Defining parameters
Level: | \( N \) | \(=\) | \( 7942 = 2 \cdot 11 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7942.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 56 \) | ||
Sturm bound: | \(2280\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7942))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1180 | 285 | 895 |
Cusp forms | 1101 | 285 | 816 |
Eisenstein series | 79 | 0 | 79 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(35\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(37\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(34\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(37\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(39\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(32\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(30\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(41\) |
Plus space | \(+\) | \(134\) | ||
Minus space | \(-\) | \(151\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7942))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7942))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7942)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(418))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3971))\)\(^{\oplus 2}\)