Properties

Label 7938.2.a.bz.1.3
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.69963\) of defining polynomial
Character \(\chi\) \(=\) 7938.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.58836 q^{5} +1.00000 q^{8} +1.58836 q^{10} +1.58836 q^{11} +4.81089 q^{13} +1.00000 q^{16} +5.39926 q^{17} -7.09888 q^{19} +1.58836 q^{20} +1.58836 q^{22} -0.300372 q^{23} -2.47710 q^{25} +4.81089 q^{26} +8.27561 q^{29} +2.71201 q^{31} +1.00000 q^{32} +5.39926 q^{34} -1.00000 q^{37} -7.09888 q^{38} +1.58836 q^{40} -5.87636 q^{41} +1.66621 q^{43} +1.58836 q^{44} -0.300372 q^{46} +2.66621 q^{47} -2.47710 q^{50} +4.81089 q^{52} +4.88874 q^{53} +2.52290 q^{55} +8.27561 q^{58} +6.47710 q^{59} +4.47710 q^{61} +2.71201 q^{62} +1.00000 q^{64} +7.64145 q^{65} -10.0531 q^{67} +5.39926 q^{68} -12.7207 q^{71} +16.0531 q^{73} -1.00000 q^{74} -7.09888 q^{76} +8.38688 q^{79} +1.58836 q^{80} -5.87636 q^{82} -2.36584 q^{83} +8.57598 q^{85} +1.66621 q^{86} +1.58836 q^{88} -3.21015 q^{89} -0.300372 q^{92} +2.66621 q^{94} -11.2756 q^{95} +1.42402 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - q^{5} + 3 q^{8} - q^{10} - q^{11} + 8 q^{13} + 3 q^{16} + 4 q^{17} - 3 q^{19} - q^{20} - q^{22} - 7 q^{23} - 2 q^{25} + 8 q^{26} - 5 q^{29} + 20 q^{31} + 3 q^{32} + 4 q^{34}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.58836 0.710338 0.355169 0.934802i \(-0.384423\pi\)
0.355169 + 0.934802i \(0.384423\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.58836 0.502285
\(11\) 1.58836 0.478910 0.239455 0.970907i \(-0.423031\pi\)
0.239455 + 0.970907i \(0.423031\pi\)
\(12\) 0 0
\(13\) 4.81089 1.33430 0.667151 0.744923i \(-0.267514\pi\)
0.667151 + 0.744923i \(0.267514\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.39926 1.30951 0.654756 0.755840i \(-0.272771\pi\)
0.654756 + 0.755840i \(0.272771\pi\)
\(18\) 0 0
\(19\) −7.09888 −1.62860 −0.814298 0.580447i \(-0.802878\pi\)
−0.814298 + 0.580447i \(0.802878\pi\)
\(20\) 1.58836 0.355169
\(21\) 0 0
\(22\) 1.58836 0.338640
\(23\) −0.300372 −0.0626319 −0.0313159 0.999510i \(-0.509970\pi\)
−0.0313159 + 0.999510i \(0.509970\pi\)
\(24\) 0 0
\(25\) −2.47710 −0.495420
\(26\) 4.81089 0.943494
\(27\) 0 0
\(28\) 0 0
\(29\) 8.27561 1.53674 0.768371 0.640004i \(-0.221067\pi\)
0.768371 + 0.640004i \(0.221067\pi\)
\(30\) 0 0
\(31\) 2.71201 0.487091 0.243545 0.969889i \(-0.421689\pi\)
0.243545 + 0.969889i \(0.421689\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.39926 0.925965
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) −7.09888 −1.15159
\(39\) 0 0
\(40\) 1.58836 0.251142
\(41\) −5.87636 −0.917733 −0.458866 0.888505i \(-0.651744\pi\)
−0.458866 + 0.888505i \(0.651744\pi\)
\(42\) 0 0
\(43\) 1.66621 0.254094 0.127047 0.991897i \(-0.459450\pi\)
0.127047 + 0.991897i \(0.459450\pi\)
\(44\) 1.58836 0.239455
\(45\) 0 0
\(46\) −0.300372 −0.0442874
\(47\) 2.66621 0.388906 0.194453 0.980912i \(-0.437707\pi\)
0.194453 + 0.980912i \(0.437707\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.47710 −0.350315
\(51\) 0 0
\(52\) 4.81089 0.667151
\(53\) 4.88874 0.671520 0.335760 0.941948i \(-0.391007\pi\)
0.335760 + 0.941948i \(0.391007\pi\)
\(54\) 0 0
\(55\) 2.52290 0.340188
\(56\) 0 0
\(57\) 0 0
\(58\) 8.27561 1.08664
\(59\) 6.47710 0.843247 0.421623 0.906771i \(-0.361460\pi\)
0.421623 + 0.906771i \(0.361460\pi\)
\(60\) 0 0
\(61\) 4.47710 0.573234 0.286617 0.958045i \(-0.407469\pi\)
0.286617 + 0.958045i \(0.407469\pi\)
\(62\) 2.71201 0.344425
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 7.64145 0.947805
\(66\) 0 0
\(67\) −10.0531 −1.22818 −0.614090 0.789236i \(-0.710477\pi\)
−0.614090 + 0.789236i \(0.710477\pi\)
\(68\) 5.39926 0.654756
\(69\) 0 0
\(70\) 0 0
\(71\) −12.7207 −1.50967 −0.754833 0.655917i \(-0.772282\pi\)
−0.754833 + 0.655917i \(0.772282\pi\)
\(72\) 0 0
\(73\) 16.0531 1.87887 0.939436 0.342725i \(-0.111350\pi\)
0.939436 + 0.342725i \(0.111350\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −7.09888 −0.814298
\(77\) 0 0
\(78\) 0 0
\(79\) 8.38688 0.943597 0.471799 0.881706i \(-0.343605\pi\)
0.471799 + 0.881706i \(0.343605\pi\)
\(80\) 1.58836 0.177584
\(81\) 0 0
\(82\) −5.87636 −0.648935
\(83\) −2.36584 −0.259684 −0.129842 0.991535i \(-0.541447\pi\)
−0.129842 + 0.991535i \(0.541447\pi\)
\(84\) 0 0
\(85\) 8.57598 0.930196
\(86\) 1.66621 0.179672
\(87\) 0 0
\(88\) 1.58836 0.169320
\(89\) −3.21015 −0.340275 −0.170138 0.985420i \(-0.554421\pi\)
−0.170138 + 0.985420i \(0.554421\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.300372 −0.0313159
\(93\) 0 0
\(94\) 2.66621 0.274998
\(95\) −11.2756 −1.15685
\(96\) 0 0
\(97\) 1.42402 0.144587 0.0722934 0.997383i \(-0.476968\pi\)
0.0722934 + 0.997383i \(0.476968\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.47710 −0.247710
\(101\) 12.0334 1.19737 0.598685 0.800985i \(-0.295690\pi\)
0.598685 + 0.800985i \(0.295690\pi\)
\(102\) 0 0
\(103\) 6.09888 0.600941 0.300470 0.953791i \(-0.402856\pi\)
0.300470 + 0.953791i \(0.402856\pi\)
\(104\) 4.81089 0.471747
\(105\) 0 0
\(106\) 4.88874 0.474836
\(107\) −3.08650 −0.298384 −0.149192 0.988808i \(-0.547667\pi\)
−0.149192 + 0.988808i \(0.547667\pi\)
\(108\) 0 0
\(109\) −2.28799 −0.219150 −0.109575 0.993979i \(-0.534949\pi\)
−0.109575 + 0.993979i \(0.534949\pi\)
\(110\) 2.52290 0.240549
\(111\) 0 0
\(112\) 0 0
\(113\) −19.4647 −1.83109 −0.915543 0.402219i \(-0.868239\pi\)
−0.915543 + 0.402219i \(0.868239\pi\)
\(114\) 0 0
\(115\) −0.477100 −0.0444898
\(116\) 8.27561 0.768371
\(117\) 0 0
\(118\) 6.47710 0.596265
\(119\) 0 0
\(120\) 0 0
\(121\) −8.47710 −0.770645
\(122\) 4.47710 0.405338
\(123\) 0 0
\(124\) 2.71201 0.243545
\(125\) −11.8764 −1.06225
\(126\) 0 0
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 7.64145 0.670199
\(131\) −3.17673 −0.277552 −0.138776 0.990324i \(-0.544317\pi\)
−0.138776 + 0.990324i \(0.544317\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −10.0531 −0.868454
\(135\) 0 0
\(136\) 5.39926 0.462982
\(137\) 21.2632 1.81664 0.908320 0.418275i \(-0.137365\pi\)
0.908320 + 0.418275i \(0.137365\pi\)
\(138\) 0 0
\(139\) 13.0531 1.10715 0.553574 0.832800i \(-0.313264\pi\)
0.553574 + 0.832800i \(0.313264\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.7207 −1.06749
\(143\) 7.64145 0.639010
\(144\) 0 0
\(145\) 13.1447 1.09161
\(146\) 16.0531 1.32856
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −5.20877 −0.426719 −0.213360 0.976974i \(-0.568441\pi\)
−0.213360 + 0.976974i \(0.568441\pi\)
\(150\) 0 0
\(151\) −0.522900 −0.0425530 −0.0212765 0.999774i \(-0.506773\pi\)
−0.0212765 + 0.999774i \(0.506773\pi\)
\(152\) −7.09888 −0.575796
\(153\) 0 0
\(154\) 0 0
\(155\) 4.30766 0.345999
\(156\) 0 0
\(157\) −8.86398 −0.707422 −0.353711 0.935355i \(-0.615080\pi\)
−0.353711 + 0.935355i \(0.615080\pi\)
\(158\) 8.38688 0.667224
\(159\) 0 0
\(160\) 1.58836 0.125571
\(161\) 0 0
\(162\) 0 0
\(163\) −21.9629 −1.72026 −0.860132 0.510071i \(-0.829619\pi\)
−0.860132 + 0.510071i \(0.829619\pi\)
\(164\) −5.87636 −0.458866
\(165\) 0 0
\(166\) −2.36584 −0.183624
\(167\) −3.30037 −0.255390 −0.127695 0.991813i \(-0.540758\pi\)
−0.127695 + 0.991813i \(0.540758\pi\)
\(168\) 0 0
\(169\) 10.1447 0.780360
\(170\) 8.57598 0.657748
\(171\) 0 0
\(172\) 1.66621 0.127047
\(173\) 19.1075 1.45272 0.726360 0.687315i \(-0.241211\pi\)
0.726360 + 0.687315i \(0.241211\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.58836 0.119727
\(177\) 0 0
\(178\) −3.21015 −0.240611
\(179\) −16.0741 −1.20144 −0.600718 0.799461i \(-0.705119\pi\)
−0.600718 + 0.799461i \(0.705119\pi\)
\(180\) 0 0
\(181\) −8.05308 −0.598581 −0.299291 0.954162i \(-0.596750\pi\)
−0.299291 + 0.954162i \(0.596750\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.300372 −0.0221437
\(185\) −1.58836 −0.116779
\(186\) 0 0
\(187\) 8.57598 0.627138
\(188\) 2.66621 0.194453
\(189\) 0 0
\(190\) −11.2756 −0.818019
\(191\) 23.9629 1.73389 0.866946 0.498402i \(-0.166080\pi\)
0.866946 + 0.498402i \(0.166080\pi\)
\(192\) 0 0
\(193\) 9.76509 0.702907 0.351453 0.936205i \(-0.385688\pi\)
0.351453 + 0.936205i \(0.385688\pi\)
\(194\) 1.42402 0.102238
\(195\) 0 0
\(196\) 0 0
\(197\) 18.2436 1.29980 0.649900 0.760020i \(-0.274811\pi\)
0.649900 + 0.760020i \(0.274811\pi\)
\(198\) 0 0
\(199\) 18.0989 1.28300 0.641498 0.767125i \(-0.278313\pi\)
0.641498 + 0.767125i \(0.278313\pi\)
\(200\) −2.47710 −0.175157
\(201\) 0 0
\(202\) 12.0334 0.846669
\(203\) 0 0
\(204\) 0 0
\(205\) −9.33379 −0.651900
\(206\) 6.09888 0.424929
\(207\) 0 0
\(208\) 4.81089 0.333575
\(209\) −11.2756 −0.779950
\(210\) 0 0
\(211\) −0.332415 −0.0228844 −0.0114422 0.999935i \(-0.503642\pi\)
−0.0114422 + 0.999935i \(0.503642\pi\)
\(212\) 4.88874 0.335760
\(213\) 0 0
\(214\) −3.08650 −0.210989
\(215\) 2.64654 0.180493
\(216\) 0 0
\(217\) 0 0
\(218\) −2.28799 −0.154962
\(219\) 0 0
\(220\) 2.52290 0.170094
\(221\) 25.9752 1.74728
\(222\) 0 0
\(223\) 6.33242 0.424050 0.212025 0.977264i \(-0.431994\pi\)
0.212025 + 0.977264i \(0.431994\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −19.4647 −1.29477
\(227\) −23.3090 −1.54707 −0.773537 0.633751i \(-0.781515\pi\)
−0.773537 + 0.633751i \(0.781515\pi\)
\(228\) 0 0
\(229\) 4.95420 0.327383 0.163691 0.986512i \(-0.447660\pi\)
0.163691 + 0.986512i \(0.447660\pi\)
\(230\) −0.477100 −0.0314590
\(231\) 0 0
\(232\) 8.27561 0.543321
\(233\) −14.2756 −0.935226 −0.467613 0.883933i \(-0.654886\pi\)
−0.467613 + 0.883933i \(0.654886\pi\)
\(234\) 0 0
\(235\) 4.23491 0.276255
\(236\) 6.47710 0.421623
\(237\) 0 0
\(238\) 0 0
\(239\) 4.97524 0.321822 0.160911 0.986969i \(-0.448557\pi\)
0.160911 + 0.986969i \(0.448557\pi\)
\(240\) 0 0
\(241\) 13.0000 0.837404 0.418702 0.908124i \(-0.362485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(242\) −8.47710 −0.544929
\(243\) 0 0
\(244\) 4.47710 0.286617
\(245\) 0 0
\(246\) 0 0
\(247\) −34.1520 −2.17304
\(248\) 2.71201 0.172213
\(249\) 0 0
\(250\) −11.8764 −0.751127
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) 0 0
\(253\) −0.477100 −0.0299950
\(254\) −13.4400 −0.843298
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.987620 −0.0616061 −0.0308030 0.999525i \(-0.509806\pi\)
−0.0308030 + 0.999525i \(0.509806\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.64145 0.473902
\(261\) 0 0
\(262\) −3.17673 −0.196259
\(263\) −17.1854 −1.05970 −0.529848 0.848092i \(-0.677751\pi\)
−0.529848 + 0.848092i \(0.677751\pi\)
\(264\) 0 0
\(265\) 7.76509 0.477006
\(266\) 0 0
\(267\) 0 0
\(268\) −10.0531 −0.614090
\(269\) −22.9047 −1.39652 −0.698262 0.715843i \(-0.746043\pi\)
−0.698262 + 0.715843i \(0.746043\pi\)
\(270\) 0 0
\(271\) 14.0073 0.850882 0.425441 0.904986i \(-0.360119\pi\)
0.425441 + 0.904986i \(0.360119\pi\)
\(272\) 5.39926 0.327378
\(273\) 0 0
\(274\) 21.2632 1.28456
\(275\) −3.93454 −0.237261
\(276\) 0 0
\(277\) 28.2953 1.70010 0.850049 0.526703i \(-0.176572\pi\)
0.850049 + 0.526703i \(0.176572\pi\)
\(278\) 13.0531 0.782872
\(279\) 0 0
\(280\) 0 0
\(281\) −17.5956 −1.04967 −0.524834 0.851204i \(-0.675873\pi\)
−0.524834 + 0.851204i \(0.675873\pi\)
\(282\) 0 0
\(283\) 18.5229 1.10107 0.550536 0.834811i \(-0.314423\pi\)
0.550536 + 0.834811i \(0.314423\pi\)
\(284\) −12.7207 −0.754833
\(285\) 0 0
\(286\) 7.64145 0.451848
\(287\) 0 0
\(288\) 0 0
\(289\) 12.1520 0.714822
\(290\) 13.1447 0.771882
\(291\) 0 0
\(292\) 16.0531 0.939436
\(293\) 14.0851 0.822862 0.411431 0.911441i \(-0.365029\pi\)
0.411431 + 0.911441i \(0.365029\pi\)
\(294\) 0 0
\(295\) 10.2880 0.598990
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) −5.20877 −0.301736
\(299\) −1.44506 −0.0835698
\(300\) 0 0
\(301\) 0 0
\(302\) −0.522900 −0.0300895
\(303\) 0 0
\(304\) −7.09888 −0.407149
\(305\) 7.11126 0.407190
\(306\) 0 0
\(307\) 5.85532 0.334180 0.167090 0.985942i \(-0.446563\pi\)
0.167090 + 0.985942i \(0.446563\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.30766 0.244658
\(311\) 0.810892 0.0459815 0.0229907 0.999736i \(-0.492681\pi\)
0.0229907 + 0.999736i \(0.492681\pi\)
\(312\) 0 0
\(313\) −10.5760 −0.597790 −0.298895 0.954286i \(-0.596618\pi\)
−0.298895 + 0.954286i \(0.596618\pi\)
\(314\) −8.86398 −0.500223
\(315\) 0 0
\(316\) 8.38688 0.471799
\(317\) −12.1964 −0.685018 −0.342509 0.939515i \(-0.611277\pi\)
−0.342509 + 0.939515i \(0.611277\pi\)
\(318\) 0 0
\(319\) 13.1447 0.735961
\(320\) 1.58836 0.0887922
\(321\) 0 0
\(322\) 0 0
\(323\) −38.3287 −2.13267
\(324\) 0 0
\(325\) −11.9171 −0.661040
\(326\) −21.9629 −1.21641
\(327\) 0 0
\(328\) −5.87636 −0.324467
\(329\) 0 0
\(330\) 0 0
\(331\) −15.6662 −0.861093 −0.430546 0.902568i \(-0.641679\pi\)
−0.430546 + 0.902568i \(0.641679\pi\)
\(332\) −2.36584 −0.129842
\(333\) 0 0
\(334\) −3.30037 −0.180588
\(335\) −15.9680 −0.872423
\(336\) 0 0
\(337\) 8.42402 0.458885 0.229443 0.973322i \(-0.426310\pi\)
0.229443 + 0.973322i \(0.426310\pi\)
\(338\) 10.1447 0.551798
\(339\) 0 0
\(340\) 8.57598 0.465098
\(341\) 4.30766 0.233273
\(342\) 0 0
\(343\) 0 0
\(344\) 1.66621 0.0898359
\(345\) 0 0
\(346\) 19.1075 1.02723
\(347\) −0.567323 −0.0304555 −0.0152277 0.999884i \(-0.504847\pi\)
−0.0152277 + 0.999884i \(0.504847\pi\)
\(348\) 0 0
\(349\) −0.00728378 −0.000389892 0 −0.000194946 1.00000i \(-0.500062\pi\)
−0.000194946 1.00000i \(0.500062\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.58836 0.0846601
\(353\) 6.65383 0.354148 0.177074 0.984198i \(-0.443337\pi\)
0.177074 + 0.984198i \(0.443337\pi\)
\(354\) 0 0
\(355\) −20.2051 −1.07237
\(356\) −3.21015 −0.170138
\(357\) 0 0
\(358\) −16.0741 −0.849544
\(359\) −0.797135 −0.0420712 −0.0210356 0.999779i \(-0.506696\pi\)
−0.0210356 + 0.999779i \(0.506696\pi\)
\(360\) 0 0
\(361\) 31.3942 1.65232
\(362\) −8.05308 −0.423261
\(363\) 0 0
\(364\) 0 0
\(365\) 25.4981 1.33463
\(366\) 0 0
\(367\) 15.4327 0.805579 0.402790 0.915293i \(-0.368041\pi\)
0.402790 + 0.915293i \(0.368041\pi\)
\(368\) −0.300372 −0.0156580
\(369\) 0 0
\(370\) −1.58836 −0.0825751
\(371\) 0 0
\(372\) 0 0
\(373\) 10.2422 0.530321 0.265160 0.964204i \(-0.414575\pi\)
0.265160 + 0.964204i \(0.414575\pi\)
\(374\) 8.57598 0.443454
\(375\) 0 0
\(376\) 2.66621 0.137499
\(377\) 39.8131 2.05048
\(378\) 0 0
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) −11.2756 −0.578427
\(381\) 0 0
\(382\) 23.9629 1.22605
\(383\) −6.26695 −0.320226 −0.160113 0.987099i \(-0.551186\pi\)
−0.160113 + 0.987099i \(0.551186\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.76509 0.497030
\(387\) 0 0
\(388\) 1.42402 0.0722934
\(389\) 21.6342 1.09690 0.548448 0.836185i \(-0.315219\pi\)
0.548448 + 0.836185i \(0.315219\pi\)
\(390\) 0 0
\(391\) −1.62178 −0.0820172
\(392\) 0 0
\(393\) 0 0
\(394\) 18.2436 0.919098
\(395\) 13.3214 0.670273
\(396\) 0 0
\(397\) 4.10617 0.206083 0.103041 0.994677i \(-0.467143\pi\)
0.103041 + 0.994677i \(0.467143\pi\)
\(398\) 18.0989 0.907215
\(399\) 0 0
\(400\) −2.47710 −0.123855
\(401\) −16.7417 −0.836041 −0.418021 0.908438i \(-0.637276\pi\)
−0.418021 + 0.908438i \(0.637276\pi\)
\(402\) 0 0
\(403\) 13.0472 0.649926
\(404\) 12.0334 0.598685
\(405\) 0 0
\(406\) 0 0
\(407\) −1.58836 −0.0787323
\(408\) 0 0
\(409\) 8.76509 0.433406 0.216703 0.976238i \(-0.430470\pi\)
0.216703 + 0.976238i \(0.430470\pi\)
\(410\) −9.33379 −0.460963
\(411\) 0 0
\(412\) 6.09888 0.300470
\(413\) 0 0
\(414\) 0 0
\(415\) −3.75781 −0.184464
\(416\) 4.81089 0.235873
\(417\) 0 0
\(418\) −11.2756 −0.551508
\(419\) 0.420297 0.0205329 0.0102664 0.999947i \(-0.496732\pi\)
0.0102664 + 0.999947i \(0.496732\pi\)
\(420\) 0 0
\(421\) −6.57598 −0.320494 −0.160247 0.987077i \(-0.551229\pi\)
−0.160247 + 0.987077i \(0.551229\pi\)
\(422\) −0.332415 −0.0161817
\(423\) 0 0
\(424\) 4.88874 0.237418
\(425\) −13.3745 −0.648758
\(426\) 0 0
\(427\) 0 0
\(428\) −3.08650 −0.149192
\(429\) 0 0
\(430\) 2.64654 0.127628
\(431\) 22.0879 1.06394 0.531968 0.846765i \(-0.321453\pi\)
0.531968 + 0.846765i \(0.321453\pi\)
\(432\) 0 0
\(433\) 9.43268 0.453306 0.226653 0.973976i \(-0.427222\pi\)
0.226653 + 0.973976i \(0.427222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.28799 −0.109575
\(437\) 2.13231 0.102002
\(438\) 0 0
\(439\) 31.2064 1.48940 0.744701 0.667398i \(-0.232592\pi\)
0.744701 + 0.667398i \(0.232592\pi\)
\(440\) 2.52290 0.120275
\(441\) 0 0
\(442\) 25.9752 1.23552
\(443\) −13.0545 −0.620236 −0.310118 0.950698i \(-0.600369\pi\)
−0.310118 + 0.950698i \(0.600369\pi\)
\(444\) 0 0
\(445\) −5.09888 −0.241710
\(446\) 6.33242 0.299849
\(447\) 0 0
\(448\) 0 0
\(449\) 9.91706 0.468015 0.234008 0.972235i \(-0.424816\pi\)
0.234008 + 0.972235i \(0.424816\pi\)
\(450\) 0 0
\(451\) −9.33379 −0.439511
\(452\) −19.4647 −0.915543
\(453\) 0 0
\(454\) −23.3090 −1.09395
\(455\) 0 0
\(456\) 0 0
\(457\) −24.5229 −1.14713 −0.573566 0.819159i \(-0.694441\pi\)
−0.573566 + 0.819159i \(0.694441\pi\)
\(458\) 4.95420 0.231495
\(459\) 0 0
\(460\) −0.477100 −0.0222449
\(461\) −3.51052 −0.163501 −0.0817506 0.996653i \(-0.526051\pi\)
−0.0817506 + 0.996653i \(0.526051\pi\)
\(462\) 0 0
\(463\) −17.3883 −0.808101 −0.404050 0.914737i \(-0.632398\pi\)
−0.404050 + 0.914737i \(0.632398\pi\)
\(464\) 8.27561 0.384186
\(465\) 0 0
\(466\) −14.2756 −0.661305
\(467\) −13.3979 −0.619980 −0.309990 0.950740i \(-0.600326\pi\)
−0.309990 + 0.950740i \(0.600326\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.23491 0.195342
\(471\) 0 0
\(472\) 6.47710 0.298133
\(473\) 2.64654 0.121688
\(474\) 0 0
\(475\) 17.5846 0.806839
\(476\) 0 0
\(477\) 0 0
\(478\) 4.97524 0.227562
\(479\) 20.8058 0.950641 0.475321 0.879813i \(-0.342332\pi\)
0.475321 + 0.879813i \(0.342332\pi\)
\(480\) 0 0
\(481\) −4.81089 −0.219358
\(482\) 13.0000 0.592134
\(483\) 0 0
\(484\) −8.47710 −0.385323
\(485\) 2.26186 0.102706
\(486\) 0 0
\(487\) −32.4944 −1.47246 −0.736231 0.676730i \(-0.763397\pi\)
−0.736231 + 0.676730i \(0.763397\pi\)
\(488\) 4.47710 0.202669
\(489\) 0 0
\(490\) 0 0
\(491\) −19.3214 −0.871963 −0.435982 0.899956i \(-0.643599\pi\)
−0.435982 + 0.899956i \(0.643599\pi\)
\(492\) 0 0
\(493\) 44.6822 2.01238
\(494\) −34.1520 −1.53657
\(495\) 0 0
\(496\) 2.71201 0.121773
\(497\) 0 0
\(498\) 0 0
\(499\) −11.1506 −0.499169 −0.249585 0.968353i \(-0.580294\pi\)
−0.249585 + 0.968353i \(0.580294\pi\)
\(500\) −11.8764 −0.531127
\(501\) 0 0
\(502\) 2.43268 0.108576
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 0 0
\(505\) 19.1135 0.850537
\(506\) −0.477100 −0.0212097
\(507\) 0 0
\(508\) −13.4400 −0.596302
\(509\) 1.44506 0.0640510 0.0320255 0.999487i \(-0.489804\pi\)
0.0320255 + 0.999487i \(0.489804\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −0.987620 −0.0435621
\(515\) 9.68725 0.426871
\(516\) 0 0
\(517\) 4.23491 0.186251
\(518\) 0 0
\(519\) 0 0
\(520\) 7.64145 0.335100
\(521\) −19.2843 −0.844859 −0.422430 0.906396i \(-0.638823\pi\)
−0.422430 + 0.906396i \(0.638823\pi\)
\(522\) 0 0
\(523\) −36.6908 −1.60438 −0.802189 0.597071i \(-0.796331\pi\)
−0.802189 + 0.597071i \(0.796331\pi\)
\(524\) −3.17673 −0.138776
\(525\) 0 0
\(526\) −17.1854 −0.749319
\(527\) 14.6428 0.637851
\(528\) 0 0
\(529\) −22.9098 −0.996077
\(530\) 7.76509 0.337294
\(531\) 0 0
\(532\) 0 0
\(533\) −28.2705 −1.22453
\(534\) 0 0
\(535\) −4.90249 −0.211953
\(536\) −10.0531 −0.434227
\(537\) 0 0
\(538\) −22.9047 −0.987491
\(539\) 0 0
\(540\) 0 0
\(541\) 3.25085 0.139765 0.0698825 0.997555i \(-0.477738\pi\)
0.0698825 + 0.997555i \(0.477738\pi\)
\(542\) 14.0073 0.601664
\(543\) 0 0
\(544\) 5.39926 0.231491
\(545\) −3.63416 −0.155670
\(546\) 0 0
\(547\) 5.91706 0.252995 0.126498 0.991967i \(-0.459626\pi\)
0.126498 + 0.991967i \(0.459626\pi\)
\(548\) 21.2632 0.908320
\(549\) 0 0
\(550\) −3.93454 −0.167769
\(551\) −58.7476 −2.50273
\(552\) 0 0
\(553\) 0 0
\(554\) 28.2953 1.20215
\(555\) 0 0
\(556\) 13.0531 0.553574
\(557\) 25.6080 1.08505 0.542523 0.840041i \(-0.317469\pi\)
0.542523 + 0.840041i \(0.317469\pi\)
\(558\) 0 0
\(559\) 8.01594 0.339038
\(560\) 0 0
\(561\) 0 0
\(562\) −17.5956 −0.742228
\(563\) −46.6377 −1.96555 −0.982773 0.184817i \(-0.940831\pi\)
−0.982773 + 0.184817i \(0.940831\pi\)
\(564\) 0 0
\(565\) −30.9171 −1.30069
\(566\) 18.5229 0.778576
\(567\) 0 0
\(568\) −12.7207 −0.533747
\(569\) −31.1978 −1.30788 −0.653939 0.756547i \(-0.726885\pi\)
−0.653939 + 0.756547i \(0.726885\pi\)
\(570\) 0 0
\(571\) −15.6762 −0.656030 −0.328015 0.944672i \(-0.606380\pi\)
−0.328015 + 0.944672i \(0.606380\pi\)
\(572\) 7.64145 0.319505
\(573\) 0 0
\(574\) 0 0
\(575\) 0.744051 0.0310291
\(576\) 0 0
\(577\) 13.9913 0.582467 0.291234 0.956652i \(-0.405934\pi\)
0.291234 + 0.956652i \(0.405934\pi\)
\(578\) 12.1520 0.505455
\(579\) 0 0
\(580\) 13.1447 0.545803
\(581\) 0 0
\(582\) 0 0
\(583\) 7.76509 0.321597
\(584\) 16.0531 0.664281
\(585\) 0 0
\(586\) 14.0851 0.581851
\(587\) −2.89602 −0.119532 −0.0597658 0.998212i \(-0.519035\pi\)
−0.0597658 + 0.998212i \(0.519035\pi\)
\(588\) 0 0
\(589\) −19.2522 −0.793274
\(590\) 10.2880 0.423550
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) 4.08788 0.167869 0.0839346 0.996471i \(-0.473251\pi\)
0.0839346 + 0.996471i \(0.473251\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.20877 −0.213360
\(597\) 0 0
\(598\) −1.44506 −0.0590928
\(599\) 19.7651 0.807580 0.403790 0.914852i \(-0.367693\pi\)
0.403790 + 0.914852i \(0.367693\pi\)
\(600\) 0 0
\(601\) −26.8640 −1.09580 −0.547902 0.836542i \(-0.684573\pi\)
−0.547902 + 0.836542i \(0.684573\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.522900 −0.0212765
\(605\) −13.4647 −0.547419
\(606\) 0 0
\(607\) 15.2422 0.618661 0.309331 0.950955i \(-0.399895\pi\)
0.309331 + 0.950955i \(0.399895\pi\)
\(608\) −7.09888 −0.287898
\(609\) 0 0
\(610\) 7.11126 0.287927
\(611\) 12.8268 0.518918
\(612\) 0 0
\(613\) 2.72067 0.109887 0.0549434 0.998489i \(-0.482502\pi\)
0.0549434 + 0.998489i \(0.482502\pi\)
\(614\) 5.85532 0.236301
\(615\) 0 0
\(616\) 0 0
\(617\) −18.4362 −0.742215 −0.371108 0.928590i \(-0.621022\pi\)
−0.371108 + 0.928590i \(0.621022\pi\)
\(618\) 0 0
\(619\) −0.107546 −0.00432262 −0.00216131 0.999998i \(-0.500688\pi\)
−0.00216131 + 0.999998i \(0.500688\pi\)
\(620\) 4.30766 0.173000
\(621\) 0 0
\(622\) 0.810892 0.0325138
\(623\) 0 0
\(624\) 0 0
\(625\) −6.47848 −0.259139
\(626\) −10.5760 −0.422701
\(627\) 0 0
\(628\) −8.86398 −0.353711
\(629\) −5.39926 −0.215282
\(630\) 0 0
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) 8.38688 0.333612
\(633\) 0 0
\(634\) −12.1964 −0.484381
\(635\) −21.3475 −0.847152
\(636\) 0 0
\(637\) 0 0
\(638\) 13.1447 0.520403
\(639\) 0 0
\(640\) 1.58836 0.0627856
\(641\) −17.3128 −0.683813 −0.341906 0.939734i \(-0.611073\pi\)
−0.341906 + 0.939734i \(0.611073\pi\)
\(642\) 0 0
\(643\) 28.9642 1.14224 0.571119 0.820867i \(-0.306509\pi\)
0.571119 + 0.820867i \(0.306509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −38.3287 −1.50802
\(647\) −2.55632 −0.100499 −0.0502497 0.998737i \(-0.516002\pi\)
−0.0502497 + 0.998737i \(0.516002\pi\)
\(648\) 0 0
\(649\) 10.2880 0.403839
\(650\) −11.9171 −0.467426
\(651\) 0 0
\(652\) −21.9629 −0.860132
\(653\) −29.9766 −1.17308 −0.586538 0.809922i \(-0.699509\pi\)
−0.586538 + 0.809922i \(0.699509\pi\)
\(654\) 0 0
\(655\) −5.04580 −0.197156
\(656\) −5.87636 −0.229433
\(657\) 0 0
\(658\) 0 0
\(659\) −15.2632 −0.594571 −0.297286 0.954789i \(-0.596081\pi\)
−0.297286 + 0.954789i \(0.596081\pi\)
\(660\) 0 0
\(661\) 27.2522 1.05999 0.529994 0.848001i \(-0.322194\pi\)
0.529994 + 0.848001i \(0.322194\pi\)
\(662\) −15.6662 −0.608884
\(663\) 0 0
\(664\) −2.36584 −0.0918122
\(665\) 0 0
\(666\) 0 0
\(667\) −2.48576 −0.0962491
\(668\) −3.30037 −0.127695
\(669\) 0 0
\(670\) −15.9680 −0.616896
\(671\) 7.11126 0.274527
\(672\) 0 0
\(673\) −46.4559 −1.79074 −0.895372 0.445319i \(-0.853090\pi\)
−0.895372 + 0.445319i \(0.853090\pi\)
\(674\) 8.42402 0.324481
\(675\) 0 0
\(676\) 10.1447 0.390180
\(677\) 5.09888 0.195966 0.0979830 0.995188i \(-0.468761\pi\)
0.0979830 + 0.995188i \(0.468761\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 8.57598 0.328874
\(681\) 0 0
\(682\) 4.30766 0.164949
\(683\) −15.5439 −0.594772 −0.297386 0.954757i \(-0.596115\pi\)
−0.297386 + 0.954757i \(0.596115\pi\)
\(684\) 0 0
\(685\) 33.7738 1.29043
\(686\) 0 0
\(687\) 0 0
\(688\) 1.66621 0.0635236
\(689\) 23.5192 0.896009
\(690\) 0 0
\(691\) −23.2967 −0.886246 −0.443123 0.896461i \(-0.646130\pi\)
−0.443123 + 0.896461i \(0.646130\pi\)
\(692\) 19.1075 0.726360
\(693\) 0 0
\(694\) −0.567323 −0.0215353
\(695\) 20.7330 0.786449
\(696\) 0 0
\(697\) −31.7280 −1.20178
\(698\) −0.00728378 −0.000275695 0
\(699\) 0 0
\(700\) 0 0
\(701\) 45.6464 1.72404 0.862020 0.506874i \(-0.169199\pi\)
0.862020 + 0.506874i \(0.169199\pi\)
\(702\) 0 0
\(703\) 7.09888 0.267739
\(704\) 1.58836 0.0598637
\(705\) 0 0
\(706\) 6.65383 0.250420
\(707\) 0 0
\(708\) 0 0
\(709\) 18.0014 0.676056 0.338028 0.941136i \(-0.390240\pi\)
0.338028 + 0.941136i \(0.390240\pi\)
\(710\) −20.2051 −0.758282
\(711\) 0 0
\(712\) −3.21015 −0.120305
\(713\) −0.814611 −0.0305074
\(714\) 0 0
\(715\) 12.1374 0.453913
\(716\) −16.0741 −0.600718
\(717\) 0 0
\(718\) −0.797135 −0.0297488
\(719\) −36.8777 −1.37531 −0.687654 0.726039i \(-0.741359\pi\)
−0.687654 + 0.726039i \(0.741359\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 31.3942 1.16837
\(723\) 0 0
\(724\) −8.05308 −0.299291
\(725\) −20.4995 −0.761333
\(726\) 0 0
\(727\) 30.4858 1.13065 0.565327 0.824867i \(-0.308750\pi\)
0.565327 + 0.824867i \(0.308750\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 25.4981 0.943729
\(731\) 8.99628 0.332739
\(732\) 0 0
\(733\) −6.15059 −0.227177 −0.113589 0.993528i \(-0.536235\pi\)
−0.113589 + 0.993528i \(0.536235\pi\)
\(734\) 15.4327 0.569630
\(735\) 0 0
\(736\) −0.300372 −0.0110719
\(737\) −15.9680 −0.588187
\(738\) 0 0
\(739\) 40.7824 1.50021 0.750103 0.661321i \(-0.230004\pi\)
0.750103 + 0.661321i \(0.230004\pi\)
\(740\) −1.58836 −0.0583894
\(741\) 0 0
\(742\) 0 0
\(743\) 14.5054 0.532152 0.266076 0.963952i \(-0.414273\pi\)
0.266076 + 0.963952i \(0.414273\pi\)
\(744\) 0 0
\(745\) −8.27342 −0.303115
\(746\) 10.2422 0.374993
\(747\) 0 0
\(748\) 8.57598 0.313569
\(749\) 0 0
\(750\) 0 0
\(751\) 4.18911 0.152863 0.0764314 0.997075i \(-0.475647\pi\)
0.0764314 + 0.997075i \(0.475647\pi\)
\(752\) 2.66621 0.0972266
\(753\) 0 0
\(754\) 39.8131 1.44991
\(755\) −0.830556 −0.0302270
\(756\) 0 0
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) 25.0087 0.908355
\(759\) 0 0
\(760\) −11.2756 −0.409009
\(761\) 3.63416 0.131738 0.0658692 0.997828i \(-0.479018\pi\)
0.0658692 + 0.997828i \(0.479018\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 23.9629 0.866946
\(765\) 0 0
\(766\) −6.26695 −0.226434
\(767\) 31.1606 1.12515
\(768\) 0 0
\(769\) −39.9344 −1.44007 −0.720035 0.693937i \(-0.755874\pi\)
−0.720035 + 0.693937i \(0.755874\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.76509 0.351453
\(773\) −36.1396 −1.29985 −0.649925 0.759998i \(-0.725200\pi\)
−0.649925 + 0.759998i \(0.725200\pi\)
\(774\) 0 0
\(775\) −6.71791 −0.241315
\(776\) 1.42402 0.0511192
\(777\) 0 0
\(778\) 21.6342 0.775622
\(779\) 41.7156 1.49462
\(780\) 0 0
\(781\) −20.2051 −0.722994
\(782\) −1.62178 −0.0579949
\(783\) 0 0
\(784\) 0 0
\(785\) −14.0792 −0.502509
\(786\) 0 0
\(787\) 44.6377 1.59116 0.795582 0.605846i \(-0.207165\pi\)
0.795582 + 0.605846i \(0.207165\pi\)
\(788\) 18.2436 0.649900
\(789\) 0 0
\(790\) 13.3214 0.473955
\(791\) 0 0
\(792\) 0 0
\(793\) 21.5388 0.764867
\(794\) 4.10617 0.145722
\(795\) 0 0
\(796\) 18.0989 0.641498
\(797\) −52.5672 −1.86202 −0.931012 0.364988i \(-0.881073\pi\)
−0.931012 + 0.364988i \(0.881073\pi\)
\(798\) 0 0
\(799\) 14.3955 0.509278
\(800\) −2.47710 −0.0875787
\(801\) 0 0
\(802\) −16.7417 −0.591170
\(803\) 25.4981 0.899810
\(804\) 0 0
\(805\) 0 0
\(806\) 13.0472 0.459567
\(807\) 0 0
\(808\) 12.0334 0.423334
\(809\) 14.8058 0.520544 0.260272 0.965535i \(-0.416188\pi\)
0.260272 + 0.965535i \(0.416188\pi\)
\(810\) 0 0
\(811\) −27.0704 −0.950571 −0.475285 0.879832i \(-0.657655\pi\)
−0.475285 + 0.879832i \(0.657655\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.58836 −0.0556721
\(815\) −34.8850 −1.22197
\(816\) 0 0
\(817\) −11.8282 −0.413817
\(818\) 8.76509 0.306464
\(819\) 0 0
\(820\) −9.33379 −0.325950
\(821\) −43.8182 −1.52926 −0.764632 0.644467i \(-0.777079\pi\)
−0.764632 + 0.644467i \(0.777079\pi\)
\(822\) 0 0
\(823\) 31.3425 1.09253 0.546265 0.837613i \(-0.316049\pi\)
0.546265 + 0.837613i \(0.316049\pi\)
\(824\) 6.09888 0.212465
\(825\) 0 0
\(826\) 0 0
\(827\) 14.7665 0.513480 0.256740 0.966480i \(-0.417352\pi\)
0.256740 + 0.966480i \(0.417352\pi\)
\(828\) 0 0
\(829\) −30.0073 −1.04220 −0.521098 0.853497i \(-0.674477\pi\)
−0.521098 + 0.853497i \(0.674477\pi\)
\(830\) −3.75781 −0.130435
\(831\) 0 0
\(832\) 4.81089 0.166788
\(833\) 0 0
\(834\) 0 0
\(835\) −5.24219 −0.181414
\(836\) −11.2756 −0.389975
\(837\) 0 0
\(838\) 0.420297 0.0145189
\(839\) −36.0334 −1.24401 −0.622006 0.783013i \(-0.713682\pi\)
−0.622006 + 0.783013i \(0.713682\pi\)
\(840\) 0 0
\(841\) 39.4858 1.36158
\(842\) −6.57598 −0.226623
\(843\) 0 0
\(844\) −0.332415 −0.0114422
\(845\) 16.1135 0.554320
\(846\) 0 0
\(847\) 0 0
\(848\) 4.88874 0.167880
\(849\) 0 0
\(850\) −13.3745 −0.458741
\(851\) 0.300372 0.0102966
\(852\) 0 0
\(853\) −24.5316 −0.839945 −0.419972 0.907537i \(-0.637960\pi\)
−0.419972 + 0.907537i \(0.637960\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.08650 −0.105495
\(857\) 29.0480 0.992260 0.496130 0.868248i \(-0.334754\pi\)
0.496130 + 0.868248i \(0.334754\pi\)
\(858\) 0 0
\(859\) −25.2953 −0.863064 −0.431532 0.902098i \(-0.642027\pi\)
−0.431532 + 0.902098i \(0.642027\pi\)
\(860\) 2.64654 0.0902464
\(861\) 0 0
\(862\) 22.0879 0.752316
\(863\) −2.69963 −0.0918964 −0.0459482 0.998944i \(-0.514631\pi\)
−0.0459482 + 0.998944i \(0.514631\pi\)
\(864\) 0 0
\(865\) 30.3497 1.03192
\(866\) 9.43268 0.320535
\(867\) 0 0
\(868\) 0 0
\(869\) 13.3214 0.451898
\(870\) 0 0
\(871\) −48.3643 −1.63876
\(872\) −2.28799 −0.0774812
\(873\) 0 0
\(874\) 2.13231 0.0721263
\(875\) 0 0
\(876\) 0 0
\(877\) −11.0916 −0.374537 −0.187268 0.982309i \(-0.559963\pi\)
−0.187268 + 0.982309i \(0.559963\pi\)
\(878\) 31.2064 1.05317
\(879\) 0 0
\(880\) 2.52290 0.0850469
\(881\) −40.3942 −1.36091 −0.680457 0.732788i \(-0.738219\pi\)
−0.680457 + 0.732788i \(0.738219\pi\)
\(882\) 0 0
\(883\) −33.2581 −1.11923 −0.559613 0.828754i \(-0.689050\pi\)
−0.559613 + 0.828754i \(0.689050\pi\)
\(884\) 25.9752 0.873642
\(885\) 0 0
\(886\) −13.0545 −0.438573
\(887\) 40.5672 1.36211 0.681056 0.732231i \(-0.261521\pi\)
0.681056 + 0.732231i \(0.261521\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −5.09888 −0.170915
\(891\) 0 0
\(892\) 6.33242 0.212025
\(893\) −18.9271 −0.633371
\(894\) 0 0
\(895\) −25.5316 −0.853426
\(896\) 0 0
\(897\) 0 0
\(898\) 9.91706 0.330937
\(899\) 22.4435 0.748533
\(900\) 0 0
\(901\) 26.3955 0.879363
\(902\) −9.33379 −0.310781
\(903\) 0 0
\(904\) −19.4647 −0.647387
\(905\) −12.7912 −0.425195
\(906\) 0 0
\(907\) 30.1135 0.999901 0.499950 0.866054i \(-0.333352\pi\)
0.499950 + 0.866054i \(0.333352\pi\)
\(908\) −23.3090 −0.773537
\(909\) 0 0
\(910\) 0 0
\(911\) 29.2225 0.968186 0.484093 0.875017i \(-0.339150\pi\)
0.484093 + 0.875017i \(0.339150\pi\)
\(912\) 0 0
\(913\) −3.75781 −0.124365
\(914\) −24.5229 −0.811145
\(915\) 0 0
\(916\) 4.95420 0.163691
\(917\) 0 0
\(918\) 0 0
\(919\) 11.0472 0.364413 0.182206 0.983260i \(-0.441676\pi\)
0.182206 + 0.983260i \(0.441676\pi\)
\(920\) −0.477100 −0.0157295
\(921\) 0 0
\(922\) −3.51052 −0.115613
\(923\) −61.1978 −2.01435
\(924\) 0 0
\(925\) 2.47710 0.0814465
\(926\) −17.3883 −0.571413
\(927\) 0 0
\(928\) 8.27561 0.271660
\(929\) −42.3338 −1.38893 −0.694463 0.719528i \(-0.744358\pi\)
−0.694463 + 0.719528i \(0.744358\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −14.2756 −0.467613
\(933\) 0 0
\(934\) −13.3979 −0.438392
\(935\) 13.6218 0.445480
\(936\) 0 0
\(937\) 11.7651 0.384349 0.192174 0.981361i \(-0.438446\pi\)
0.192174 + 0.981361i \(0.438446\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.23491 0.138127
\(941\) 14.5760 0.475164 0.237582 0.971368i \(-0.423645\pi\)
0.237582 + 0.971368i \(0.423645\pi\)
\(942\) 0 0
\(943\) 1.76509 0.0574793
\(944\) 6.47710 0.210812
\(945\) 0 0
\(946\) 2.64654 0.0860466
\(947\) −6.24357 −0.202889 −0.101444 0.994841i \(-0.532346\pi\)
−0.101444 + 0.994841i \(0.532346\pi\)
\(948\) 0 0
\(949\) 77.2297 2.50698
\(950\) 17.5846 0.570521
\(951\) 0 0
\(952\) 0 0
\(953\) −28.0173 −0.907570 −0.453785 0.891111i \(-0.649927\pi\)
−0.453785 + 0.891111i \(0.649927\pi\)
\(954\) 0 0
\(955\) 38.0617 1.23165
\(956\) 4.97524 0.160911
\(957\) 0 0
\(958\) 20.8058 0.672205
\(959\) 0 0
\(960\) 0 0
\(961\) −23.6450 −0.762742
\(962\) −4.81089 −0.155109
\(963\) 0 0
\(964\) 13.0000 0.418702
\(965\) 15.5105 0.499301
\(966\) 0 0
\(967\) −31.5673 −1.01514 −0.507568 0.861612i \(-0.669456\pi\)
−0.507568 + 0.861612i \(0.669456\pi\)
\(968\) −8.47710 −0.272464
\(969\) 0 0
\(970\) 2.26186 0.0726238
\(971\) −5.64283 −0.181087 −0.0905434 0.995893i \(-0.528860\pi\)
−0.0905434 + 0.995893i \(0.528860\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −32.4944 −1.04119
\(975\) 0 0
\(976\) 4.47710 0.143308
\(977\) −6.49304 −0.207731 −0.103865 0.994591i \(-0.533121\pi\)
−0.103865 + 0.994591i \(0.533121\pi\)
\(978\) 0 0
\(979\) −5.09888 −0.162961
\(980\) 0 0
\(981\) 0 0
\(982\) −19.3214 −0.616571
\(983\) −30.3063 −0.966620 −0.483310 0.875449i \(-0.660566\pi\)
−0.483310 + 0.875449i \(0.660566\pi\)
\(984\) 0 0
\(985\) 28.9774 0.923298
\(986\) 44.6822 1.42297
\(987\) 0 0
\(988\) −34.1520 −1.08652
\(989\) −0.500482 −0.0159144
\(990\) 0 0
\(991\) −22.3338 −0.709456 −0.354728 0.934969i \(-0.615427\pi\)
−0.354728 + 0.934969i \(0.615427\pi\)
\(992\) 2.71201 0.0861063
\(993\) 0 0
\(994\) 0 0
\(995\) 28.7476 0.911361
\(996\) 0 0
\(997\) 8.76509 0.277593 0.138797 0.990321i \(-0.455677\pi\)
0.138797 + 0.990321i \(0.455677\pi\)
\(998\) −11.1506 −0.352966
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.bz.1.3 3
3.2 odd 2 7938.2.a.bw.1.1 3
7.3 odd 6 1134.2.g.l.163.3 6
7.5 odd 6 1134.2.g.l.487.3 6
7.6 odd 2 7938.2.a.ca.1.1 3
9.2 odd 6 882.2.f.o.589.1 6
9.4 even 3 2646.2.f.m.883.1 6
9.5 odd 6 882.2.f.o.295.1 6
9.7 even 3 2646.2.f.m.1765.1 6
21.5 even 6 1134.2.g.m.487.1 6
21.17 even 6 1134.2.g.m.163.1 6
21.20 even 2 7938.2.a.bv.1.3 3
63.2 odd 6 882.2.h.p.67.1 6
63.4 even 3 2646.2.h.o.667.3 6
63.5 even 6 126.2.e.c.25.1 6
63.11 odd 6 882.2.e.o.373.3 6
63.13 odd 6 2646.2.f.l.883.3 6
63.16 even 3 2646.2.h.o.361.3 6
63.20 even 6 882.2.f.n.589.3 6
63.23 odd 6 882.2.e.o.655.3 6
63.25 even 3 2646.2.e.p.1549.1 6
63.31 odd 6 378.2.h.c.289.1 6
63.32 odd 6 882.2.h.p.79.1 6
63.34 odd 6 2646.2.f.l.1765.3 6
63.38 even 6 126.2.e.c.121.1 yes 6
63.40 odd 6 378.2.e.d.235.3 6
63.41 even 6 882.2.f.n.295.3 6
63.47 even 6 126.2.h.d.67.3 yes 6
63.52 odd 6 378.2.e.d.37.3 6
63.58 even 3 2646.2.e.p.2125.1 6
63.59 even 6 126.2.h.d.79.3 yes 6
63.61 odd 6 378.2.h.c.361.1 6
252.31 even 6 3024.2.t.h.289.1 6
252.47 odd 6 1008.2.t.h.193.1 6
252.59 odd 6 1008.2.t.h.961.1 6
252.103 even 6 3024.2.q.g.2881.3 6
252.115 even 6 3024.2.q.g.2305.3 6
252.131 odd 6 1008.2.q.g.529.3 6
252.187 even 6 3024.2.t.h.1873.1 6
252.227 odd 6 1008.2.q.g.625.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.1 6 63.5 even 6
126.2.e.c.121.1 yes 6 63.38 even 6
126.2.h.d.67.3 yes 6 63.47 even 6
126.2.h.d.79.3 yes 6 63.59 even 6
378.2.e.d.37.3 6 63.52 odd 6
378.2.e.d.235.3 6 63.40 odd 6
378.2.h.c.289.1 6 63.31 odd 6
378.2.h.c.361.1 6 63.61 odd 6
882.2.e.o.373.3 6 63.11 odd 6
882.2.e.o.655.3 6 63.23 odd 6
882.2.f.n.295.3 6 63.41 even 6
882.2.f.n.589.3 6 63.20 even 6
882.2.f.o.295.1 6 9.5 odd 6
882.2.f.o.589.1 6 9.2 odd 6
882.2.h.p.67.1 6 63.2 odd 6
882.2.h.p.79.1 6 63.32 odd 6
1008.2.q.g.529.3 6 252.131 odd 6
1008.2.q.g.625.3 6 252.227 odd 6
1008.2.t.h.193.1 6 252.47 odd 6
1008.2.t.h.961.1 6 252.59 odd 6
1134.2.g.l.163.3 6 7.3 odd 6
1134.2.g.l.487.3 6 7.5 odd 6
1134.2.g.m.163.1 6 21.17 even 6
1134.2.g.m.487.1 6 21.5 even 6
2646.2.e.p.1549.1 6 63.25 even 3
2646.2.e.p.2125.1 6 63.58 even 3
2646.2.f.l.883.3 6 63.13 odd 6
2646.2.f.l.1765.3 6 63.34 odd 6
2646.2.f.m.883.1 6 9.4 even 3
2646.2.f.m.1765.1 6 9.7 even 3
2646.2.h.o.361.3 6 63.16 even 3
2646.2.h.o.667.3 6 63.4 even 3
3024.2.q.g.2305.3 6 252.115 even 6
3024.2.q.g.2881.3 6 252.103 even 6
3024.2.t.h.289.1 6 252.31 even 6
3024.2.t.h.1873.1 6 252.187 even 6
7938.2.a.bv.1.3 3 21.20 even 2
7938.2.a.bw.1.1 3 3.2 odd 2
7938.2.a.bz.1.3 3 1.1 even 1 trivial
7938.2.a.ca.1.1 3 7.6 odd 2