Properties

Label 7938.2.a.e.1.1
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7938.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{8} +2.00000 q^{10} +1.00000 q^{11} +6.00000 q^{13} +1.00000 q^{16} +5.00000 q^{17} +7.00000 q^{19} -2.00000 q^{20} -1.00000 q^{22} +4.00000 q^{23} -1.00000 q^{25} -6.00000 q^{26} -4.00000 q^{29} +6.00000 q^{31} -1.00000 q^{32} -5.00000 q^{34} +2.00000 q^{37} -7.00000 q^{38} +2.00000 q^{40} -3.00000 q^{41} -1.00000 q^{43} +1.00000 q^{44} -4.00000 q^{46} +1.00000 q^{50} +6.00000 q^{52} +12.0000 q^{53} -2.00000 q^{55} +4.00000 q^{58} +7.00000 q^{59} +12.0000 q^{61} -6.00000 q^{62} +1.00000 q^{64} -12.0000 q^{65} +13.0000 q^{67} +5.00000 q^{68} -8.00000 q^{71} -1.00000 q^{73} -2.00000 q^{74} +7.00000 q^{76} -6.00000 q^{79} -2.00000 q^{80} +3.00000 q^{82} -16.0000 q^{83} -10.0000 q^{85} +1.00000 q^{86} -1.00000 q^{88} +6.00000 q^{89} +4.00000 q^{92} -14.0000 q^{95} +5.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −7.00000 −1.13555
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 6.00000 0.832050
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 0.525226
\(59\) 7.00000 0.911322 0.455661 0.890153i \(-0.349403\pi\)
0.455661 + 0.890153i \(0.349403\pi\)
\(60\) 0 0
\(61\) 12.0000 1.53644 0.768221 0.640184i \(-0.221142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 13.0000 1.58820 0.794101 0.607785i \(-0.207942\pi\)
0.794101 + 0.607785i \(0.207942\pi\)
\(68\) 5.00000 0.606339
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 7.00000 0.802955
\(77\) 0 0
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) 3.00000 0.331295
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) −10.0000 −1.08465
\(86\) 1.00000 0.107833
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 0 0
\(95\) −14.0000 −1.43637
\(96\) 0 0
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 4.00000 0.398015 0.199007 0.979998i \(-0.436228\pi\)
0.199007 + 0.979998i \(0.436228\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) −4.00000 −0.371391
\(117\) 0 0
\(118\) −7.00000 −0.644402
\(119\) 0 0
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) −12.0000 −1.08643
\(123\) 0 0
\(124\) 6.00000 0.538816
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 12.0000 1.05247
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −13.0000 −1.12303
\(135\) 0 0
\(136\) −5.00000 −0.428746
\(137\) −19.0000 −1.62328 −0.811640 0.584158i \(-0.801425\pi\)
−0.811640 + 0.584158i \(0.801425\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 1.00000 0.0827606
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −24.0000 −1.96616 −0.983078 0.183186i \(-0.941359\pi\)
−0.983078 + 0.183186i \(0.941359\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) −7.00000 −0.567775
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 6.00000 0.477334
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −3.00000 −0.234261
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) −20.0000 −1.54765 −0.773823 0.633402i \(-0.781658\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 10.0000 0.766965
\(171\) 0 0
\(172\) −1.00000 −0.0762493
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 5.00000 0.365636
\(188\) 0 0
\(189\) 0 0
\(190\) 14.0000 1.01567
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 17.0000 1.22369 0.611843 0.790979i \(-0.290428\pi\)
0.611843 + 0.790979i \(0.290428\pi\)
\(194\) −5.00000 −0.358979
\(195\) 0 0
\(196\) 0 0
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −4.00000 −0.281439
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 14.0000 0.975426
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 12.0000 0.824163
\(213\) 0 0
\(214\) −3.00000 −0.205076
\(215\) 2.00000 0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) 30.0000 2.01802
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.0000 0.665190
\(227\) −3.00000 −0.199117 −0.0995585 0.995032i \(-0.531743\pi\)
−0.0995585 + 0.995032i \(0.531743\pi\)
\(228\) 0 0
\(229\) 26.0000 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(230\) 8.00000 0.527504
\(231\) 0 0
\(232\) 4.00000 0.262613
\(233\) −29.0000 −1.89985 −0.949927 0.312473i \(-0.898843\pi\)
−0.949927 + 0.312473i \(0.898843\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.00000 0.455661
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) 10.0000 0.642824
\(243\) 0 0
\(244\) 12.0000 0.768221
\(245\) 0 0
\(246\) 0 0
\(247\) 42.0000 2.67240
\(248\) −6.00000 −0.381000
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.0000 −0.744208
\(261\) 0 0
\(262\) −4.00000 −0.247121
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) 0 0
\(267\) 0 0
\(268\) 13.0000 0.794101
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 6.00000 0.364474 0.182237 0.983255i \(-0.441666\pi\)
0.182237 + 0.983255i \(0.441666\pi\)
\(272\) 5.00000 0.303170
\(273\) 0 0
\(274\) 19.0000 1.14783
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −5.00000 −0.299880
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) −8.00000 −0.469776
\(291\) 0 0
\(292\) −1.00000 −0.0585206
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −14.0000 −0.815112
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 24.0000 1.39028
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) −10.0000 −0.575435
\(303\) 0 0
\(304\) 7.00000 0.401478
\(305\) −24.0000 −1.37424
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0000 0.681554
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) 17.0000 0.960897 0.480448 0.877023i \(-0.340474\pi\)
0.480448 + 0.877023i \(0.340474\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) 0 0
\(323\) 35.0000 1.94745
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 3.00000 0.165647
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −16.0000 −0.878114
\(333\) 0 0
\(334\) 20.0000 1.09435
\(335\) −26.0000 −1.42053
\(336\) 0 0
\(337\) −9.00000 −0.490261 −0.245131 0.969490i \(-0.578831\pi\)
−0.245131 + 0.969490i \(0.578831\pi\)
\(338\) −23.0000 −1.25104
\(339\) 0 0
\(340\) −10.0000 −0.542326
\(341\) 6.00000 0.324918
\(342\) 0 0
\(343\) 0 0
\(344\) 1.00000 0.0539164
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) −3.00000 −0.161048 −0.0805242 0.996753i \(-0.525659\pi\)
−0.0805242 + 0.996753i \(0.525659\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 15.0000 0.798369 0.399185 0.916871i \(-0.369293\pi\)
0.399185 + 0.916871i \(0.369293\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −24.0000 −1.26844
\(359\) 2.00000 0.105556 0.0527780 0.998606i \(-0.483192\pi\)
0.0527780 + 0.998606i \(0.483192\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) 4.00000 0.207950
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) −5.00000 −0.258544
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) −14.0000 −0.718185
\(381\) 0 0
\(382\) −12.0000 −0.613973
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −17.0000 −0.865277
\(387\) 0 0
\(388\) 5.00000 0.253837
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) 0 0
\(391\) 20.0000 1.01144
\(392\) 0 0
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 14.0000 0.701757
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 9.00000 0.449439 0.224719 0.974424i \(-0.427853\pi\)
0.224719 + 0.974424i \(0.427853\pi\)
\(402\) 0 0
\(403\) 36.0000 1.79329
\(404\) 4.00000 0.199007
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) −11.0000 −0.543915 −0.271957 0.962309i \(-0.587671\pi\)
−0.271957 + 0.962309i \(0.587671\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −14.0000 −0.689730
\(413\) 0 0
\(414\) 0 0
\(415\) 32.0000 1.57082
\(416\) −6.00000 −0.294174
\(417\) 0 0
\(418\) −7.00000 −0.342381
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −12.0000 −0.584844 −0.292422 0.956289i \(-0.594461\pi\)
−0.292422 + 0.956289i \(0.594461\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) −12.0000 −0.582772
\(425\) −5.00000 −0.242536
\(426\) 0 0
\(427\) 0 0
\(428\) 3.00000 0.145010
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 25.0000 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 28.0000 1.33942
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) 7.00000 0.332580 0.166290 0.986077i \(-0.446821\pi\)
0.166290 + 0.986077i \(0.446821\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) 0 0
\(449\) 17.0000 0.802280 0.401140 0.916017i \(-0.368614\pi\)
0.401140 + 0.916017i \(0.368614\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) −10.0000 −0.470360
\(453\) 0 0
\(454\) 3.00000 0.140797
\(455\) 0 0
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) −26.0000 −1.21490
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) 29.0000 1.34340
\(467\) 13.0000 0.601568 0.300784 0.953692i \(-0.402752\pi\)
0.300784 + 0.953692i \(0.402752\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −7.00000 −0.322201
\(473\) −1.00000 −0.0459800
\(474\) 0 0
\(475\) −7.00000 −0.321182
\(476\) 0 0
\(477\) 0 0
\(478\) −6.00000 −0.274434
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 23.0000 1.04762
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) −10.0000 −0.453143 −0.226572 0.973995i \(-0.572752\pi\)
−0.226572 + 0.973995i \(0.572752\pi\)
\(488\) −12.0000 −0.543214
\(489\) 0 0
\(490\) 0 0
\(491\) 33.0000 1.48927 0.744635 0.667472i \(-0.232624\pi\)
0.744635 + 0.667472i \(0.232624\pi\)
\(492\) 0 0
\(493\) −20.0000 −0.900755
\(494\) −42.0000 −1.88967
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) 0 0
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) 3.00000 0.133897
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) −4.00000 −0.177822
\(507\) 0 0
\(508\) −12.0000 −0.532414
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −15.0000 −0.661622
\(515\) 28.0000 1.23383
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −18.0000 −0.784837
\(527\) 30.0000 1.30682
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 24.0000 1.04249
\(531\) 0 0
\(532\) 0 0
\(533\) −18.0000 −0.779667
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) −13.0000 −0.561514
\(537\) 0 0
\(538\) 20.0000 0.862261
\(539\) 0 0
\(540\) 0 0
\(541\) −24.0000 −1.03184 −0.515920 0.856637i \(-0.672550\pi\)
−0.515920 + 0.856637i \(0.672550\pi\)
\(542\) −6.00000 −0.257722
\(543\) 0 0
\(544\) −5.00000 −0.214373
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) −21.0000 −0.897895 −0.448948 0.893558i \(-0.648201\pi\)
−0.448948 + 0.893558i \(0.648201\pi\)
\(548\) −19.0000 −0.811640
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −28.0000 −1.19284
\(552\) 0 0
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) 5.00000 0.212047
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) −31.0000 −1.30649 −0.653247 0.757145i \(-0.726594\pi\)
−0.653247 + 0.757145i \(0.726594\pi\)
\(564\) 0 0
\(565\) 20.0000 0.841406
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) −33.0000 −1.38101 −0.690504 0.723329i \(-0.742611\pi\)
−0.690504 + 0.723329i \(0.742611\pi\)
\(572\) 6.00000 0.250873
\(573\) 0 0
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 35.0000 1.45707 0.728535 0.685009i \(-0.240202\pi\)
0.728535 + 0.685009i \(0.240202\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) 8.00000 0.332182
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 1.00000 0.0413803
\(585\) 0 0
\(586\) 0 0
\(587\) 47.0000 1.93990 0.969949 0.243309i \(-0.0782329\pi\)
0.969949 + 0.243309i \(0.0782329\pi\)
\(588\) 0 0
\(589\) 42.0000 1.73058
\(590\) 14.0000 0.576371
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −24.0000 −0.983078
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 20.0000 0.813116
\(606\) 0 0
\(607\) 24.0000 0.974130 0.487065 0.873366i \(-0.338067\pi\)
0.487065 + 0.873366i \(0.338067\pi\)
\(608\) −7.00000 −0.283887
\(609\) 0 0
\(610\) 24.0000 0.971732
\(611\) 0 0
\(612\) 0 0
\(613\) 42.0000 1.69636 0.848182 0.529705i \(-0.177697\pi\)
0.848182 + 0.529705i \(0.177697\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) 0 0
\(617\) −17.0000 −0.684394 −0.342197 0.939628i \(-0.611171\pi\)
−0.342197 + 0.939628i \(0.611171\pi\)
\(618\) 0 0
\(619\) −37.0000 −1.48716 −0.743578 0.668649i \(-0.766873\pi\)
−0.743578 + 0.668649i \(0.766873\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) 2.00000 0.0801927
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −17.0000 −0.679457
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 10.0000 0.398726
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 6.00000 0.238667
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 24.0000 0.952411
\(636\) 0 0
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 1.00000 0.0394976 0.0197488 0.999805i \(-0.493713\pi\)
0.0197488 + 0.999805i \(0.493713\pi\)
\(642\) 0 0
\(643\) 7.00000 0.276053 0.138027 0.990429i \(-0.455924\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −35.0000 −1.37706
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 7.00000 0.274774
\(650\) 6.00000 0.235339
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) −3.00000 −0.117130
\(657\) 0 0
\(658\) 0 0
\(659\) 16.0000 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) −20.0000 −0.773823
\(669\) 0 0
\(670\) 26.0000 1.00447
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 9.00000 0.346667
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 10.0000 0.383482
\(681\) 0 0
\(682\) −6.00000 −0.229752
\(683\) 39.0000 1.49229 0.746147 0.665782i \(-0.231902\pi\)
0.746147 + 0.665782i \(0.231902\pi\)
\(684\) 0 0
\(685\) 38.0000 1.45191
\(686\) 0 0
\(687\) 0 0
\(688\) −1.00000 −0.0381246
\(689\) 72.0000 2.74298
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 3.00000 0.113878
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) −15.0000 −0.568166
\(698\) −14.0000 −0.529908
\(699\) 0 0
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) 14.0000 0.528020
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −15.0000 −0.564532
\(707\) 0 0
\(708\) 0 0
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) −16.0000 −0.600469
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 24.0000 0.896922
\(717\) 0 0
\(718\) −2.00000 −0.0746393
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −30.0000 −1.11648
\(723\) 0 0
\(724\) 0 0
\(725\) 4.00000 0.148556
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.00000 −0.0740233
\(731\) −5.00000 −0.184932
\(732\) 0 0
\(733\) 18.0000 0.664845 0.332423 0.943131i \(-0.392134\pi\)
0.332423 + 0.943131i \(0.392134\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 13.0000 0.478861
\(738\) 0 0
\(739\) −33.0000 −1.21392 −0.606962 0.794731i \(-0.707612\pi\)
−0.606962 + 0.794731i \(0.707612\pi\)
\(740\) −4.00000 −0.147043
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 48.0000 1.75858
\(746\) −22.0000 −0.805477
\(747\) 0 0
\(748\) 5.00000 0.182818
\(749\) 0 0
\(750\) 0 0
\(751\) −18.0000 −0.656829 −0.328415 0.944534i \(-0.606514\pi\)
−0.328415 + 0.944534i \(0.606514\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −48.0000 −1.74459 −0.872295 0.488980i \(-0.837369\pi\)
−0.872295 + 0.488980i \(0.837369\pi\)
\(758\) 17.0000 0.617468
\(759\) 0 0
\(760\) 14.0000 0.507833
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) 4.00000 0.144526
\(767\) 42.0000 1.51653
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17.0000 0.611843
\(773\) 52.0000 1.87031 0.935155 0.354239i \(-0.115260\pi\)
0.935155 + 0.354239i \(0.115260\pi\)
\(774\) 0 0
\(775\) −6.00000 −0.215526
\(776\) −5.00000 −0.179490
\(777\) 0 0
\(778\) −8.00000 −0.286814
\(779\) −21.0000 −0.752403
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) −20.0000 −0.715199
\(783\) 0 0
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 0 0
\(792\) 0 0
\(793\) 72.0000 2.55679
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) −14.0000 −0.496217
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) −9.00000 −0.317801
\(803\) −1.00000 −0.0352892
\(804\) 0 0
\(805\) 0 0
\(806\) −36.0000 −1.26805
\(807\) 0 0
\(808\) −4.00000 −0.140720
\(809\) −43.0000 −1.51180 −0.755900 0.654687i \(-0.772800\pi\)
−0.755900 + 0.654687i \(0.772800\pi\)
\(810\) 0 0
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.00000 −0.0701000
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) −7.00000 −0.244899
\(818\) 11.0000 0.384606
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) 46.0000 1.60541 0.802706 0.596376i \(-0.203393\pi\)
0.802706 + 0.596376i \(0.203393\pi\)
\(822\) 0 0
\(823\) 34.0000 1.18517 0.592583 0.805510i \(-0.298108\pi\)
0.592583 + 0.805510i \(0.298108\pi\)
\(824\) 14.0000 0.487713
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) −32.0000 −1.11074
\(831\) 0 0
\(832\) 6.00000 0.208013
\(833\) 0 0
\(834\) 0 0
\(835\) 40.0000 1.38426
\(836\) 7.00000 0.242100
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) 20.0000 0.690477 0.345238 0.938515i \(-0.387798\pi\)
0.345238 + 0.938515i \(0.387798\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 12.0000 0.413547
\(843\) 0 0
\(844\) −16.0000 −0.550743
\(845\) −46.0000 −1.58245
\(846\) 0 0
\(847\) 0 0
\(848\) 12.0000 0.412082
\(849\) 0 0
\(850\) 5.00000 0.171499
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) −29.0000 −0.989467 −0.494734 0.869045i \(-0.664734\pi\)
−0.494734 + 0.869045i \(0.664734\pi\)
\(860\) 2.00000 0.0681994
\(861\) 0 0
\(862\) 0 0
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) 0 0
\(865\) 4.00000 0.136004
\(866\) −25.0000 −0.849535
\(867\) 0 0
\(868\) 0 0
\(869\) −6.00000 −0.203536
\(870\) 0 0
\(871\) 78.0000 2.64293
\(872\) 2.00000 0.0677285
\(873\) 0 0
\(874\) −28.0000 −0.947114
\(875\) 0 0
\(876\) 0 0
\(877\) 16.0000 0.540282 0.270141 0.962821i \(-0.412930\pi\)
0.270141 + 0.962821i \(0.412930\pi\)
\(878\) −24.0000 −0.809961
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 53.0000 1.78359 0.891796 0.452438i \(-0.149446\pi\)
0.891796 + 0.452438i \(0.149446\pi\)
\(884\) 30.0000 1.00901
\(885\) 0 0
\(886\) −7.00000 −0.235170
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 12.0000 0.402241
\(891\) 0 0
\(892\) 4.00000 0.133930
\(893\) 0 0
\(894\) 0 0
\(895\) −48.0000 −1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) −17.0000 −0.567297
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 60.0000 1.99889
\(902\) 3.00000 0.0998891
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) 0 0
\(906\) 0 0
\(907\) −27.0000 −0.896520 −0.448260 0.893903i \(-0.647956\pi\)
−0.448260 + 0.893903i \(0.647956\pi\)
\(908\) −3.00000 −0.0995585
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −16.0000 −0.529523
\(914\) −1.00000 −0.0330771
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 8.00000 0.263752
\(921\) 0 0
\(922\) 14.0000 0.461065
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) 4.00000 0.131306
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −29.0000 −0.949927
\(933\) 0 0
\(934\) −13.0000 −0.425373
\(935\) −10.0000 −0.327035
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.0000 −0.651981 −0.325991 0.945373i \(-0.605698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 0 0
\(943\) −12.0000 −0.390774
\(944\) 7.00000 0.227831
\(945\) 0 0
\(946\) 1.00000 0.0325128
\(947\) −37.0000 −1.20234 −0.601169 0.799122i \(-0.705298\pi\)
−0.601169 + 0.799122i \(0.705298\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 7.00000 0.227110
\(951\) 0 0
\(952\) 0 0
\(953\) −35.0000 −1.13376 −0.566881 0.823800i \(-0.691850\pi\)
−0.566881 + 0.823800i \(0.691850\pi\)
\(954\) 0 0
\(955\) −24.0000 −0.776622
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) −20.0000 −0.646171
\(959\) 0 0
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) −23.0000 −0.740780
\(965\) −34.0000 −1.09450
\(966\) 0 0
\(967\) 14.0000 0.450210 0.225105 0.974335i \(-0.427728\pi\)
0.225105 + 0.974335i \(0.427728\pi\)
\(968\) 10.0000 0.321412
\(969\) 0 0
\(970\) 10.0000 0.321081
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 10.0000 0.320421
\(975\) 0 0
\(976\) 12.0000 0.384111
\(977\) −15.0000 −0.479893 −0.239946 0.970786i \(-0.577130\pi\)
−0.239946 + 0.970786i \(0.577130\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) 0 0
\(982\) −33.0000 −1.05307
\(983\) 60.0000 1.91370 0.956851 0.290578i \(-0.0938475\pi\)
0.956851 + 0.290578i \(0.0938475\pi\)
\(984\) 0 0
\(985\) −20.0000 −0.637253
\(986\) 20.0000 0.636930
\(987\) 0 0
\(988\) 42.0000 1.33620
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −28.0000 −0.889449 −0.444725 0.895667i \(-0.646698\pi\)
−0.444725 + 0.895667i \(0.646698\pi\)
\(992\) −6.00000 −0.190500
\(993\) 0 0
\(994\) 0 0
\(995\) 28.0000 0.887660
\(996\) 0 0
\(997\) −2.00000 −0.0633406 −0.0316703 0.999498i \(-0.510083\pi\)
−0.0316703 + 0.999498i \(0.510083\pi\)
\(998\) 29.0000 0.917979
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.e.1.1 1
3.2 odd 2 7938.2.a.bb.1.1 1
7.6 odd 2 1134.2.a.c.1.1 1
9.2 odd 6 2646.2.f.b.1765.1 2
9.4 even 3 882.2.f.f.295.1 2
9.5 odd 6 2646.2.f.b.883.1 2
9.7 even 3 882.2.f.f.589.1 2
21.20 even 2 1134.2.a.f.1.1 1
28.27 even 2 9072.2.a.t.1.1 1
63.2 odd 6 2646.2.h.c.361.1 2
63.4 even 3 882.2.h.g.79.1 2
63.5 even 6 2646.2.e.i.2125.1 2
63.11 odd 6 2646.2.e.h.1549.1 2
63.13 odd 6 126.2.f.b.43.1 2
63.16 even 3 882.2.h.g.67.1 2
63.20 even 6 378.2.f.b.253.1 2
63.23 odd 6 2646.2.e.h.2125.1 2
63.25 even 3 882.2.e.e.373.1 2
63.31 odd 6 882.2.h.h.79.1 2
63.32 odd 6 2646.2.h.c.667.1 2
63.34 odd 6 126.2.f.b.85.1 yes 2
63.38 even 6 2646.2.e.i.1549.1 2
63.40 odd 6 882.2.e.a.655.1 2
63.41 even 6 378.2.f.b.127.1 2
63.47 even 6 2646.2.h.b.361.1 2
63.52 odd 6 882.2.e.a.373.1 2
63.58 even 3 882.2.e.e.655.1 2
63.59 even 6 2646.2.h.b.667.1 2
63.61 odd 6 882.2.h.h.67.1 2
84.83 odd 2 9072.2.a.f.1.1 1
252.83 odd 6 3024.2.r.c.1009.1 2
252.139 even 6 1008.2.r.a.673.1 2
252.167 odd 6 3024.2.r.c.2017.1 2
252.223 even 6 1008.2.r.a.337.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.b.43.1 2 63.13 odd 6
126.2.f.b.85.1 yes 2 63.34 odd 6
378.2.f.b.127.1 2 63.41 even 6
378.2.f.b.253.1 2 63.20 even 6
882.2.e.a.373.1 2 63.52 odd 6
882.2.e.a.655.1 2 63.40 odd 6
882.2.e.e.373.1 2 63.25 even 3
882.2.e.e.655.1 2 63.58 even 3
882.2.f.f.295.1 2 9.4 even 3
882.2.f.f.589.1 2 9.7 even 3
882.2.h.g.67.1 2 63.16 even 3
882.2.h.g.79.1 2 63.4 even 3
882.2.h.h.67.1 2 63.61 odd 6
882.2.h.h.79.1 2 63.31 odd 6
1008.2.r.a.337.1 2 252.223 even 6
1008.2.r.a.673.1 2 252.139 even 6
1134.2.a.c.1.1 1 7.6 odd 2
1134.2.a.f.1.1 1 21.20 even 2
2646.2.e.h.1549.1 2 63.11 odd 6
2646.2.e.h.2125.1 2 63.23 odd 6
2646.2.e.i.1549.1 2 63.38 even 6
2646.2.e.i.2125.1 2 63.5 even 6
2646.2.f.b.883.1 2 9.5 odd 6
2646.2.f.b.1765.1 2 9.2 odd 6
2646.2.h.b.361.1 2 63.47 even 6
2646.2.h.b.667.1 2 63.59 even 6
2646.2.h.c.361.1 2 63.2 odd 6
2646.2.h.c.667.1 2 63.32 odd 6
3024.2.r.c.1009.1 2 252.83 odd 6
3024.2.r.c.2017.1 2 252.167 odd 6
7938.2.a.e.1.1 1 1.1 even 1 trivial
7938.2.a.bb.1.1 1 3.2 odd 2
9072.2.a.f.1.1 1 84.83 odd 2
9072.2.a.t.1.1 1 28.27 even 2