Properties

Label 7942.2.a.bi.1.1
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.66908\) of defining polynomial
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.66908 q^{3} +1.00000 q^{4} -4.12398 q^{5} -2.66908 q^{6} -4.21417 q^{7} +1.00000 q^{8} +4.12398 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -2.66908 q^{3} +1.00000 q^{4} -4.12398 q^{5} -2.66908 q^{6} -4.21417 q^{7} +1.00000 q^{8} +4.12398 q^{9} -4.12398 q^{10} -1.00000 q^{11} -2.66908 q^{12} +2.21417 q^{13} -4.21417 q^{14} +11.0072 q^{15} +1.00000 q^{16} -3.45490 q^{17} +4.12398 q^{18} -4.12398 q^{20} +11.2480 q^{21} -1.00000 q^{22} -5.45490 q^{23} -2.66908 q^{24} +12.0072 q^{25} +2.21417 q^{26} -3.00000 q^{27} -4.21417 q^{28} -5.57889 q^{29} +11.0072 q^{30} -7.00724 q^{31} +1.00000 q^{32} +2.66908 q^{33} -3.45490 q^{34} +17.3792 q^{35} +4.12398 q^{36} +2.90981 q^{37} -5.90981 q^{39} -4.12398 q^{40} +11.9170 q^{41} +11.2480 q^{42} +1.46214 q^{43} -1.00000 q^{44} -17.0072 q^{45} -5.45490 q^{46} +7.58612 q^{47} -2.66908 q^{48} +10.7593 q^{49} +12.0072 q^{50} +9.22141 q^{51} +2.21417 q^{52} +13.2214 q^{53} -3.00000 q^{54} +4.12398 q^{55} -4.21417 q^{56} -5.57889 q^{58} -4.79306 q^{59} +11.0072 q^{60} +8.90981 q^{61} -7.00724 q^{62} -17.3792 q^{63} +1.00000 q^{64} -9.13122 q^{65} +2.66908 q^{66} -1.30437 q^{67} -3.45490 q^{68} +14.5596 q^{69} +17.3792 q^{70} +6.80030 q^{71} +4.12398 q^{72} -1.45490 q^{73} +2.90981 q^{74} -32.0483 q^{75} +4.21417 q^{77} -5.90981 q^{78} +9.15777 q^{79} -4.12398 q^{80} -4.36471 q^{81} +11.9170 q^{82} -13.2142 q^{83} +11.2480 q^{84} +14.2480 q^{85} +1.46214 q^{86} +14.8905 q^{87} -1.00000 q^{88} -8.24797 q^{89} -17.0072 q^{90} -9.33092 q^{91} -5.45490 q^{92} +18.7029 q^{93} +7.58612 q^{94} -2.66908 q^{96} -2.18038 q^{97} +10.7593 q^{98} -4.12398 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 3 q^{5} - 6 q^{7} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 3 q^{4} - 3 q^{5} - 6 q^{7} + 3 q^{8} + 3 q^{9} - 3 q^{10} - 3 q^{11} - 6 q^{14} + 9 q^{15} + 3 q^{16} - 9 q^{17} + 3 q^{18} - 3 q^{20} + 15 q^{21} - 3 q^{22} - 15 q^{23} + 12 q^{25} - 9 q^{27} - 6 q^{28} - 6 q^{29} + 9 q^{30} + 3 q^{31} + 3 q^{32} - 9 q^{34} + 3 q^{36} + 6 q^{37} - 15 q^{39} - 3 q^{40} + 9 q^{41} + 15 q^{42} - 21 q^{43} - 3 q^{44} - 27 q^{45} - 15 q^{46} - 12 q^{47} + 27 q^{49} + 12 q^{50} - 3 q^{51} + 9 q^{53} - 9 q^{54} + 3 q^{55} - 6 q^{56} - 6 q^{58} + 3 q^{59} + 9 q^{60} + 24 q^{61} + 3 q^{62} + 3 q^{64} + 6 q^{65} - 9 q^{68} - 3 q^{69} - 21 q^{71} + 3 q^{72} - 3 q^{73} + 6 q^{74} - 36 q^{75} + 6 q^{77} - 15 q^{78} + 6 q^{79} - 3 q^{80} - 9 q^{81} + 9 q^{82} - 33 q^{83} + 15 q^{84} + 24 q^{85} - 21 q^{86} + 6 q^{87} - 3 q^{88} - 6 q^{89} - 27 q^{90} - 36 q^{91} - 15 q^{92} + 36 q^{93} - 12 q^{94} - 12 q^{97} + 27 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.66908 −1.54099 −0.770497 0.637444i \(-0.779992\pi\)
−0.770497 + 0.637444i \(0.779992\pi\)
\(4\) 1.00000 0.500000
\(5\) −4.12398 −1.84430 −0.922151 0.386831i \(-0.873570\pi\)
−0.922151 + 0.386831i \(0.873570\pi\)
\(6\) −2.66908 −1.08965
\(7\) −4.21417 −1.59281 −0.796404 0.604765i \(-0.793267\pi\)
−0.796404 + 0.604765i \(0.793267\pi\)
\(8\) 1.00000 0.353553
\(9\) 4.12398 1.37466
\(10\) −4.12398 −1.30412
\(11\) −1.00000 −0.301511
\(12\) −2.66908 −0.770497
\(13\) 2.21417 0.614102 0.307051 0.951693i \(-0.400658\pi\)
0.307051 + 0.951693i \(0.400658\pi\)
\(14\) −4.21417 −1.12629
\(15\) 11.0072 2.84206
\(16\) 1.00000 0.250000
\(17\) −3.45490 −0.837937 −0.418969 0.908001i \(-0.637608\pi\)
−0.418969 + 0.908001i \(0.637608\pi\)
\(18\) 4.12398 0.972032
\(19\) 0 0
\(20\) −4.12398 −0.922151
\(21\) 11.2480 2.45451
\(22\) −1.00000 −0.213201
\(23\) −5.45490 −1.13743 −0.568713 0.822536i \(-0.692559\pi\)
−0.568713 + 0.822536i \(0.692559\pi\)
\(24\) −2.66908 −0.544823
\(25\) 12.0072 2.40145
\(26\) 2.21417 0.434235
\(27\) −3.00000 −0.577350
\(28\) −4.21417 −0.796404
\(29\) −5.57889 −1.03597 −0.517987 0.855389i \(-0.673318\pi\)
−0.517987 + 0.855389i \(0.673318\pi\)
\(30\) 11.0072 2.00964
\(31\) −7.00724 −1.25854 −0.629268 0.777188i \(-0.716645\pi\)
−0.629268 + 0.777188i \(0.716645\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.66908 0.464627
\(34\) −3.45490 −0.592511
\(35\) 17.3792 2.93762
\(36\) 4.12398 0.687331
\(37\) 2.90981 0.478370 0.239185 0.970974i \(-0.423120\pi\)
0.239185 + 0.970974i \(0.423120\pi\)
\(38\) 0 0
\(39\) −5.90981 −0.946327
\(40\) −4.12398 −0.652059
\(41\) 11.9170 1.86113 0.930565 0.366127i \(-0.119316\pi\)
0.930565 + 0.366127i \(0.119316\pi\)
\(42\) 11.2480 1.73560
\(43\) 1.46214 0.222974 0.111487 0.993766i \(-0.464439\pi\)
0.111487 + 0.993766i \(0.464439\pi\)
\(44\) −1.00000 −0.150756
\(45\) −17.0072 −2.53529
\(46\) −5.45490 −0.804282
\(47\) 7.58612 1.10655 0.553275 0.832999i \(-0.313378\pi\)
0.553275 + 0.832999i \(0.313378\pi\)
\(48\) −2.66908 −0.385248
\(49\) 10.7593 1.53704
\(50\) 12.0072 1.69808
\(51\) 9.22141 1.29126
\(52\) 2.21417 0.307051
\(53\) 13.2214 1.81610 0.908050 0.418861i \(-0.137571\pi\)
0.908050 + 0.418861i \(0.137571\pi\)
\(54\) −3.00000 −0.408248
\(55\) 4.12398 0.556078
\(56\) −4.21417 −0.563143
\(57\) 0 0
\(58\) −5.57889 −0.732544
\(59\) −4.79306 −0.624004 −0.312002 0.950082i \(-0.600999\pi\)
−0.312002 + 0.950082i \(0.600999\pi\)
\(60\) 11.0072 1.42103
\(61\) 8.90981 1.14078 0.570392 0.821373i \(-0.306791\pi\)
0.570392 + 0.821373i \(0.306791\pi\)
\(62\) −7.00724 −0.889920
\(63\) −17.3792 −2.18957
\(64\) 1.00000 0.125000
\(65\) −9.13122 −1.13259
\(66\) 2.66908 0.328541
\(67\) −1.30437 −0.159354 −0.0796769 0.996821i \(-0.525389\pi\)
−0.0796769 + 0.996821i \(0.525389\pi\)
\(68\) −3.45490 −0.418969
\(69\) 14.5596 1.75277
\(70\) 17.3792 2.07721
\(71\) 6.80030 0.807047 0.403524 0.914969i \(-0.367785\pi\)
0.403524 + 0.914969i \(0.367785\pi\)
\(72\) 4.12398 0.486016
\(73\) −1.45490 −0.170284 −0.0851418 0.996369i \(-0.527134\pi\)
−0.0851418 + 0.996369i \(0.527134\pi\)
\(74\) 2.90981 0.338258
\(75\) −32.0483 −3.70061
\(76\) 0 0
\(77\) 4.21417 0.480250
\(78\) −5.90981 −0.669154
\(79\) 9.15777 1.03033 0.515165 0.857091i \(-0.327731\pi\)
0.515165 + 0.857091i \(0.327731\pi\)
\(80\) −4.12398 −0.461075
\(81\) −4.36471 −0.484968
\(82\) 11.9170 1.31602
\(83\) −13.2142 −1.45044 −0.725222 0.688515i \(-0.758263\pi\)
−0.725222 + 0.688515i \(0.758263\pi\)
\(84\) 11.2480 1.22725
\(85\) 14.2480 1.54541
\(86\) 1.46214 0.157667
\(87\) 14.8905 1.59643
\(88\) −1.00000 −0.106600
\(89\) −8.24797 −0.874283 −0.437141 0.899393i \(-0.644009\pi\)
−0.437141 + 0.899393i \(0.644009\pi\)
\(90\) −17.0072 −1.79272
\(91\) −9.33092 −0.978146
\(92\) −5.45490 −0.568713
\(93\) 18.7029 1.93940
\(94\) 7.58612 0.782449
\(95\) 0 0
\(96\) −2.66908 −0.272412
\(97\) −2.18038 −0.221384 −0.110692 0.993855i \(-0.535307\pi\)
−0.110692 + 0.993855i \(0.535307\pi\)
\(98\) 10.7593 1.08685
\(99\) −4.12398 −0.414476
\(100\) 12.0072 1.20072
\(101\) −6.24797 −0.621696 −0.310848 0.950460i \(-0.600613\pi\)
−0.310848 + 0.950460i \(0.600613\pi\)
\(102\) 9.22141 0.913056
\(103\) −0.605441 −0.0596559 −0.0298280 0.999555i \(-0.509496\pi\)
−0.0298280 + 0.999555i \(0.509496\pi\)
\(104\) 2.21417 0.217118
\(105\) −46.3864 −4.52685
\(106\) 13.2214 1.28418
\(107\) −3.88325 −0.375408 −0.187704 0.982226i \(-0.560105\pi\)
−0.187704 + 0.982226i \(0.560105\pi\)
\(108\) −3.00000 −0.288675
\(109\) 4.97345 0.476370 0.238185 0.971220i \(-0.423448\pi\)
0.238185 + 0.971220i \(0.423448\pi\)
\(110\) 4.12398 0.393206
\(111\) −7.76651 −0.737164
\(112\) −4.21417 −0.398202
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) 22.4959 2.09776
\(116\) −5.57889 −0.517987
\(117\) 9.13122 0.844182
\(118\) −4.79306 −0.441237
\(119\) 14.5596 1.33467
\(120\) 11.0072 1.00482
\(121\) 1.00000 0.0909091
\(122\) 8.90981 0.806656
\(123\) −31.8075 −2.86799
\(124\) −7.00724 −0.629268
\(125\) −28.8977 −2.58469
\(126\) −17.3792 −1.54826
\(127\) 2.48146 0.220194 0.110097 0.993921i \(-0.464884\pi\)
0.110097 + 0.993921i \(0.464884\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.90257 −0.343602
\(130\) −9.13122 −0.800861
\(131\) 11.0072 0.961707 0.480853 0.876801i \(-0.340327\pi\)
0.480853 + 0.876801i \(0.340327\pi\)
\(132\) 2.66908 0.232314
\(133\) 0 0
\(134\) −1.30437 −0.112680
\(135\) 12.3719 1.06481
\(136\) −3.45490 −0.296256
\(137\) 6.94360 0.593232 0.296616 0.954997i \(-0.404142\pi\)
0.296616 + 0.954997i \(0.404142\pi\)
\(138\) 14.5596 1.23939
\(139\) −4.37195 −0.370824 −0.185412 0.982661i \(-0.559362\pi\)
−0.185412 + 0.982661i \(0.559362\pi\)
\(140\) 17.3792 1.46881
\(141\) −20.2480 −1.70519
\(142\) 6.80030 0.570668
\(143\) −2.21417 −0.185159
\(144\) 4.12398 0.343665
\(145\) 23.0072 1.91065
\(146\) −1.45490 −0.120409
\(147\) −28.7173 −2.36857
\(148\) 2.90981 0.239185
\(149\) 11.7665 0.963950 0.481975 0.876185i \(-0.339920\pi\)
0.481975 + 0.876185i \(0.339920\pi\)
\(150\) −32.0483 −2.61673
\(151\) 19.5861 1.59390 0.796948 0.604048i \(-0.206446\pi\)
0.796948 + 0.604048i \(0.206446\pi\)
\(152\) 0 0
\(153\) −14.2480 −1.15188
\(154\) 4.21417 0.339588
\(155\) 28.8977 2.32112
\(156\) −5.90981 −0.473163
\(157\) 20.6199 1.64565 0.822824 0.568296i \(-0.192397\pi\)
0.822824 + 0.568296i \(0.192397\pi\)
\(158\) 9.15777 0.728553
\(159\) −35.2890 −2.79860
\(160\) −4.12398 −0.326029
\(161\) 22.9879 1.81170
\(162\) −4.36471 −0.342924
\(163\) −17.8341 −1.39687 −0.698437 0.715672i \(-0.746121\pi\)
−0.698437 + 0.715672i \(0.746121\pi\)
\(164\) 11.9170 0.930565
\(165\) −11.0072 −0.856912
\(166\) −13.2142 −1.02562
\(167\) −4.18038 −0.323488 −0.161744 0.986833i \(-0.551712\pi\)
−0.161744 + 0.986833i \(0.551712\pi\)
\(168\) 11.2480 0.867799
\(169\) −8.09743 −0.622879
\(170\) 14.2480 1.09277
\(171\) 0 0
\(172\) 1.46214 0.111487
\(173\) −23.7101 −1.80265 −0.901323 0.433147i \(-0.857403\pi\)
−0.901323 + 0.433147i \(0.857403\pi\)
\(174\) 14.8905 1.12885
\(175\) −50.6006 −3.82505
\(176\) −1.00000 −0.0753778
\(177\) 12.7931 0.961585
\(178\) −8.24797 −0.618211
\(179\) 10.8269 0.809237 0.404619 0.914486i \(-0.367404\pi\)
0.404619 + 0.914486i \(0.367404\pi\)
\(180\) −17.0072 −1.26764
\(181\) 17.8341 1.32560 0.662799 0.748798i \(-0.269368\pi\)
0.662799 + 0.748798i \(0.269368\pi\)
\(182\) −9.33092 −0.691654
\(183\) −23.7810 −1.75794
\(184\) −5.45490 −0.402141
\(185\) −12.0000 −0.882258
\(186\) 18.7029 1.37136
\(187\) 3.45490 0.252648
\(188\) 7.58612 0.553275
\(189\) 12.6425 0.919608
\(190\) 0 0
\(191\) 0.612679 0.0443319 0.0221659 0.999754i \(-0.492944\pi\)
0.0221659 + 0.999754i \(0.492944\pi\)
\(192\) −2.66908 −0.192624
\(193\) −11.6425 −0.838047 −0.419024 0.907975i \(-0.637628\pi\)
−0.419024 + 0.907975i \(0.637628\pi\)
\(194\) −2.18038 −0.156542
\(195\) 24.3719 1.74531
\(196\) 10.7593 0.768519
\(197\) −12.9098 −0.919786 −0.459893 0.887974i \(-0.652112\pi\)
−0.459893 + 0.887974i \(0.652112\pi\)
\(198\) −4.12398 −0.293079
\(199\) −18.3647 −1.30184 −0.650920 0.759146i \(-0.725617\pi\)
−0.650920 + 0.759146i \(0.725617\pi\)
\(200\) 12.0072 0.849040
\(201\) 3.48146 0.245563
\(202\) −6.24797 −0.439605
\(203\) 23.5104 1.65011
\(204\) 9.22141 0.645628
\(205\) −49.1457 −3.43248
\(206\) −0.605441 −0.0421831
\(207\) −22.4959 −1.56358
\(208\) 2.21417 0.153525
\(209\) 0 0
\(210\) −46.3864 −3.20097
\(211\) −2.13122 −0.146719 −0.0733596 0.997306i \(-0.523372\pi\)
−0.0733596 + 0.997306i \(0.523372\pi\)
\(212\) 13.2214 0.908050
\(213\) −18.1505 −1.24365
\(214\) −3.88325 −0.265454
\(215\) −6.02985 −0.411232
\(216\) −3.00000 −0.204124
\(217\) 29.5297 2.00461
\(218\) 4.97345 0.336844
\(219\) 3.88325 0.262406
\(220\) 4.12398 0.278039
\(221\) −7.64976 −0.514579
\(222\) −7.76651 −0.521254
\(223\) −6.90981 −0.462715 −0.231357 0.972869i \(-0.574317\pi\)
−0.231357 + 0.972869i \(0.574317\pi\)
\(224\) −4.21417 −0.281571
\(225\) 49.5176 3.30118
\(226\) 8.00000 0.532152
\(227\) 2.72548 0.180896 0.0904482 0.995901i \(-0.471170\pi\)
0.0904482 + 0.995901i \(0.471170\pi\)
\(228\) 0 0
\(229\) 3.48870 0.230539 0.115270 0.993334i \(-0.463227\pi\)
0.115270 + 0.993334i \(0.463227\pi\)
\(230\) 22.4959 1.48334
\(231\) −11.2480 −0.740062
\(232\) −5.57889 −0.366272
\(233\) −17.0902 −1.11962 −0.559808 0.828622i \(-0.689125\pi\)
−0.559808 + 0.828622i \(0.689125\pi\)
\(234\) 9.13122 0.596927
\(235\) −31.2850 −2.04081
\(236\) −4.79306 −0.312002
\(237\) −24.4428 −1.58773
\(238\) 14.5596 0.943757
\(239\) 6.06035 0.392011 0.196006 0.980603i \(-0.437203\pi\)
0.196006 + 0.980603i \(0.437203\pi\)
\(240\) 11.0072 0.710514
\(241\) −4.85341 −0.312635 −0.156318 0.987707i \(-0.549962\pi\)
−0.156318 + 0.987707i \(0.549962\pi\)
\(242\) 1.00000 0.0642824
\(243\) 20.6498 1.32468
\(244\) 8.90981 0.570392
\(245\) −44.3711 −2.83476
\(246\) −31.8075 −2.02797
\(247\) 0 0
\(248\) −7.00724 −0.444960
\(249\) 35.2697 2.23513
\(250\) −28.8977 −1.82765
\(251\) −1.58612 −0.100115 −0.0500576 0.998746i \(-0.515941\pi\)
−0.0500576 + 0.998746i \(0.515941\pi\)
\(252\) −17.3792 −1.09479
\(253\) 5.45490 0.342947
\(254\) 2.48146 0.155701
\(255\) −38.0289 −2.38147
\(256\) 1.00000 0.0625000
\(257\) −19.5185 −1.21753 −0.608767 0.793349i \(-0.708335\pi\)
−0.608767 + 0.793349i \(0.708335\pi\)
\(258\) −3.90257 −0.242963
\(259\) −12.2624 −0.761951
\(260\) −9.13122 −0.566294
\(261\) −23.0072 −1.42411
\(262\) 11.0072 0.680029
\(263\) −13.0483 −0.804591 −0.402295 0.915510i \(-0.631787\pi\)
−0.402295 + 0.915510i \(0.631787\pi\)
\(264\) 2.66908 0.164270
\(265\) −54.5249 −3.34944
\(266\) 0 0
\(267\) 22.0145 1.34726
\(268\) −1.30437 −0.0796769
\(269\) −23.6006 −1.43895 −0.719477 0.694516i \(-0.755618\pi\)
−0.719477 + 0.694516i \(0.755618\pi\)
\(270\) 12.3719 0.752933
\(271\) −16.4090 −0.996778 −0.498389 0.866954i \(-0.666075\pi\)
−0.498389 + 0.866954i \(0.666075\pi\)
\(272\) −3.45490 −0.209484
\(273\) 24.9050 1.50732
\(274\) 6.94360 0.419478
\(275\) −12.0072 −0.724064
\(276\) 14.5596 0.876383
\(277\) −11.5861 −0.696143 −0.348071 0.937468i \(-0.613163\pi\)
−0.348071 + 0.937468i \(0.613163\pi\)
\(278\) −4.37195 −0.262212
\(279\) −28.8977 −1.73006
\(280\) 17.3792 1.03861
\(281\) −7.03379 −0.419601 −0.209800 0.977744i \(-0.567281\pi\)
−0.209800 + 0.977744i \(0.567281\pi\)
\(282\) −20.2480 −1.20575
\(283\) 8.33092 0.495222 0.247611 0.968860i \(-0.420355\pi\)
0.247611 + 0.968860i \(0.420355\pi\)
\(284\) 6.80030 0.403524
\(285\) 0 0
\(286\) −2.21417 −0.130927
\(287\) −50.2205 −2.96442
\(288\) 4.12398 0.243008
\(289\) −5.06364 −0.297861
\(290\) 23.0072 1.35103
\(291\) 5.81962 0.341152
\(292\) −1.45490 −0.0851418
\(293\) −10.2142 −0.596718 −0.298359 0.954454i \(-0.596439\pi\)
−0.298359 + 0.954454i \(0.596439\pi\)
\(294\) −28.7173 −1.67483
\(295\) 19.7665 1.15085
\(296\) 2.90981 0.169129
\(297\) 3.00000 0.174078
\(298\) 11.7665 0.681616
\(299\) −12.0781 −0.698495
\(300\) −32.0483 −1.85031
\(301\) −6.16172 −0.355156
\(302\) 19.5861 1.12705
\(303\) 16.6763 0.958029
\(304\) 0 0
\(305\) −36.7439 −2.10395
\(306\) −14.2480 −0.814502
\(307\) 1.93242 0.110289 0.0551444 0.998478i \(-0.482438\pi\)
0.0551444 + 0.998478i \(0.482438\pi\)
\(308\) 4.21417 0.240125
\(309\) 1.61597 0.0919294
\(310\) 28.8977 1.64128
\(311\) −27.7173 −1.57171 −0.785853 0.618413i \(-0.787776\pi\)
−0.785853 + 0.618413i \(0.787776\pi\)
\(312\) −5.90981 −0.334577
\(313\) 11.5258 0.651476 0.325738 0.945460i \(-0.394387\pi\)
0.325738 + 0.945460i \(0.394387\pi\)
\(314\) 20.6199 1.16365
\(315\) 71.6715 4.03823
\(316\) 9.15777 0.515165
\(317\) 33.8977 1.90389 0.951943 0.306275i \(-0.0990827\pi\)
0.951943 + 0.306275i \(0.0990827\pi\)
\(318\) −35.2890 −1.97891
\(319\) 5.57889 0.312358
\(320\) −4.12398 −0.230538
\(321\) 10.3647 0.578502
\(322\) 22.9879 1.28107
\(323\) 0 0
\(324\) −4.36471 −0.242484
\(325\) 26.5861 1.47473
\(326\) −17.8341 −0.987739
\(327\) −13.2745 −0.734083
\(328\) 11.9170 0.658009
\(329\) −31.9693 −1.76252
\(330\) −11.0072 −0.605928
\(331\) 16.2697 0.894262 0.447131 0.894468i \(-0.352446\pi\)
0.447131 + 0.894468i \(0.352446\pi\)
\(332\) −13.2142 −0.725222
\(333\) 12.0000 0.657596
\(334\) −4.18038 −0.228740
\(335\) 5.37919 0.293896
\(336\) 11.2480 0.613627
\(337\) 6.82685 0.371882 0.185941 0.982561i \(-0.440467\pi\)
0.185941 + 0.982561i \(0.440467\pi\)
\(338\) −8.09743 −0.440442
\(339\) −21.3526 −1.15972
\(340\) 14.2480 0.772704
\(341\) 7.00724 0.379463
\(342\) 0 0
\(343\) −15.8422 −0.855400
\(344\) 1.46214 0.0788334
\(345\) −60.0434 −3.23263
\(346\) −23.7101 −1.27466
\(347\) −5.09019 −0.273256 −0.136628 0.990622i \(-0.543626\pi\)
−0.136628 + 0.990622i \(0.543626\pi\)
\(348\) 14.8905 0.798214
\(349\) 30.9919 1.65896 0.829478 0.558539i \(-0.188638\pi\)
0.829478 + 0.558539i \(0.188638\pi\)
\(350\) −50.6006 −2.70472
\(351\) −6.64252 −0.354552
\(352\) −1.00000 −0.0533002
\(353\) −17.8301 −0.949003 −0.474501 0.880255i \(-0.657372\pi\)
−0.474501 + 0.880255i \(0.657372\pi\)
\(354\) 12.7931 0.679944
\(355\) −28.0443 −1.48844
\(356\) −8.24797 −0.437141
\(357\) −38.8606 −2.05672
\(358\) 10.8269 0.572217
\(359\) 24.4090 1.28826 0.644130 0.764916i \(-0.277220\pi\)
0.644130 + 0.764916i \(0.277220\pi\)
\(360\) −17.0072 −0.896360
\(361\) 0 0
\(362\) 17.8341 0.937339
\(363\) −2.66908 −0.140090
\(364\) −9.33092 −0.489073
\(365\) 6.00000 0.314054
\(366\) −23.7810 −1.24305
\(367\) −26.6232 −1.38972 −0.694860 0.719145i \(-0.744534\pi\)
−0.694860 + 0.719145i \(0.744534\pi\)
\(368\) −5.45490 −0.284357
\(369\) 49.1457 2.55842
\(370\) −12.0000 −0.623850
\(371\) −55.7173 −2.89270
\(372\) 18.7029 0.969699
\(373\) 12.6160 0.653230 0.326615 0.945157i \(-0.394092\pi\)
0.326615 + 0.945157i \(0.394092\pi\)
\(374\) 3.45490 0.178649
\(375\) 77.1303 3.98299
\(376\) 7.58612 0.391225
\(377\) −12.3526 −0.636193
\(378\) 12.6425 0.650261
\(379\) 22.8905 1.17581 0.587903 0.808932i \(-0.299954\pi\)
0.587903 + 0.808932i \(0.299954\pi\)
\(380\) 0 0
\(381\) −6.62321 −0.339317
\(382\) 0.612679 0.0313474
\(383\) 0.0298464 0.00152508 0.000762539 1.00000i \(-0.499757\pi\)
0.000762539 1.00000i \(0.499757\pi\)
\(384\) −2.66908 −0.136206
\(385\) −17.3792 −0.885725
\(386\) −11.6425 −0.592589
\(387\) 6.02985 0.306514
\(388\) −2.18038 −0.110692
\(389\) 9.22865 0.467911 0.233956 0.972247i \(-0.424833\pi\)
0.233956 + 0.972247i \(0.424833\pi\)
\(390\) 24.3719 1.23412
\(391\) 18.8462 0.953092
\(392\) 10.7593 0.543425
\(393\) −29.3792 −1.48198
\(394\) −12.9098 −0.650387
\(395\) −37.7665 −1.90024
\(396\) −4.12398 −0.207238
\(397\) 17.2697 0.866740 0.433370 0.901216i \(-0.357324\pi\)
0.433370 + 0.901216i \(0.357324\pi\)
\(398\) −18.3647 −0.920540
\(399\) 0 0
\(400\) 12.0072 0.600362
\(401\) 13.2850 0.663424 0.331712 0.943381i \(-0.392374\pi\)
0.331712 + 0.943381i \(0.392374\pi\)
\(402\) 3.48146 0.173639
\(403\) −15.5152 −0.772870
\(404\) −6.24797 −0.310848
\(405\) 18.0000 0.894427
\(406\) 23.5104 1.16680
\(407\) −2.90981 −0.144234
\(408\) 9.22141 0.456528
\(409\) −1.94360 −0.0961048 −0.0480524 0.998845i \(-0.515301\pi\)
−0.0480524 + 0.998845i \(0.515301\pi\)
\(410\) −49.1457 −2.42713
\(411\) −18.5330 −0.914166
\(412\) −0.605441 −0.0298280
\(413\) 20.1988 0.993918
\(414\) −22.4959 −1.10561
\(415\) 54.4950 2.67506
\(416\) 2.21417 0.108559
\(417\) 11.6691 0.571437
\(418\) 0 0
\(419\) −2.49593 −0.121934 −0.0609671 0.998140i \(-0.519418\pi\)
−0.0609671 + 0.998140i \(0.519418\pi\)
\(420\) −46.3864 −2.26343
\(421\) −15.6353 −0.762017 −0.381009 0.924571i \(-0.624423\pi\)
−0.381009 + 0.924571i \(0.624423\pi\)
\(422\) −2.13122 −0.103746
\(423\) 31.2850 1.52113
\(424\) 13.2214 0.642089
\(425\) −41.4839 −2.01226
\(426\) −18.1505 −0.879396
\(427\) −37.5475 −1.81705
\(428\) −3.88325 −0.187704
\(429\) 5.90981 0.285328
\(430\) −6.02985 −0.290785
\(431\) −0.262441 −0.0126413 −0.00632067 0.999980i \(-0.502012\pi\)
−0.00632067 + 0.999980i \(0.502012\pi\)
\(432\) −3.00000 −0.144338
\(433\) 32.2769 1.55113 0.775565 0.631268i \(-0.217465\pi\)
0.775565 + 0.631268i \(0.217465\pi\)
\(434\) 29.5297 1.41747
\(435\) −61.4081 −2.94429
\(436\) 4.97345 0.238185
\(437\) 0 0
\(438\) 3.88325 0.185549
\(439\) 17.0902 0.815670 0.407835 0.913056i \(-0.366284\pi\)
0.407835 + 0.913056i \(0.366284\pi\)
\(440\) 4.12398 0.196603
\(441\) 44.3711 2.11291
\(442\) −7.64976 −0.363862
\(443\) 16.2624 0.772652 0.386326 0.922362i \(-0.373744\pi\)
0.386326 + 0.922362i \(0.373744\pi\)
\(444\) −7.76651 −0.368582
\(445\) 34.0145 1.61244
\(446\) −6.90981 −0.327189
\(447\) −31.4057 −1.48544
\(448\) −4.21417 −0.199101
\(449\) 27.3382 1.29017 0.645084 0.764112i \(-0.276822\pi\)
0.645084 + 0.764112i \(0.276822\pi\)
\(450\) 49.5176 2.33428
\(451\) −11.9170 −0.561152
\(452\) 8.00000 0.376288
\(453\) −52.2769 −2.45618
\(454\) 2.72548 0.127913
\(455\) 38.4806 1.80400
\(456\) 0 0
\(457\) 10.4920 0.490794 0.245397 0.969423i \(-0.421082\pi\)
0.245397 + 0.969423i \(0.421082\pi\)
\(458\) 3.48870 0.163016
\(459\) 10.3647 0.483783
\(460\) 22.4959 1.04888
\(461\) 6.18038 0.287849 0.143925 0.989589i \(-0.454028\pi\)
0.143925 + 0.989589i \(0.454028\pi\)
\(462\) −11.2480 −0.523303
\(463\) −11.1433 −0.517873 −0.258937 0.965894i \(-0.583372\pi\)
−0.258937 + 0.965894i \(0.583372\pi\)
\(464\) −5.57889 −0.258993
\(465\) −77.1303 −3.57683
\(466\) −17.0902 −0.791688
\(467\) −34.5104 −1.59695 −0.798476 0.602027i \(-0.794360\pi\)
−0.798476 + 0.602027i \(0.794360\pi\)
\(468\) 9.13122 0.422091
\(469\) 5.49683 0.253820
\(470\) −31.2850 −1.44307
\(471\) −55.0362 −2.53593
\(472\) −4.79306 −0.220619
\(473\) −1.46214 −0.0672293
\(474\) −24.4428 −1.12270
\(475\) 0 0
\(476\) 14.5596 0.667337
\(477\) 54.5249 2.49652
\(478\) 6.06035 0.277194
\(479\) 41.6980 1.90523 0.952616 0.304176i \(-0.0983812\pi\)
0.952616 + 0.304176i \(0.0983812\pi\)
\(480\) 11.0072 0.502409
\(481\) 6.44282 0.293768
\(482\) −4.85341 −0.221067
\(483\) −61.3566 −2.79182
\(484\) 1.00000 0.0454545
\(485\) 8.99187 0.408300
\(486\) 20.6498 0.936692
\(487\) −9.10137 −0.412423 −0.206211 0.978507i \(-0.566113\pi\)
−0.206211 + 0.978507i \(0.566113\pi\)
\(488\) 8.90981 0.403328
\(489\) 47.6006 2.15257
\(490\) −44.3711 −2.00448
\(491\) −30.8413 −1.39185 −0.695925 0.718115i \(-0.745005\pi\)
−0.695925 + 0.718115i \(0.745005\pi\)
\(492\) −31.8075 −1.43399
\(493\) 19.2745 0.868081
\(494\) 0 0
\(495\) 17.0072 0.764418
\(496\) −7.00724 −0.314634
\(497\) −28.6577 −1.28547
\(498\) 35.2697 1.58047
\(499\) 21.7665 0.974403 0.487201 0.873290i \(-0.338018\pi\)
0.487201 + 0.873290i \(0.338018\pi\)
\(500\) −28.8977 −1.29235
\(501\) 11.1578 0.498493
\(502\) −1.58612 −0.0707922
\(503\) 38.0893 1.69832 0.849159 0.528138i \(-0.177109\pi\)
0.849159 + 0.528138i \(0.177109\pi\)
\(504\) −17.3792 −0.774131
\(505\) 25.7665 1.14659
\(506\) 5.45490 0.242500
\(507\) 21.6127 0.959853
\(508\) 2.48146 0.110097
\(509\) −14.9388 −0.662149 −0.331074 0.943605i \(-0.607411\pi\)
−0.331074 + 0.943605i \(0.607411\pi\)
\(510\) −38.0289 −1.68395
\(511\) 6.13122 0.271229
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −19.5185 −0.860926
\(515\) 2.49683 0.110023
\(516\) −3.90257 −0.171801
\(517\) −7.58612 −0.333637
\(518\) −12.2624 −0.538781
\(519\) 63.2842 2.77787
\(520\) −9.13122 −0.400431
\(521\) −7.22536 −0.316549 −0.158274 0.987395i \(-0.550593\pi\)
−0.158274 + 0.987395i \(0.550593\pi\)
\(522\) −23.0072 −1.00700
\(523\) −4.90586 −0.214518 −0.107259 0.994231i \(-0.534207\pi\)
−0.107259 + 0.994231i \(0.534207\pi\)
\(524\) 11.0072 0.480853
\(525\) 135.057 5.89437
\(526\) −13.0483 −0.568931
\(527\) 24.2093 1.05458
\(528\) 2.66908 0.116157
\(529\) 6.75598 0.293738
\(530\) −54.5249 −2.36841
\(531\) −19.7665 −0.857793
\(532\) 0 0
\(533\) 26.3864 1.14292
\(534\) 22.0145 0.952659
\(535\) 16.0145 0.692366
\(536\) −1.30437 −0.0563401
\(537\) −28.8977 −1.24703
\(538\) −23.6006 −1.01749
\(539\) −10.7593 −0.463435
\(540\) 12.3719 0.532404
\(541\) 30.8712 1.32726 0.663628 0.748063i \(-0.269016\pi\)
0.663628 + 0.748063i \(0.269016\pi\)
\(542\) −16.4090 −0.704828
\(543\) −47.6006 −2.04274
\(544\) −3.45490 −0.148128
\(545\) −20.5104 −0.878569
\(546\) 24.9050 1.06583
\(547\) −2.54115 −0.108652 −0.0543259 0.998523i \(-0.517301\pi\)
−0.0543259 + 0.998523i \(0.517301\pi\)
\(548\) 6.94360 0.296616
\(549\) 36.7439 1.56819
\(550\) −12.0072 −0.511990
\(551\) 0 0
\(552\) 14.5596 0.619696
\(553\) −38.5925 −1.64112
\(554\) −11.5861 −0.492247
\(555\) 32.0289 1.35955
\(556\) −4.37195 −0.185412
\(557\) 23.9017 1.01275 0.506373 0.862314i \(-0.330986\pi\)
0.506373 + 0.862314i \(0.330986\pi\)
\(558\) −28.8977 −1.22334
\(559\) 3.23744 0.136929
\(560\) 17.3792 0.734405
\(561\) −9.22141 −0.389328
\(562\) −7.03379 −0.296703
\(563\) 10.6232 0.447715 0.223857 0.974622i \(-0.428135\pi\)
0.223857 + 0.974622i \(0.428135\pi\)
\(564\) −20.2480 −0.852593
\(565\) −32.9919 −1.38798
\(566\) 8.33092 0.350175
\(567\) 18.3937 0.772461
\(568\) 6.80030 0.285334
\(569\) −29.3373 −1.22988 −0.614941 0.788573i \(-0.710820\pi\)
−0.614941 + 0.788573i \(0.710820\pi\)
\(570\) 0 0
\(571\) 19.8639 0.831280 0.415640 0.909529i \(-0.363558\pi\)
0.415640 + 0.909529i \(0.363558\pi\)
\(572\) −2.21417 −0.0925793
\(573\) −1.63529 −0.0683151
\(574\) −50.2205 −2.09616
\(575\) −65.4983 −2.73147
\(576\) 4.12398 0.171833
\(577\) −3.17709 −0.132264 −0.0661320 0.997811i \(-0.521066\pi\)
−0.0661320 + 0.997811i \(0.521066\pi\)
\(578\) −5.06364 −0.210620
\(579\) 31.0748 1.29143
\(580\) 23.0072 0.955324
\(581\) 55.6868 2.31028
\(582\) 5.81962 0.241231
\(583\) −13.2214 −0.547575
\(584\) −1.45490 −0.0602044
\(585\) −37.6570 −1.55693
\(586\) −10.2142 −0.421944
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) −28.7173 −1.18428
\(589\) 0 0
\(590\) 19.7665 0.813774
\(591\) 34.4573 1.41738
\(592\) 2.90981 0.119592
\(593\) −3.45885 −0.142038 −0.0710190 0.997475i \(-0.522625\pi\)
−0.0710190 + 0.997475i \(0.522625\pi\)
\(594\) 3.00000 0.123091
\(595\) −60.0434 −2.46154
\(596\) 11.7665 0.481975
\(597\) 49.0169 2.00613
\(598\) −12.0781 −0.493911
\(599\) −40.3864 −1.65014 −0.825072 0.565027i \(-0.808866\pi\)
−0.825072 + 0.565027i \(0.808866\pi\)
\(600\) −32.0483 −1.30836
\(601\) −18.3309 −0.747734 −0.373867 0.927482i \(-0.621968\pi\)
−0.373867 + 0.927482i \(0.621968\pi\)
\(602\) −6.16172 −0.251133
\(603\) −5.37919 −0.219057
\(604\) 19.5861 0.796948
\(605\) −4.12398 −0.167664
\(606\) 16.6763 0.677429
\(607\) −12.4283 −0.504451 −0.252226 0.967668i \(-0.581162\pi\)
−0.252226 + 0.967668i \(0.581162\pi\)
\(608\) 0 0
\(609\) −62.7511 −2.54280
\(610\) −36.7439 −1.48772
\(611\) 16.7970 0.679534
\(612\) −14.2480 −0.575940
\(613\) −0.0531082 −0.00214502 −0.00107251 0.999999i \(-0.500341\pi\)
−0.00107251 + 0.999999i \(0.500341\pi\)
\(614\) 1.93242 0.0779860
\(615\) 131.174 5.28944
\(616\) 4.21417 0.169794
\(617\) −17.4887 −0.704068 −0.352034 0.935987i \(-0.614510\pi\)
−0.352034 + 0.935987i \(0.614510\pi\)
\(618\) 1.61597 0.0650039
\(619\) 25.2995 1.01687 0.508437 0.861099i \(-0.330224\pi\)
0.508437 + 0.861099i \(0.330224\pi\)
\(620\) 28.8977 1.16056
\(621\) 16.3647 0.656693
\(622\) −27.7173 −1.11136
\(623\) 34.7584 1.39256
\(624\) −5.90981 −0.236582
\(625\) 59.1376 2.36550
\(626\) 11.5258 0.460663
\(627\) 0 0
\(628\) 20.6199 0.822824
\(629\) −10.0531 −0.400844
\(630\) 71.6715 2.85546
\(631\) 9.02261 0.359184 0.179592 0.983741i \(-0.442522\pi\)
0.179592 + 0.983741i \(0.442522\pi\)
\(632\) 9.15777 0.364277
\(633\) 5.68840 0.226093
\(634\) 33.8977 1.34625
\(635\) −10.2335 −0.406104
\(636\) −35.2890 −1.39930
\(637\) 23.8229 0.943898
\(638\) 5.57889 0.220870
\(639\) 28.0443 1.10942
\(640\) −4.12398 −0.163015
\(641\) −30.4573 −1.20299 −0.601495 0.798876i \(-0.705428\pi\)
−0.601495 + 0.798876i \(0.705428\pi\)
\(642\) 10.3647 0.409063
\(643\) −36.7584 −1.44961 −0.724804 0.688955i \(-0.758070\pi\)
−0.724804 + 0.688955i \(0.758070\pi\)
\(644\) 22.9879 0.905851
\(645\) 16.0941 0.633706
\(646\) 0 0
\(647\) −41.0700 −1.61463 −0.807314 0.590122i \(-0.799079\pi\)
−0.807314 + 0.590122i \(0.799079\pi\)
\(648\) −4.36471 −0.171462
\(649\) 4.79306 0.188144
\(650\) 26.5861 1.04279
\(651\) −78.8172 −3.08909
\(652\) −17.8341 −0.698437
\(653\) 28.4806 1.11453 0.557265 0.830335i \(-0.311851\pi\)
0.557265 + 0.830335i \(0.311851\pi\)
\(654\) −13.2745 −0.519075
\(655\) −45.3937 −1.77368
\(656\) 11.9170 0.465282
\(657\) −6.00000 −0.234082
\(658\) −31.9693 −1.24629
\(659\) 10.5740 0.411906 0.205953 0.978562i \(-0.433971\pi\)
0.205953 + 0.978562i \(0.433971\pi\)
\(660\) −11.0072 −0.428456
\(661\) −7.70287 −0.299607 −0.149803 0.988716i \(-0.547864\pi\)
−0.149803 + 0.988716i \(0.547864\pi\)
\(662\) 16.2697 0.632339
\(663\) 20.4178 0.792962
\(664\) −13.2142 −0.512809
\(665\) 0 0
\(666\) 12.0000 0.464991
\(667\) 30.4323 1.17834
\(668\) −4.18038 −0.161744
\(669\) 18.4428 0.713041
\(670\) 5.37919 0.207816
\(671\) −8.90981 −0.343959
\(672\) 11.2480 0.433900
\(673\) 31.5176 1.21492 0.607458 0.794352i \(-0.292189\pi\)
0.607458 + 0.794352i \(0.292189\pi\)
\(674\) 6.82685 0.262961
\(675\) −36.0217 −1.38648
\(676\) −8.09743 −0.311440
\(677\) −11.9928 −0.460919 −0.230460 0.973082i \(-0.574023\pi\)
−0.230460 + 0.973082i \(0.574023\pi\)
\(678\) −21.3526 −0.820043
\(679\) 9.18852 0.352623
\(680\) 14.2480 0.546385
\(681\) −7.27452 −0.278760
\(682\) 7.00724 0.268321
\(683\) −39.1722 −1.49888 −0.749442 0.662070i \(-0.769678\pi\)
−0.749442 + 0.662070i \(0.769678\pi\)
\(684\) 0 0
\(685\) −28.6353 −1.09410
\(686\) −15.8422 −0.604859
\(687\) −9.31160 −0.355260
\(688\) 1.46214 0.0557436
\(689\) 29.2745 1.11527
\(690\) −60.0434 −2.28581
\(691\) −49.1722 −1.87060 −0.935300 0.353855i \(-0.884871\pi\)
−0.935300 + 0.353855i \(0.884871\pi\)
\(692\) −23.7101 −0.901323
\(693\) 17.3792 0.660181
\(694\) −5.09019 −0.193221
\(695\) 18.0298 0.683911
\(696\) 14.8905 0.564423
\(697\) −41.1722 −1.55951
\(698\) 30.9919 1.17306
\(699\) 45.6151 1.72532
\(700\) −50.6006 −1.91252
\(701\) 37.8486 1.42952 0.714760 0.699370i \(-0.246536\pi\)
0.714760 + 0.699370i \(0.246536\pi\)
\(702\) −6.64252 −0.250706
\(703\) 0 0
\(704\) −1.00000 −0.0376889
\(705\) 83.5023 3.14488
\(706\) −17.8301 −0.671046
\(707\) 26.3300 0.990242
\(708\) 12.7931 0.480793
\(709\) 27.7511 1.04222 0.521108 0.853491i \(-0.325519\pi\)
0.521108 + 0.853491i \(0.325519\pi\)
\(710\) −28.0443 −1.05248
\(711\) 37.7665 1.41635
\(712\) −8.24797 −0.309106
\(713\) 38.2238 1.43149
\(714\) −38.8606 −1.45432
\(715\) 9.13122 0.341488
\(716\) 10.8269 0.404619
\(717\) −16.1755 −0.604087
\(718\) 24.4090 0.910937
\(719\) −17.0410 −0.635523 −0.317762 0.948171i \(-0.602931\pi\)
−0.317762 + 0.948171i \(0.602931\pi\)
\(720\) −17.0072 −0.633822
\(721\) 2.55144 0.0950204
\(722\) 0 0
\(723\) 12.9541 0.481769
\(724\) 17.8341 0.662799
\(725\) −66.9870 −2.48784
\(726\) −2.66908 −0.0990588
\(727\) 13.5225 0.501521 0.250761 0.968049i \(-0.419319\pi\)
0.250761 + 0.968049i \(0.419319\pi\)
\(728\) −9.33092 −0.345827
\(729\) −42.0217 −1.55636
\(730\) 6.00000 0.222070
\(731\) −5.05156 −0.186839
\(732\) −23.7810 −0.878970
\(733\) −25.6682 −0.948076 −0.474038 0.880504i \(-0.657204\pi\)
−0.474038 + 0.880504i \(0.657204\pi\)
\(734\) −26.6232 −0.982681
\(735\) 118.430 4.36835
\(736\) −5.45490 −0.201070
\(737\) 1.30437 0.0480470
\(738\) 49.1457 1.80908
\(739\) 21.3493 0.785348 0.392674 0.919678i \(-0.371550\pi\)
0.392674 + 0.919678i \(0.371550\pi\)
\(740\) −12.0000 −0.441129
\(741\) 0 0
\(742\) −55.7173 −2.04545
\(743\) 7.55718 0.277246 0.138623 0.990345i \(-0.455732\pi\)
0.138623 + 0.990345i \(0.455732\pi\)
\(744\) 18.7029 0.685680
\(745\) −48.5249 −1.77781
\(746\) 12.6160 0.461904
\(747\) −54.4950 −1.99387
\(748\) 3.45490 0.126324
\(749\) 16.3647 0.597954
\(750\) 77.1303 2.81640
\(751\) 53.5861 1.95539 0.977693 0.210040i \(-0.0673595\pi\)
0.977693 + 0.210040i \(0.0673595\pi\)
\(752\) 7.58612 0.276637
\(753\) 4.23349 0.154277
\(754\) −12.3526 −0.449856
\(755\) −80.7728 −2.93962
\(756\) 12.6425 0.459804
\(757\) −13.9436 −0.506789 −0.253394 0.967363i \(-0.581547\pi\)
−0.253394 + 0.967363i \(0.581547\pi\)
\(758\) 22.8905 0.831420
\(759\) −14.5596 −0.528479
\(760\) 0 0
\(761\) −45.7994 −1.66023 −0.830114 0.557594i \(-0.811724\pi\)
−0.830114 + 0.557594i \(0.811724\pi\)
\(762\) −6.62321 −0.239934
\(763\) −20.9590 −0.758766
\(764\) 0.612679 0.0221659
\(765\) 58.7584 2.12441
\(766\) 0.0298464 0.00107839
\(767\) −10.6127 −0.383202
\(768\) −2.66908 −0.0963121
\(769\) −40.8751 −1.47399 −0.736997 0.675896i \(-0.763757\pi\)
−0.736997 + 0.675896i \(0.763757\pi\)
\(770\) −17.3792 −0.626302
\(771\) 52.0965 1.87621
\(772\) −11.6425 −0.419024
\(773\) −37.4983 −1.34872 −0.674361 0.738402i \(-0.735581\pi\)
−0.674361 + 0.738402i \(0.735581\pi\)
\(774\) 6.02985 0.216738
\(775\) −84.1376 −3.02231
\(776\) −2.18038 −0.0782712
\(777\) 32.7294 1.17416
\(778\) 9.22865 0.330863
\(779\) 0 0
\(780\) 24.3719 0.872656
\(781\) −6.80030 −0.243334
\(782\) 18.8462 0.673938
\(783\) 16.7367 0.598119
\(784\) 10.7593 0.384260
\(785\) −85.0362 −3.03507
\(786\) −29.3792 −1.04792
\(787\) −8.80754 −0.313955 −0.156977 0.987602i \(-0.550175\pi\)
−0.156977 + 0.987602i \(0.550175\pi\)
\(788\) −12.9098 −0.459893
\(789\) 34.8269 1.23987
\(790\) −37.7665 −1.34367
\(791\) −33.7134 −1.19871
\(792\) −4.12398 −0.146539
\(793\) 19.7279 0.700557
\(794\) 17.2697 0.612878
\(795\) 145.531 5.16146
\(796\) −18.3647 −0.650920
\(797\) 26.1312 0.925615 0.462808 0.886459i \(-0.346842\pi\)
0.462808 + 0.886459i \(0.346842\pi\)
\(798\) 0 0
\(799\) −26.2093 −0.927220
\(800\) 12.0072 0.424520
\(801\) −34.0145 −1.20184
\(802\) 13.2850 0.469111
\(803\) 1.45490 0.0513425
\(804\) 3.48146 0.122782
\(805\) −94.8018 −3.34132
\(806\) −15.5152 −0.546501
\(807\) 62.9919 2.21742
\(808\) −6.24797 −0.219803
\(809\) −6.01053 −0.211319 −0.105659 0.994402i \(-0.533695\pi\)
−0.105659 + 0.994402i \(0.533695\pi\)
\(810\) 18.0000 0.632456
\(811\) 40.2809 1.41445 0.707226 0.706987i \(-0.249946\pi\)
0.707226 + 0.706987i \(0.249946\pi\)
\(812\) 23.5104 0.825054
\(813\) 43.7970 1.53603
\(814\) −2.90981 −0.101989
\(815\) 73.5475 2.57626
\(816\) 9.22141 0.322814
\(817\) 0 0
\(818\) −1.94360 −0.0679564
\(819\) −38.4806 −1.34462
\(820\) −49.1457 −1.71624
\(821\) 50.1496 1.75023 0.875117 0.483911i \(-0.160784\pi\)
0.875117 + 0.483911i \(0.160784\pi\)
\(822\) −18.5330 −0.646413
\(823\) −42.7400 −1.48982 −0.744911 0.667164i \(-0.767508\pi\)
−0.744911 + 0.667164i \(0.767508\pi\)
\(824\) −0.605441 −0.0210915
\(825\) 32.0483 1.11578
\(826\) 20.1988 0.702806
\(827\) −49.0555 −1.70583 −0.852913 0.522052i \(-0.825167\pi\)
−0.852913 + 0.522052i \(0.825167\pi\)
\(828\) −22.4959 −0.781788
\(829\) −49.9653 −1.73537 −0.867683 0.497117i \(-0.834392\pi\)
−0.867683 + 0.497117i \(0.834392\pi\)
\(830\) 54.4950 1.89155
\(831\) 30.9243 1.07275
\(832\) 2.21417 0.0767627
\(833\) −37.1722 −1.28794
\(834\) 11.6691 0.404067
\(835\) 17.2398 0.596609
\(836\) 0 0
\(837\) 21.0217 0.726617
\(838\) −2.49593 −0.0862206
\(839\) 52.0257 1.79613 0.898063 0.439868i \(-0.144975\pi\)
0.898063 + 0.439868i \(0.144975\pi\)
\(840\) −46.3864 −1.60048
\(841\) 2.12398 0.0732408
\(842\) −15.6353 −0.538828
\(843\) 18.7737 0.646602
\(844\) −2.13122 −0.0733596
\(845\) 33.3937 1.14878
\(846\) 31.2850 1.07560
\(847\) −4.21417 −0.144801
\(848\) 13.2214 0.454025
\(849\) −22.2359 −0.763134
\(850\) −41.4839 −1.42288
\(851\) −15.8727 −0.544110
\(852\) −18.1505 −0.621827
\(853\) 16.2335 0.555824 0.277912 0.960607i \(-0.410358\pi\)
0.277912 + 0.960607i \(0.410358\pi\)
\(854\) −37.5475 −1.28485
\(855\) 0 0
\(856\) −3.88325 −0.132727
\(857\) −9.60150 −0.327981 −0.163990 0.986462i \(-0.552437\pi\)
−0.163990 + 0.986462i \(0.552437\pi\)
\(858\) 5.90981 0.201758
\(859\) 19.4057 0.662115 0.331058 0.943611i \(-0.392595\pi\)
0.331058 + 0.943611i \(0.392595\pi\)
\(860\) −6.02985 −0.205616
\(861\) 134.043 4.56816
\(862\) −0.262441 −0.00893877
\(863\) −1.54839 −0.0527077 −0.0263539 0.999653i \(-0.508390\pi\)
−0.0263539 + 0.999653i \(0.508390\pi\)
\(864\) −3.00000 −0.102062
\(865\) 97.7801 3.32462
\(866\) 32.2769 1.09681
\(867\) 13.5152 0.459002
\(868\) 29.5297 1.00230
\(869\) −9.15777 −0.310656
\(870\) −61.4081 −2.08193
\(871\) −2.88810 −0.0978594
\(872\) 4.97345 0.168422
\(873\) −8.99187 −0.304329
\(874\) 0 0
\(875\) 121.780 4.11692
\(876\) 3.88325 0.131203
\(877\) 12.1200 0.409265 0.204632 0.978839i \(-0.434400\pi\)
0.204632 + 0.978839i \(0.434400\pi\)
\(878\) 17.0902 0.576766
\(879\) 27.2624 0.919539
\(880\) 4.12398 0.139019
\(881\) 53.6836 1.80864 0.904322 0.426850i \(-0.140377\pi\)
0.904322 + 0.426850i \(0.140377\pi\)
\(882\) 44.3711 1.49405
\(883\) 34.4283 1.15861 0.579303 0.815112i \(-0.303325\pi\)
0.579303 + 0.815112i \(0.303325\pi\)
\(884\) −7.64976 −0.257289
\(885\) −52.7584 −1.77345
\(886\) 16.2624 0.546347
\(887\) 27.5330 0.924468 0.462234 0.886758i \(-0.347048\pi\)
0.462234 + 0.886758i \(0.347048\pi\)
\(888\) −7.76651 −0.260627
\(889\) −10.4573 −0.350727
\(890\) 34.0145 1.14017
\(891\) 4.36471 0.146223
\(892\) −6.90981 −0.231357
\(893\) 0 0
\(894\) −31.4057 −1.05037
\(895\) −44.6498 −1.49248
\(896\) −4.21417 −0.140786
\(897\) 32.2374 1.07638
\(898\) 27.3382 0.912286
\(899\) 39.0926 1.30381
\(900\) 49.5176 1.65059
\(901\) −45.6787 −1.52178
\(902\) −11.9170 −0.396794
\(903\) 16.4461 0.547292
\(904\) 8.00000 0.266076
\(905\) −73.5475 −2.44480
\(906\) −52.2769 −1.73678
\(907\) −15.5677 −0.516917 −0.258459 0.966022i \(-0.583215\pi\)
−0.258459 + 0.966022i \(0.583215\pi\)
\(908\) 2.72548 0.0904482
\(909\) −25.7665 −0.854621
\(910\) 38.4806 1.27562
\(911\) 0.623208 0.0206478 0.0103239 0.999947i \(-0.496714\pi\)
0.0103239 + 0.999947i \(0.496714\pi\)
\(912\) 0 0
\(913\) 13.2142 0.437325
\(914\) 10.4920 0.347044
\(915\) 98.0724 3.24217
\(916\) 3.48870 0.115270
\(917\) −46.3864 −1.53181
\(918\) 10.3647 0.342086
\(919\) −44.4887 −1.46755 −0.733773 0.679394i \(-0.762243\pi\)
−0.733773 + 0.679394i \(0.762243\pi\)
\(920\) 22.4959 0.741669
\(921\) −5.15777 −0.169954
\(922\) 6.18038 0.203540
\(923\) 15.0571 0.495609
\(924\) −11.2480 −0.370031
\(925\) 34.9388 1.14878
\(926\) −11.1433 −0.366192
\(927\) −2.49683 −0.0820067
\(928\) −5.57889 −0.183136
\(929\) 44.1224 1.44761 0.723805 0.690005i \(-0.242391\pi\)
0.723805 + 0.690005i \(0.242391\pi\)
\(930\) −77.1303 −2.52920
\(931\) 0 0
\(932\) −17.0902 −0.559808
\(933\) 73.9798 2.42199
\(934\) −34.5104 −1.12922
\(935\) −14.2480 −0.465958
\(936\) 9.13122 0.298463
\(937\) 24.8672 0.812377 0.406188 0.913789i \(-0.366858\pi\)
0.406188 + 0.913789i \(0.366858\pi\)
\(938\) 5.49683 0.179478
\(939\) −30.7632 −1.00392
\(940\) −31.2850 −1.02041
\(941\) −29.8301 −0.972435 −0.486217 0.873838i \(-0.661624\pi\)
−0.486217 + 0.873838i \(0.661624\pi\)
\(942\) −55.0362 −1.79318
\(943\) −65.0063 −2.11690
\(944\) −4.79306 −0.156001
\(945\) −52.1376 −1.69603
\(946\) −1.46214 −0.0475383
\(947\) 9.07572 0.294921 0.147461 0.989068i \(-0.452890\pi\)
0.147461 + 0.989068i \(0.452890\pi\)
\(948\) −24.4428 −0.793866
\(949\) −3.22141 −0.104571
\(950\) 0 0
\(951\) −90.4757 −2.93388
\(952\) 14.5596 0.471878
\(953\) −1.27058 −0.0411580 −0.0205790 0.999788i \(-0.506551\pi\)
−0.0205790 + 0.999788i \(0.506551\pi\)
\(954\) 54.5249 1.76531
\(955\) −2.52668 −0.0817613
\(956\) 6.06035 0.196006
\(957\) −14.8905 −0.481341
\(958\) 41.6980 1.34720
\(959\) −29.2615 −0.944905
\(960\) 11.0072 0.355257
\(961\) 18.1014 0.583915
\(962\) 6.44282 0.207725
\(963\) −16.0145 −0.516059
\(964\) −4.85341 −0.156318
\(965\) 48.0136 1.54561
\(966\) −61.3566 −1.97412
\(967\) 6.67632 0.214696 0.107348 0.994222i \(-0.465764\pi\)
0.107348 + 0.994222i \(0.465764\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 8.99187 0.288711
\(971\) 0.191566 0.00614764 0.00307382 0.999995i \(-0.499022\pi\)
0.00307382 + 0.999995i \(0.499022\pi\)
\(972\) 20.6498 0.662341
\(973\) 18.4242 0.590651
\(974\) −9.10137 −0.291627
\(975\) −70.9605 −2.27255
\(976\) 8.90981 0.285196
\(977\) −16.4959 −0.527752 −0.263876 0.964557i \(-0.585001\pi\)
−0.263876 + 0.964557i \(0.585001\pi\)
\(978\) 47.6006 1.52210
\(979\) 8.24797 0.263606
\(980\) −44.3711 −1.41738
\(981\) 20.5104 0.654847
\(982\) −30.8413 −0.984186
\(983\) 35.0072 1.11656 0.558279 0.829653i \(-0.311462\pi\)
0.558279 + 0.829653i \(0.311462\pi\)
\(984\) −31.8075 −1.01399
\(985\) 53.2398 1.69636
\(986\) 19.2745 0.613826
\(987\) 85.3285 2.71604
\(988\) 0 0
\(989\) −7.97584 −0.253617
\(990\) 17.0072 0.540525
\(991\) 11.3759 0.361367 0.180684 0.983541i \(-0.442169\pi\)
0.180684 + 0.983541i \(0.442169\pi\)
\(992\) −7.00724 −0.222480
\(993\) −43.4251 −1.37805
\(994\) −28.6577 −0.908966
\(995\) 75.7358 2.40099
\(996\) 35.2697 1.11756
\(997\) 8.89533 0.281718 0.140859 0.990030i \(-0.455014\pi\)
0.140859 + 0.990030i \(0.455014\pi\)
\(998\) 21.7665 0.689007
\(999\) −8.72942 −0.276187
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.bi.1.1 3
19.18 odd 2 418.2.a.g.1.3 3
57.56 even 2 3762.2.a.bg.1.3 3
76.75 even 2 3344.2.a.q.1.1 3
209.208 even 2 4598.2.a.bo.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.a.g.1.3 3 19.18 odd 2
3344.2.a.q.1.1 3 76.75 even 2
3762.2.a.bg.1.3 3 57.56 even 2
4598.2.a.bo.1.3 3 209.208 even 2
7942.2.a.bi.1.1 3 1.1 even 1 trivial