.00000 q^{64} -28.0000 q^{65} -8.00000 q^{67} +16.0000 q^{70} -9.00000 q^{71} -3.00000 q^{72} +10.0000 q^{73} +8.00000 q^{74} -4.00000 q^{77} -6.00000 q^{79} -4.00000 q^{80} +9.00000 q^{81} -12.0000 q^{82} -3.00000 q^{83} +7.00000 q^{86} +1.00000 q^{88} -1.00000 q^{89} +12.0000 q^{90} -28.0000 q^{91} +4.00000 q^{92} -5.00000 q^{94} -5.00000 q^{97} +9.00000 q^{98} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.00000 0.500000
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) −3.00000 −1.00000
\(10\) −4.00000 −1.26491
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 7.00000 1.94145 0.970725 0.240192i \(-0.0772105\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −3.00000 −0.707107
\(19\) 0 0
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 7.00000 1.37281
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 16.0000 2.70449
\(36\) −3.00000 −0.500000
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −4.00000 −0.632456
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) 7.00000 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(44\) 1.00000 0.150756
\(45\) 12.0000 1.78885
\(46\) 4.00000 0.589768
\(47\) −5.00000 −0.729325 −0.364662 0.931140i \(-0.618816\pi\)
−0.364662 + 0.931140i \(0.618816\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) 7.00000 0.970725
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) 12.0000 1.51186
\(64\) 1.00000 0.125000
\(65\) −28.0000 −3.47297
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 16.0000 1.91237
\(71\) −9.00000 −1.06810 −0.534052 0.845452i \(-0.679331\pi\)
−0.534052 + 0.845452i \(0.679331\pi\)
\(72\) −3.00000 −0.353553
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) −4.00000 −0.447214
\(81\) 9.00000 1.00000
\(82\) −12.0000 −1.32518
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 7.00000 0.754829
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 12.0000 1.26491
\(91\) −28.0000 −2.93520
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) −5.00000 −0.515711
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 −0.507673 −0.253837 0.967247i \(-0.581693\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(98\) 9.00000 0.909137
\(99\) −3.00000 −0.301511
\(100\) 11.0000 1.10000
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) 11.0000 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(104\) 7.00000 0.686406
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) −4.00000 −0.381385
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) −3.00000 −0.282216 −0.141108 0.989994i \(-0.545067\pi\)
−0.141108 + 0.989994i \(0.545067\pi\)
\(114\) 0 0
\(115\) −16.0000 −1.49201
\(116\) −3.00000 −0.278543
\(117\) −21.0000 −1.94145
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −5.00000 −0.452679
\(123\) 0 0
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 12.0000 1.06904
\(127\) 10.0000 0.887357 0.443678 0.896186i \(-0.353673\pi\)
0.443678 + 0.896186i \(0.353673\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −28.0000 −2.45576
\(131\) −5.00000 −0.436852 −0.218426 0.975854i \(-0.570092\pi\)
−0.218426 + 0.975854i \(0.570092\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 0 0
\(137\) 7.00000 0.598050 0.299025 0.954245i \(-0.403339\pi\)
0.299025 + 0.954245i \(0.403339\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 16.0000 1.35225
\(141\) 0 0
\(142\) −9.00000 −0.755263
\(143\) 7.00000 0.585369
\(144\) −3.00000 −0.250000
\(145\) 12.0000 0.996546
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 6.00000 0.488273 0.244137 0.969741i \(-0.421495\pi\)
0.244137 + 0.969741i \(0.421495\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −4.00000 −0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) −6.00000 −0.477334
\(159\) 0 0
\(160\) −4.00000 −0.316228
\(161\) −16.0000 −1.26098
\(162\) 9.00000 0.707107
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) −3.00000 −0.232845
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 36.0000 2.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 7.00000 0.533745
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) −44.0000 −3.32609
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −1.00000 −0.0749532
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) 12.0000 0.894427
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −28.0000 −2.07550
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) −32.0000 −2.35269
\(186\) 0 0
\(187\) 0 0
\(188\) −5.00000 −0.364662
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) −5.00000 −0.358979
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) −3.00000 −0.213201
\(199\) 15.0000 1.06332 0.531661 0.846957i \(-0.321568\pi\)
0.531661 + 0.846957i \(0.321568\pi\)
\(200\) 11.0000 0.777817
\(201\) 0 0
\(202\) −15.0000 −1.05540
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 48.0000 3.35247
\(206\) 11.0000 0.766406
\(207\) −12.0000 −0.834058
\(208\) 7.00000 0.485363
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) −3.00000 −0.205076
\(215\) −28.0000 −1.90958
\(216\) 0 0
\(217\) 0 0
\(218\) −5.00000 −0.338643
\(219\) 0 0
\(220\) −4.00000 −0.269680
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) −4.00000 −0.267261
\(225\) −33.0000 −2.20000
\(226\) −3.00000 −0.199557
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) −16.0000 −1.05501
\(231\) 0 0
\(232\) −3.00000 −0.196960
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) −21.0000 −1.37281
\(235\) 20.0000 1.30466
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −5.00000 −0.320092
\(245\) −36.0000 −2.29996
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −24.0000 −1.51789
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 12.0000 0.755929
\(253\) 4.00000 0.251478
\(254\) 10.0000 0.627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) −32.0000 −1.98838
\(260\) −28.0000 −1.73649
\(261\) 9.00000 0.557086
\(262\) −5.00000 −0.308901
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 0 0
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) −16.0000 −0.975537 −0.487769 0.872973i \(-0.662189\pi\)
−0.487769 + 0.872973i \(0.662189\pi\)
\(270\) 0 0
\(271\) −30.0000 −1.82237 −0.911185 0.411997i \(-0.864831\pi\)
−0.911185 + 0.411997i \(0.864831\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 7.00000 0.422885
\(275\) 11.0000 0.663325
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) 16.0000 0.956183
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −32.0000 −1.90220 −0.951101 0.308879i \(-0.900046\pi\)
−0.951101 + 0.308879i \(0.900046\pi\)
\(284\) −9.00000 −0.534052
\(285\) 0 0
\(286\) 7.00000 0.413919
\(287\) 48.0000 2.83335
\(288\) −3.00000 −0.176777
\(289\) −17.0000 −1.00000
\(290\) 12.0000 0.704664
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) −5.00000 −0.292103 −0.146052 0.989277i \(-0.546657\pi\)
−0.146052 + 0.989277i \(0.546657\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 28.0000 1.61928
\(300\) 0 0
\(301\) −28.0000 −1.61389
\(302\) 6.00000 0.345261
\(303\) 0 0
\(304\) 0 0
\(305\) 20.0000 1.14520
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) −4.00000 −0.227921
\(309\) 0 0
\(310\) 0 0
\(311\) −25.0000 −1.41762 −0.708810 0.705399i \(-0.750768\pi\)
−0.708810 + 0.705399i \(0.750768\pi\)
\(312\) 0 0
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) −14.0000 −0.790066
\(315\) −48.0000 −2.70449
\(316\) −6.00000 −0.337526
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) −3.00000 −0.167968
\(320\) −4.00000 −0.223607
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) 0 0
\(324\) 9.00000 0.500000
\(325\) 77.0000 4.27119
\(326\) 6.00000 0.332309
\(327\) 0 0
\(328\) −12.0000 −0.662589
\(329\) 20.0000 1.10264
\(330\) 0 0
\(331\) 6.00000 0.329790 0.164895 0.986311i \(-0.447272\pi\)
0.164895 + 0.986311i \(0.447272\pi\)
\(332\) −3.00000 −0.164646
\(333\) −24.0000 −1.31519
\(334\) −16.0000 −0.875481
\(335\) 32.0000 1.74835
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 36.0000 1.95814
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 7.00000 0.377415
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) −3.00000 −0.161048 −0.0805242 0.996753i \(-0.525659\pi\)
−0.0805242 + 0.996753i \(0.525659\pi\)
\(348\) 0 0
\(349\) 13.0000 0.695874 0.347937 0.937518i \(-0.386882\pi\)
0.347937 + 0.937518i \(0.386882\pi\)
\(350\) −44.0000 −2.35190
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 31.0000 1.64996 0.824982 0.565159i \(-0.191185\pi\)
0.824982 + 0.565159i \(0.191185\pi\)
\(354\) 0 0
\(355\) 36.0000 1.91068
\(356\) −1.00000 −0.0529999
\(357\) 0 0
\(358\) −16.0000 −0.845626
\(359\) −2.00000 −0.105556 −0.0527780 0.998606i \(-0.516808\pi\)
−0.0527780 + 0.998606i \(0.516808\pi\)
\(360\) 12.0000 0.632456
\(361\) 0 0
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) −28.0000 −1.46760
\(365\) −40.0000 −2.09370
\(366\) 0 0
\(367\) 35.0000 1.82699 0.913493 0.406855i \(-0.133375\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(368\) 4.00000 0.208514
\(369\) 36.0000 1.87409
\(370\) −32.0000 −1.66360
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −5.00000 −0.257855
\(377\) −21.0000 −1.08156
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.00000 −0.153493
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) −6.00000 −0.305392
\(387\) −21.0000 −1.06749
\(388\) −5.00000 −0.253837
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −3.00000 −0.151138
\(395\) 24.0000 1.20757
\(396\) −3.00000 −0.150756
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 15.0000 0.751882
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −15.0000 −0.746278
\(405\) −36.0000 −1.78885
\(406\) 12.0000 0.595550
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 48.0000 2.37055
\(411\) 0 0
\(412\) 11.0000 0.541931
\(413\) −24.0000 −1.18096
\(414\) −12.0000 −0.589768
\(415\) 12.0000 0.589057
\(416\) 7.00000 0.343203
\(417\) 0 0
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −12.0000 −0.584151
\(423\) 15.0000 0.729325
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 20.0000 0.967868
\(428\) −3.00000 −0.145010
\(429\) 0 0
\(430\) −28.0000 −1.35028
\(431\) 10.0000 0.481683 0.240842 0.970564i \(-0.422577\pi\)
0.240842 + 0.970564i \(0.422577\pi\)
\(432\) 0 0
\(433\) −5.00000 −0.240285 −0.120142 0.992757i \(-0.538335\pi\)
−0.120142 + 0.992757i \(0.538335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.00000 −0.239457
\(437\) 0 0
\(438\) 0 0
\(439\) −36.0000 −1.71819 −0.859093 0.511819i \(-0.828972\pi\)
−0.859093 + 0.511819i \(0.828972\pi\)
\(440\) −4.00000 −0.190693
\(441\) −27.0000 −1.28571
\(442\) 0 0
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) −1.00000 −0.0473514
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) −33.0000 −1.55563
\(451\) −12.0000 −0.565058
\(452\) −3.00000 −0.141108
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 112.000 5.25064
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) −16.0000 −0.746004
\(461\) 41.0000 1.90956 0.954780 0.297313i \(-0.0960904\pi\)
0.954780 + 0.297313i \(0.0960904\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) −34.0000 −1.57333 −0.786666 0.617379i \(-0.788195\pi\)
−0.786666 + 0.617379i \(0.788195\pi\)
\(468\) −21.0000 −0.970725
\(469\) 32.0000 1.47762
\(470\) 20.0000 0.922531
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 7.00000 0.321860
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) 38.0000 1.73626 0.868132 0.496333i \(-0.165321\pi\)
0.868132 + 0.496333i \(0.165321\pi\)
\(480\) 0 0
\(481\) 56.0000 2.55338
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 20.0000 0.908153
\(486\) 0 0
\(487\) 3.00000 0.135943 0.0679715 0.997687i \(-0.478347\pi\)
0.0679715 + 0.997687i \(0.478347\pi\)
\(488\) −5.00000 −0.226339
\(489\) 0 0
\(490\) −36.0000 −1.62631
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) 36.0000 1.61482
\(498\) 0 0
\(499\) 18.0000 0.805791 0.402895 0.915246i \(-0.368004\pi\)
0.402895 + 0.915246i \(0.368004\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 12.0000 0.534522
\(505\) 60.0000 2.66996
\(506\) 4.00000 0.177822
\(507\) 0 0
\(508\) 10.0000 0.443678
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) −40.0000 −1.76950
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 14.0000 0.617514
\(515\) −44.0000 −1.93887
\(516\) 0 0
\(517\) −5.00000 −0.219900
\(518\) −32.0000 −1.40600
\(519\) 0 0
\(520\) −28.0000 −1.22788
\(521\) −1.00000 −0.0438108 −0.0219054 0.999760i \(-0.506973\pi\)
−0.0219054 + 0.999760i \(0.506973\pi\)
\(522\) 9.00000 0.393919
\(523\) 13.0000 0.568450 0.284225 0.958758i \(-0.408264\pi\)
0.284225 + 0.958758i \(0.408264\pi\)
\(524\) −5.00000 −0.218426
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −24.0000 −1.04249
\(531\) −18.0000 −0.781133
\(532\) 0 0
\(533\) −84.0000 −3.63844
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) −16.0000 −0.689809
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) −30.0000 −1.28861
\(543\) 0 0
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) −41.0000 −1.75303 −0.876517 0.481371i \(-0.840139\pi\)
−0.876517 + 0.481371i \(0.840139\pi\)
\(548\) 7.00000 0.299025
\(549\) 15.0000 0.640184
\(550\) 11.0000 0.469042
\(551\) 0 0
\(552\) 0 0
\(553\) 24.0000 1.02058
\(554\) −7.00000 −0.297402
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 25.0000 1.05928 0.529642 0.848221i \(-0.322326\pi\)
0.529642 + 0.848221i \(0.322326\pi\)
\(558\) 0 0
\(559\) 49.0000 2.07248
\(560\) 16.0000 0.676123
\(561\) 0 0
\(562\) −10.0000 −0.421825
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) −32.0000 −1.34506
\(567\) −36.0000 −1.51186
\(568\) −9.00000 −0.377632
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) 7.00000 0.292685
\(573\) 0 0
\(574\) 48.0000 2.00348
\(575\) 44.0000 1.83493
\(576\) −3.00000 −0.125000
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) −17.0000 −0.707107
\(579\) 0 0
\(580\) 12.0000 0.498273
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 6.00000 0.248495
\(584\) 10.0000 0.413803
\(585\) 84.0000 3.47297
\(586\) −5.00000 −0.206548
\(587\) 16.0000 0.660391 0.330195 0.943913i \(-0.392885\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −24.0000 −0.988064
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 28.0000 1.14501
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) −28.0000 −1.14119
\(603\) 24.0000 0.977356
\(604\) 6.00000 0.244137
\(605\) −4.00000 −0.162623
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) −35.0000 −1.41595
\(612\) 0 0
\(613\) 19.0000 0.767403 0.383701 0.923457i \(-0.374649\pi\)
0.383701 + 0.923457i \(0.374649\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) −15.0000 −0.603877 −0.301939 0.953327i \(-0.597634\pi\)
−0.301939 + 0.953327i \(0.597634\pi\)
\(618\) 0 0
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −25.0000 −1.00241
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 9.00000 0.359712
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 0 0
\(630\) −48.0000 −1.91237
\(631\) 13.0000 0.517522 0.258761 0.965941i \(-0.416686\pi\)
0.258761 + 0.965941i \(0.416686\pi\)
\(632\) −6.00000 −0.238667
\(633\) 0 0
\(634\) 12.0000 0.476581
\(635\) −40.0000 −1.58735
\(636\) 0 0
\(637\) 63.0000 2.49615
\(638\) −3.00000 −0.118771
\(639\) 27.0000 1.06810
\(640\) −4.00000 −0.158114
\(641\) 9.00000 0.355479 0.177739 0.984078i \(-0.443122\pi\)
0.177739 + 0.984078i \(0.443122\pi\)
\(642\) 0 0
\(643\) 24.0000 0.946468 0.473234 0.880937i \(-0.343087\pi\)
0.473234 + 0.880937i \(0.343087\pi\)
\(644\) −16.0000 −0.630488
\(645\) 0 0
\(646\) 0 0
\(647\) −17.0000 −0.668339 −0.334169 0.942513i \(-0.608456\pi\)
−0.334169 + 0.942513i \(0.608456\pi\)
\(648\) 9.00000 0.353553
\(649\) 6.00000 0.235521
\(650\) 77.0000 3.02019
\(651\) 0 0
\(652\) 6.00000 0.234978
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) 20.0000 0.781465
\(656\) −12.0000 −0.468521
\(657\) −30.0000 −1.17041
\(658\) 20.0000 0.779681
\(659\) 35.0000 1.36341 0.681703 0.731629i \(-0.261240\pi\)
0.681703 + 0.731629i \(0.261240\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 6.00000 0.233197
\(663\) 0 0
\(664\) −3.00000 −0.116423
\(665\) 0 0
\(666\) −24.0000 −0.929981
\(667\) −12.0000 −0.464642
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 32.0000 1.23627
\(671\) −5.00000 −0.193023
\(672\) 0 0
\(673\) −16.0000 −0.616755 −0.308377 0.951264i \(-0.599786\pi\)
−0.308377 + 0.951264i \(0.599786\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 36.0000 1.38462
\(677\) 39.0000 1.49889 0.749446 0.662066i \(-0.230320\pi\)
0.749446 + 0.662066i \(0.230320\pi\)
\(678\) 0 0
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) 0 0
\(685\) −28.0000 −1.06983
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) 7.00000 0.266872
\(689\) 42.0000 1.60007
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 2.00000 0.0760286
\(693\) 12.0000 0.455842
\(694\) −3.00000 −0.113878
\(695\) 80.0000 3.03457
\(696\) 0 0
\(697\) 0 0
\(698\) 13.0000 0.492057
\(699\) 0 0
\(700\) −44.0000 −1.66304
\(701\) −41.0000 −1.54855 −0.774274 0.632850i \(-0.781885\pi\)
−0.774274 + 0.632850i \(0.781885\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 31.0000 1.16670
\(707\) 60.0000 2.25653
\(708\) 0 0
\(709\) −22.0000 −0.826227 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) 36.0000 1.35106
\(711\) 18.0000 0.675053
\(712\) −1.00000 −0.0374766
\(713\) 0 0
\(714\) 0 0
\(715\) −28.0000 −1.04714
\(716\) −16.0000 −0.597948
\(717\) 0 0
\(718\) −2.00000 −0.0746393
\(719\) 43.0000 1.60363 0.801815 0.597573i \(-0.203868\pi\)
0.801815 + 0.597573i \(0.203868\pi\)
\(720\) 12.0000 0.447214
\(721\) −44.0000 −1.63865
\(722\) 0 0
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) −33.0000 −1.22559
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) −28.0000 −1.03775
\(729\) −27.0000 −1.00000
\(730\) −40.0000 −1.48047
\(731\) 0 0
\(732\) 0 0
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) 35.0000 1.29187
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) −8.00000 −0.294684
\(738\) 36.0000 1.32518
\(739\) −11.0000 −0.404642 −0.202321 0.979319i \(-0.564848\pi\)
−0.202321 + 0.979319i \(0.564848\pi\)
\(740\) −32.0000 −1.17634
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) −24.0000 −0.879292
\(746\) −34.0000 −1.24483
\(747\) 9.00000 0.329293
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −27.0000 −0.985244 −0.492622 0.870243i \(-0.663961\pi\)
−0.492622 + 0.870243i \(0.663961\pi\)
\(752\) −5.00000 −0.182331
\(753\) 0 0
\(754\) −21.0000 −0.764775
\(755\) −24.0000 −0.873449
\(756\) 0 0
\(757\) 30.0000 1.09037 0.545184 0.838316i \(-0.316460\pi\)
0.545184 + 0.838316i \(0.316460\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) 0 0
\(761\) 4.00000 0.145000 0.0724999 0.997368i \(-0.476902\pi\)
0.0724999 + 0.997368i \(0.476902\pi\)
\(762\) 0 0
\(763\) 20.0000 0.724049
\(764\) −3.00000 −0.108536
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) 42.0000 1.51653
\(768\) 0 0
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 16.0000 0.576600
\(771\) 0 0
\(772\) −6.00000 −0.215945
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) −21.0000 −0.754829
\(775\) 0 0
\(776\) −5.00000 −0.179490
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 0 0
\(780\) 0 0
\(781\) −9.00000 −0.322045
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 56.0000 1.99873
\(786\) 0 0
\(787\) −19.0000 −0.677277 −0.338638 0.940917i \(-0.609966\pi\)
−0.338638 + 0.940917i \(0.609966\pi\)
\(788\) −3.00000 −0.106871
\(789\) 0 0
\(790\) 24.0000 0.853882
\(791\) 12.0000 0.426671
\(792\) −3.00000 −0.106600
\(793\) −35.0000 −1.24289
\(794\) 8.00000 0.283909
\(795\) 0 0
\(796\) 15.0000 0.531661
\(797\) −14.0000 −0.495905 −0.247953 0.968772i \(-0.579758\pi\)
−0.247953 + 0.968772i \(0.579758\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 11.0000 0.388909
\(801\) 3.00000 0.106000
\(802\) −10.0000 −0.353112
\(803\) 10.0000 0.352892
\(804\) 0 0
\(805\) 64.0000 2.25570
\(806\) 0 0
\(807\) 0 0
\(808\) −15.0000 −0.527698
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) −36.0000 −1.26491
\(811\) −37.0000 −1.29925 −0.649623 0.760257i \(-0.725073\pi\)
−0.649623 + 0.760257i \(0.725073\pi\)
\(812\) 12.0000 0.421117
\(813\) 0 0
\(814\) 8.00000 0.280400
\(815\) −24.0000 −0.840683
\(816\) 0 0
\(817\) 0 0
\(818\) −10.0000 −0.349642
\(819\) 84.0000 2.93520
\(820\) 48.0000 1.67623
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) −11.0000 −0.383436 −0.191718 0.981450i \(-0.561406\pi\)
−0.191718 + 0.981450i \(0.561406\pi\)
\(824\) 11.0000 0.383203
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) 27.0000 0.938882 0.469441 0.882964i \(-0.344455\pi\)
0.469441 + 0.882964i \(0.344455\pi\)
\(828\) −12.0000 −0.417029
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 12.0000 0.416526
\(831\) 0 0
\(832\) 7.00000 0.242681
\(833\) 0 0
\(834\) 0 0
\(835\) 64.0000 2.21481
\(836\) 0 0
\(837\) 0 0
\(838\) −30.0000 −1.03633
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) −12.0000 −0.413057
\(845\) −144.000 −4.95375
\(846\) 15.0000 0.515711
\(847\) −4.00000 −0.137442
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) 32.0000 1.09695
\(852\) 0 0
\(853\) 50.0000 1.71197 0.855984 0.517003i \(-0.172952\pi\)
0.855984 + 0.517003i \(0.172952\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) −20.0000 −0.683187 −0.341593 0.939848i \(-0.610967\pi\)
−0.341593 + 0.939848i \(0.610967\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) −28.0000 −0.954792
\(861\) 0 0
\(862\) 10.0000 0.340601
\(863\) 33.0000 1.12333 0.561667 0.827364i \(-0.310160\pi\)
0.561667 + 0.827364i \(0.310160\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.272008
\(866\) −5.00000 −0.169907
\(867\) 0 0
\(868\) 0 0
\(869\) −6.00000 −0.203536
\(870\) 0 0
\(871\) −56.0000 −1.89749
\(872\) −5.00000 −0.169321
\(873\) 15.0000 0.507673
\(874\) 0 0
\(875\) 96.0000 3.24539
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) −36.0000 −1.21494
\(879\) 0 0
\(880\) −4.00000 −0.134840
\(881\) −54.0000 −1.81931 −0.909653 0.415369i \(-0.863653\pi\)
−0.909653 + 0.415369i \(0.863653\pi\)
\(882\) −27.0000 −0.909137
\(883\) −30.0000 −1.00958 −0.504790 0.863242i \(-0.668430\pi\)
−0.504790 + 0.863242i \(0.668430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −18.0000 −0.604722
\(887\) −30.0000 −1.00730 −0.503651 0.863907i \(-0.668010\pi\)
−0.503651 + 0.863907i \(0.668010\pi\)
\(888\) 0 0
\(889\) −40.0000 −1.34156
\(890\) 4.00000 0.134080
\(891\) 9.00000 0.301511
\(892\) −1.00000 −0.0334825
\(893\) 0 0
\(894\) 0 0
\(895\) 64.0000 2.13928
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) 0 0
\(900\) −33.0000 −1.10000
\(901\) 0 0
\(902\) −12.0000 −0.399556
\(903\) 0 0
\(904\) −3.00000 −0.0997785
\(905\) 40.0000 1.32964
\(906\) 0 0
\(907\) −38.0000 −1.26177 −0.630885 0.775877i \(-0.717308\pi\)
−0.630885 + 0.775877i \(0.717308\pi\)
\(908\) 20.0000 0.663723
\(909\) 45.0000 1.49256
\(910\) 112.000 3.71276
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) −3.00000 −0.0992855
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 20.0000 0.660458
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) −16.0000 −0.527504
\(921\) 0 0
\(922\) 41.0000 1.35026
\(923\) −63.0000 −2.07367
\(924\) 0 0
\(925\) 88.0000 2.89342
\(926\) 11.0000 0.361482
\(927\) −33.0000 −1.08386
\(928\) −3.00000 −0.0984798
\(929\) −1.00000 −0.0328089 −0.0164045 0.999865i \(-0.505222\pi\)
−0.0164045 + 0.999865i \(0.505222\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) −34.0000 −1.11251
\(935\) 0 0
\(936\) −21.0000 −0.686406
\(937\) −24.0000 −0.784046 −0.392023 0.919955i \(-0.628225\pi\)
−0.392023 + 0.919955i \(0.628225\pi\)
\(938\) 32.0000 1.04484
\(939\) 0 0
\(940\) 20.0000 0.652328
\(941\) 14.0000 0.456387 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 7.00000 0.227590
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) 70.0000 2.27230
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 44.0000 1.42530 0.712650 0.701520i \(-0.247495\pi\)
0.712650 + 0.701520i \(0.247495\pi\)
\(954\) −18.0000 −0.582772
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 38.0000 1.22772
\(959\) −28.0000 −0.904167
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 56.0000 1.80551
\(963\) 9.00000 0.290021
\(964\) −10.0000 −0.322078
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 20.0000 0.642161
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 80.0000 2.56468
\(974\) 3.00000 0.0961262
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) 23.0000 0.735835 0.367918 0.929858i \(-0.380071\pi\)
0.367918 + 0.929858i \(0.380071\pi\)
\(978\) 0 0
\(979\) −1.00000 −0.0319601
\(980\) −36.0000 −1.14998
\(981\) 15.0000 0.478913
\(982\) −20.0000 −0.638226
\(983\) 19.0000 0.606006 0.303003 0.952990i \(-0.402011\pi\)
0.303003 + 0.952990i \(0.402011\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.0000 0.890348
\(990\) 12.0000 0.381385
\(991\) 19.0000 0.603555 0.301777 0.953378i \(-0.402420\pi\)
0.301777 + 0.953378i \(0.402420\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 36.0000 1.14185
\(995\) −60.0000 −1.90213
\(996\) 0 0
\(997\) −18.0000 −0.570066 −0.285033 0.958518i \(-0.592005\pi\)
−0.285033 + 0.958518i \(0.592005\pi\)
\(998\) 18.0000 0.569780
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.o.1.1 1
19.7 even 3 418.2.e.c.353.1 yes 2
19.11 even 3 418.2.e.c.45.1 2
19.18 odd 2 7942.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.e.c.45.1 2 19.11 even 3
418.2.e.c.353.1 yes 2 19.7 even 3
7942.2.a.d.1.1 1 19.18 odd 2
7942.2.a.o.1.1 1 1.1 even 1 trivial