Properties

Label 7938.2.a.bo.1.2
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 7938.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.64575 q^{5} +1.00000 q^{8} +2.64575 q^{10} -2.00000 q^{11} -2.64575 q^{13} +1.00000 q^{16} -7.93725 q^{17} +5.29150 q^{19} +2.64575 q^{20} -2.00000 q^{22} -6.00000 q^{23} +2.00000 q^{25} -2.64575 q^{26} -5.00000 q^{29} -5.29150 q^{31} +1.00000 q^{32} -7.93725 q^{34} +3.00000 q^{37} +5.29150 q^{38} +2.64575 q^{40} -8.00000 q^{43} -2.00000 q^{44} -6.00000 q^{46} -5.29150 q^{47} +2.00000 q^{50} -2.64575 q^{52} -2.00000 q^{53} -5.29150 q^{55} -5.00000 q^{58} -5.29150 q^{59} +2.64575 q^{61} -5.29150 q^{62} +1.00000 q^{64} -7.00000 q^{65} -2.00000 q^{67} -7.93725 q^{68} -8.00000 q^{71} -13.2288 q^{73} +3.00000 q^{74} +5.29150 q^{76} +10.0000 q^{79} +2.64575 q^{80} +15.8745 q^{83} -21.0000 q^{85} -8.00000 q^{86} -2.00000 q^{88} +13.2288 q^{89} -6.00000 q^{92} -5.29150 q^{94} +14.0000 q^{95} +10.5830 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 4 q^{11} + 2 q^{16} - 4 q^{22} - 12 q^{23} + 4 q^{25} - 10 q^{29} + 2 q^{32} + 6 q^{37} - 16 q^{43} - 4 q^{44} - 12 q^{46} + 4 q^{50} - 4 q^{53} - 10 q^{58} + 2 q^{64}+ \cdots + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.64575 1.18322 0.591608 0.806226i \(-0.298493\pi\)
0.591608 + 0.806226i \(0.298493\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.64575 0.836660
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −2.64575 −0.733799 −0.366900 0.930261i \(-0.619581\pi\)
−0.366900 + 0.930261i \(0.619581\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −7.93725 −1.92507 −0.962533 0.271163i \(-0.912592\pi\)
−0.962533 + 0.271163i \(0.912592\pi\)
\(18\) 0 0
\(19\) 5.29150 1.21395 0.606977 0.794719i \(-0.292382\pi\)
0.606977 + 0.794719i \(0.292382\pi\)
\(20\) 2.64575 0.591608
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) −2.64575 −0.518875
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −5.29150 −0.950382 −0.475191 0.879883i \(-0.657621\pi\)
−0.475191 + 0.879883i \(0.657621\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −7.93725 −1.36123
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 5.29150 0.858395
\(39\) 0 0
\(40\) 2.64575 0.418330
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) −5.29150 −0.771845 −0.385922 0.922531i \(-0.626117\pi\)
−0.385922 + 0.922531i \(0.626117\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.00000 0.282843
\(51\) 0 0
\(52\) −2.64575 −0.366900
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) −5.29150 −0.713506
\(56\) 0 0
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) −5.29150 −0.688895 −0.344447 0.938806i \(-0.611934\pi\)
−0.344447 + 0.938806i \(0.611934\pi\)
\(60\) 0 0
\(61\) 2.64575 0.338754 0.169377 0.985551i \(-0.445824\pi\)
0.169377 + 0.985551i \(0.445824\pi\)
\(62\) −5.29150 −0.672022
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.00000 −0.868243
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −7.93725 −0.962533
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −13.2288 −1.54831 −0.774154 0.632997i \(-0.781825\pi\)
−0.774154 + 0.632997i \(0.781825\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 5.29150 0.606977
\(77\) 0 0
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 2.64575 0.295804
\(81\) 0 0
\(82\) 0 0
\(83\) 15.8745 1.74245 0.871227 0.490881i \(-0.163325\pi\)
0.871227 + 0.490881i \(0.163325\pi\)
\(84\) 0 0
\(85\) −21.0000 −2.27777
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) −2.00000 −0.213201
\(89\) 13.2288 1.40225 0.701123 0.713041i \(-0.252683\pi\)
0.701123 + 0.713041i \(0.252683\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −5.29150 −0.545777
\(95\) 14.0000 1.43637
\(96\) 0 0
\(97\) 10.5830 1.07454 0.537271 0.843410i \(-0.319455\pi\)
0.537271 + 0.843410i \(0.319455\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.00000 0.200000
\(101\) 10.5830 1.05305 0.526524 0.850160i \(-0.323495\pi\)
0.526524 + 0.850160i \(0.323495\pi\)
\(102\) 0 0
\(103\) −10.5830 −1.04277 −0.521387 0.853320i \(-0.674585\pi\)
−0.521387 + 0.853320i \(0.674585\pi\)
\(104\) −2.64575 −0.259437
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −17.0000 −1.62830 −0.814152 0.580651i \(-0.802798\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) −5.29150 −0.504525
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 −0.0940721 −0.0470360 0.998893i \(-0.514978\pi\)
−0.0470360 + 0.998893i \(0.514978\pi\)
\(114\) 0 0
\(115\) −15.8745 −1.48031
\(116\) −5.00000 −0.464238
\(117\) 0 0
\(118\) −5.29150 −0.487122
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 2.64575 0.239535
\(123\) 0 0
\(124\) −5.29150 −0.475191
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −7.00000 −0.613941
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −7.93725 −0.680614
\(137\) −23.0000 −1.96502 −0.982511 0.186203i \(-0.940382\pi\)
−0.982511 + 0.186203i \(0.940382\pi\)
\(138\) 0 0
\(139\) −15.8745 −1.34646 −0.673229 0.739434i \(-0.735093\pi\)
−0.673229 + 0.739434i \(0.735093\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 5.29150 0.442498
\(144\) 0 0
\(145\) −13.2288 −1.09859
\(146\) −13.2288 −1.09482
\(147\) 0 0
\(148\) 3.00000 0.246598
\(149\) −11.0000 −0.901155 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 5.29150 0.429198
\(153\) 0 0
\(154\) 0 0
\(155\) −14.0000 −1.12451
\(156\) 0 0
\(157\) 13.2288 1.05577 0.527885 0.849316i \(-0.322985\pi\)
0.527885 + 0.849316i \(0.322985\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) 2.64575 0.209165
\(161\) 0 0
\(162\) 0 0
\(163\) 24.0000 1.87983 0.939913 0.341415i \(-0.110906\pi\)
0.939913 + 0.341415i \(0.110906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 15.8745 1.23210
\(167\) 5.29150 0.409469 0.204734 0.978818i \(-0.434367\pi\)
0.204734 + 0.978818i \(0.434367\pi\)
\(168\) 0 0
\(169\) −6.00000 −0.461538
\(170\) −21.0000 −1.61063
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) 13.2288 1.00576 0.502882 0.864355i \(-0.332273\pi\)
0.502882 + 0.864355i \(0.332273\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 13.2288 0.991537
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) 10.5830 0.786629 0.393314 0.919404i \(-0.371328\pi\)
0.393314 + 0.919404i \(0.371328\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 7.93725 0.583559
\(186\) 0 0
\(187\) 15.8745 1.16086
\(188\) −5.29150 −0.385922
\(189\) 0 0
\(190\) 14.0000 1.01567
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 11.0000 0.791797 0.395899 0.918294i \(-0.370433\pi\)
0.395899 + 0.918294i \(0.370433\pi\)
\(194\) 10.5830 0.759815
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) 26.4575 1.87552 0.937762 0.347279i \(-0.112894\pi\)
0.937762 + 0.347279i \(0.112894\pi\)
\(200\) 2.00000 0.141421
\(201\) 0 0
\(202\) 10.5830 0.744618
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −10.5830 −0.737353
\(207\) 0 0
\(208\) −2.64575 −0.183450
\(209\) −10.5830 −0.732042
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) −2.00000 −0.137361
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −21.1660 −1.44351
\(216\) 0 0
\(217\) 0 0
\(218\) −17.0000 −1.15139
\(219\) 0 0
\(220\) −5.29150 −0.356753
\(221\) 21.0000 1.41261
\(222\) 0 0
\(223\) −21.1660 −1.41738 −0.708690 0.705520i \(-0.750714\pi\)
−0.708690 + 0.705520i \(0.750714\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) −10.5830 −0.702419 −0.351209 0.936297i \(-0.614229\pi\)
−0.351209 + 0.936297i \(0.614229\pi\)
\(228\) 0 0
\(229\) 13.2288 0.874181 0.437090 0.899418i \(-0.356009\pi\)
0.437090 + 0.899418i \(0.356009\pi\)
\(230\) −15.8745 −1.04673
\(231\) 0 0
\(232\) −5.00000 −0.328266
\(233\) 1.00000 0.0655122 0.0327561 0.999463i \(-0.489572\pi\)
0.0327561 + 0.999463i \(0.489572\pi\)
\(234\) 0 0
\(235\) −14.0000 −0.913259
\(236\) −5.29150 −0.344447
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 18.5203 1.19299 0.596497 0.802615i \(-0.296559\pi\)
0.596497 + 0.802615i \(0.296559\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) 2.64575 0.169377
\(245\) 0 0
\(246\) 0 0
\(247\) −14.0000 −0.890799
\(248\) −5.29150 −0.336011
\(249\) 0 0
\(250\) −7.93725 −0.501996
\(251\) 26.4575 1.66998 0.834992 0.550263i \(-0.185472\pi\)
0.834992 + 0.550263i \(0.185472\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.2288 0.825187 0.412594 0.910915i \(-0.364623\pi\)
0.412594 + 0.910915i \(0.364623\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −7.00000 −0.434122
\(261\) 0 0
\(262\) 0 0
\(263\) −2.00000 −0.123325 −0.0616626 0.998097i \(-0.519640\pi\)
−0.0616626 + 0.998097i \(0.519640\pi\)
\(264\) 0 0
\(265\) −5.29150 −0.325054
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) 2.64575 0.161314 0.0806572 0.996742i \(-0.474298\pi\)
0.0806572 + 0.996742i \(0.474298\pi\)
\(270\) 0 0
\(271\) 5.29150 0.321436 0.160718 0.987000i \(-0.448619\pi\)
0.160718 + 0.987000i \(0.448619\pi\)
\(272\) −7.93725 −0.481267
\(273\) 0 0
\(274\) −23.0000 −1.38948
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −15.8745 −0.952090
\(279\) 0 0
\(280\) 0 0
\(281\) −15.0000 −0.894825 −0.447412 0.894328i \(-0.647654\pi\)
−0.447412 + 0.894328i \(0.647654\pi\)
\(282\) 0 0
\(283\) 10.5830 0.629094 0.314547 0.949242i \(-0.398147\pi\)
0.314547 + 0.949242i \(0.398147\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 5.29150 0.312893
\(287\) 0 0
\(288\) 0 0
\(289\) 46.0000 2.70588
\(290\) −13.2288 −0.776819
\(291\) 0 0
\(292\) −13.2288 −0.774154
\(293\) 7.93725 0.463699 0.231850 0.972752i \(-0.425522\pi\)
0.231850 + 0.972752i \(0.425522\pi\)
\(294\) 0 0
\(295\) −14.0000 −0.815112
\(296\) 3.00000 0.174371
\(297\) 0 0
\(298\) −11.0000 −0.637213
\(299\) 15.8745 0.918046
\(300\) 0 0
\(301\) 0 0
\(302\) −2.00000 −0.115087
\(303\) 0 0
\(304\) 5.29150 0.303488
\(305\) 7.00000 0.400819
\(306\) 0 0
\(307\) 10.5830 0.604004 0.302002 0.953307i \(-0.402345\pi\)
0.302002 + 0.953307i \(0.402345\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.0000 −0.795147
\(311\) 5.29150 0.300054 0.150027 0.988682i \(-0.452064\pi\)
0.150027 + 0.988682i \(0.452064\pi\)
\(312\) 0 0
\(313\) −7.93725 −0.448640 −0.224320 0.974516i \(-0.572016\pi\)
−0.224320 + 0.974516i \(0.572016\pi\)
\(314\) 13.2288 0.746542
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) −27.0000 −1.51647 −0.758236 0.651981i \(-0.773938\pi\)
−0.758236 + 0.651981i \(0.773938\pi\)
\(318\) 0 0
\(319\) 10.0000 0.559893
\(320\) 2.64575 0.147902
\(321\) 0 0
\(322\) 0 0
\(323\) −42.0000 −2.33694
\(324\) 0 0
\(325\) −5.29150 −0.293520
\(326\) 24.0000 1.32924
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 15.8745 0.871227
\(333\) 0 0
\(334\) 5.29150 0.289538
\(335\) −5.29150 −0.289106
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) −6.00000 −0.326357
\(339\) 0 0
\(340\) −21.0000 −1.13888
\(341\) 10.5830 0.573102
\(342\) 0 0
\(343\) 0 0
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 13.2288 0.711182
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 31.7490 1.69949 0.849743 0.527197i \(-0.176757\pi\)
0.849743 + 0.527197i \(0.176757\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) −31.7490 −1.68983 −0.844915 0.534901i \(-0.820349\pi\)
−0.844915 + 0.534901i \(0.820349\pi\)
\(354\) 0 0
\(355\) −21.1660 −1.12338
\(356\) 13.2288 0.701123
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 9.00000 0.473684
\(362\) 10.5830 0.556230
\(363\) 0 0
\(364\) 0 0
\(365\) −35.0000 −1.83198
\(366\) 0 0
\(367\) −5.29150 −0.276214 −0.138107 0.990417i \(-0.544102\pi\)
−0.138107 + 0.990417i \(0.544102\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) 7.93725 0.412638
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 15.8745 0.820851
\(375\) 0 0
\(376\) −5.29150 −0.272888
\(377\) 13.2288 0.681316
\(378\) 0 0
\(379\) 6.00000 0.308199 0.154100 0.988055i \(-0.450752\pi\)
0.154100 + 0.988055i \(0.450752\pi\)
\(380\) 14.0000 0.718185
\(381\) 0 0
\(382\) −18.0000 −0.920960
\(383\) −31.7490 −1.62230 −0.811149 0.584839i \(-0.801158\pi\)
−0.811149 + 0.584839i \(0.801158\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.0000 0.559885
\(387\) 0 0
\(388\) 10.5830 0.537271
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 47.6235 2.40843
\(392\) 0 0
\(393\) 0 0
\(394\) −15.0000 −0.755689
\(395\) 26.4575 1.33122
\(396\) 0 0
\(397\) 29.1033 1.46065 0.730325 0.683099i \(-0.239368\pi\)
0.730325 + 0.683099i \(0.239368\pi\)
\(398\) 26.4575 1.32620
\(399\) 0 0
\(400\) 2.00000 0.100000
\(401\) −39.0000 −1.94757 −0.973784 0.227477i \(-0.926952\pi\)
−0.973784 + 0.227477i \(0.926952\pi\)
\(402\) 0 0
\(403\) 14.0000 0.697390
\(404\) 10.5830 0.526524
\(405\) 0 0
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) −7.93725 −0.392472 −0.196236 0.980557i \(-0.562872\pi\)
−0.196236 + 0.980557i \(0.562872\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10.5830 −0.521387
\(413\) 0 0
\(414\) 0 0
\(415\) 42.0000 2.06170
\(416\) −2.64575 −0.129719
\(417\) 0 0
\(418\) −10.5830 −0.517632
\(419\) 10.5830 0.517014 0.258507 0.966009i \(-0.416770\pi\)
0.258507 + 0.966009i \(0.416770\pi\)
\(420\) 0 0
\(421\) −15.0000 −0.731055 −0.365528 0.930800i \(-0.619111\pi\)
−0.365528 + 0.930800i \(0.619111\pi\)
\(422\) −22.0000 −1.07094
\(423\) 0 0
\(424\) −2.00000 −0.0971286
\(425\) −15.8745 −0.770027
\(426\) 0 0
\(427\) 0 0
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) −21.1660 −1.02072
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) −18.5203 −0.890027 −0.445013 0.895524i \(-0.646801\pi\)
−0.445013 + 0.895524i \(0.646801\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −17.0000 −0.814152
\(437\) −31.7490 −1.51876
\(438\) 0 0
\(439\) −31.7490 −1.51530 −0.757649 0.652662i \(-0.773652\pi\)
−0.757649 + 0.652662i \(0.773652\pi\)
\(440\) −5.29150 −0.252262
\(441\) 0 0
\(442\) 21.0000 0.998868
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 0 0
\(445\) 35.0000 1.65916
\(446\) −21.1660 −1.00224
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.00000 −0.0470360
\(453\) 0 0
\(454\) −10.5830 −0.496685
\(455\) 0 0
\(456\) 0 0
\(457\) −25.0000 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(458\) 13.2288 0.618139
\(459\) 0 0
\(460\) −15.8745 −0.740153
\(461\) −31.7490 −1.47870 −0.739350 0.673322i \(-0.764867\pi\)
−0.739350 + 0.673322i \(0.764867\pi\)
\(462\) 0 0
\(463\) −22.0000 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(464\) −5.00000 −0.232119
\(465\) 0 0
\(466\) 1.00000 0.0463241
\(467\) 5.29150 0.244862 0.122431 0.992477i \(-0.460931\pi\)
0.122431 + 0.992477i \(0.460931\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −14.0000 −0.645772
\(471\) 0 0
\(472\) −5.29150 −0.243561
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) 10.5830 0.485582
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 15.8745 0.725325 0.362662 0.931921i \(-0.381868\pi\)
0.362662 + 0.931921i \(0.381868\pi\)
\(480\) 0 0
\(481\) −7.93725 −0.361908
\(482\) 18.5203 0.843575
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 28.0000 1.27141
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 2.64575 0.119768
\(489\) 0 0
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 39.6863 1.78738
\(494\) −14.0000 −0.629890
\(495\) 0 0
\(496\) −5.29150 −0.237595
\(497\) 0 0
\(498\) 0 0
\(499\) −6.00000 −0.268597 −0.134298 0.990941i \(-0.542878\pi\)
−0.134298 + 0.990941i \(0.542878\pi\)
\(500\) −7.93725 −0.354965
\(501\) 0 0
\(502\) 26.4575 1.18086
\(503\) −26.4575 −1.17968 −0.589841 0.807519i \(-0.700810\pi\)
−0.589841 + 0.807519i \(0.700810\pi\)
\(504\) 0 0
\(505\) 28.0000 1.24598
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) 20.0000 0.887357
\(509\) −10.5830 −0.469083 −0.234542 0.972106i \(-0.575359\pi\)
−0.234542 + 0.972106i \(0.575359\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 13.2288 0.583495
\(515\) −28.0000 −1.23383
\(516\) 0 0
\(517\) 10.5830 0.465440
\(518\) 0 0
\(519\) 0 0
\(520\) −7.00000 −0.306970
\(521\) −10.5830 −0.463650 −0.231825 0.972758i \(-0.574470\pi\)
−0.231825 + 0.972758i \(0.574470\pi\)
\(522\) 0 0
\(523\) −42.3320 −1.85105 −0.925525 0.378686i \(-0.876376\pi\)
−0.925525 + 0.378686i \(0.876376\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.00000 −0.0872041
\(527\) 42.0000 1.82955
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −5.29150 −0.229848
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −10.5830 −0.457543
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 2.64575 0.114066
\(539\) 0 0
\(540\) 0 0
\(541\) −11.0000 −0.472927 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(542\) 5.29150 0.227289
\(543\) 0 0
\(544\) −7.93725 −0.340307
\(545\) −44.9778 −1.92664
\(546\) 0 0
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) −23.0000 −0.982511
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) −26.4575 −1.12713
\(552\) 0 0
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −15.8745 −0.673229
\(557\) 33.0000 1.39825 0.699127 0.714997i \(-0.253572\pi\)
0.699127 + 0.714997i \(0.253572\pi\)
\(558\) 0 0
\(559\) 21.1660 0.895227
\(560\) 0 0
\(561\) 0 0
\(562\) −15.0000 −0.632737
\(563\) 21.1660 0.892041 0.446020 0.895023i \(-0.352841\pi\)
0.446020 + 0.895023i \(0.352841\pi\)
\(564\) 0 0
\(565\) −2.64575 −0.111308
\(566\) 10.5830 0.444837
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) −39.0000 −1.63497 −0.817483 0.575953i \(-0.804631\pi\)
−0.817483 + 0.575953i \(0.804631\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 5.29150 0.221249
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) −13.2288 −0.550720 −0.275360 0.961341i \(-0.588797\pi\)
−0.275360 + 0.961341i \(0.588797\pi\)
\(578\) 46.0000 1.91335
\(579\) 0 0
\(580\) −13.2288 −0.549294
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) −13.2288 −0.547410
\(585\) 0 0
\(586\) 7.93725 0.327885
\(587\) −5.29150 −0.218404 −0.109202 0.994020i \(-0.534829\pi\)
−0.109202 + 0.994020i \(0.534829\pi\)
\(588\) 0 0
\(589\) −28.0000 −1.15372
\(590\) −14.0000 −0.576371
\(591\) 0 0
\(592\) 3.00000 0.123299
\(593\) −23.8118 −0.977832 −0.488916 0.872331i \(-0.662608\pi\)
−0.488916 + 0.872331i \(0.662608\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11.0000 −0.450578
\(597\) 0 0
\(598\) 15.8745 0.649157
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) −18.5203 −0.755457 −0.377729 0.925916i \(-0.623295\pi\)
−0.377729 + 0.925916i \(0.623295\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.00000 −0.0813788
\(605\) −18.5203 −0.752956
\(606\) 0 0
\(607\) 47.6235 1.93298 0.966490 0.256706i \(-0.0826371\pi\)
0.966490 + 0.256706i \(0.0826371\pi\)
\(608\) 5.29150 0.214599
\(609\) 0 0
\(610\) 7.00000 0.283422
\(611\) 14.0000 0.566379
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 10.5830 0.427095
\(615\) 0 0
\(616\) 0 0
\(617\) −19.0000 −0.764911 −0.382456 0.923974i \(-0.624922\pi\)
−0.382456 + 0.923974i \(0.624922\pi\)
\(618\) 0 0
\(619\) −21.1660 −0.850734 −0.425367 0.905021i \(-0.639855\pi\)
−0.425367 + 0.905021i \(0.639855\pi\)
\(620\) −14.0000 −0.562254
\(621\) 0 0
\(622\) 5.29150 0.212170
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) −7.93725 −0.317236
\(627\) 0 0
\(628\) 13.2288 0.527885
\(629\) −23.8118 −0.949437
\(630\) 0 0
\(631\) 30.0000 1.19428 0.597141 0.802137i \(-0.296303\pi\)
0.597141 + 0.802137i \(0.296303\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) −27.0000 −1.07231
\(635\) 52.9150 2.09987
\(636\) 0 0
\(637\) 0 0
\(638\) 10.0000 0.395904
\(639\) 0 0
\(640\) 2.64575 0.104583
\(641\) 5.00000 0.197488 0.0987441 0.995113i \(-0.468517\pi\)
0.0987441 + 0.995113i \(0.468517\pi\)
\(642\) 0 0
\(643\) −47.6235 −1.87809 −0.939044 0.343796i \(-0.888287\pi\)
−0.939044 + 0.343796i \(0.888287\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −42.0000 −1.65247
\(647\) −31.7490 −1.24818 −0.624091 0.781351i \(-0.714531\pi\)
−0.624091 + 0.781351i \(0.714531\pi\)
\(648\) 0 0
\(649\) 10.5830 0.415419
\(650\) −5.29150 −0.207550
\(651\) 0 0
\(652\) 24.0000 0.939913
\(653\) 10.0000 0.391330 0.195665 0.980671i \(-0.437313\pi\)
0.195665 + 0.980671i \(0.437313\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) −34.3948 −1.33780 −0.668901 0.743352i \(-0.733235\pi\)
−0.668901 + 0.743352i \(0.733235\pi\)
\(662\) 8.00000 0.310929
\(663\) 0 0
\(664\) 15.8745 0.616050
\(665\) 0 0
\(666\) 0 0
\(667\) 30.0000 1.16160
\(668\) 5.29150 0.204734
\(669\) 0 0
\(670\) −5.29150 −0.204429
\(671\) −5.29150 −0.204276
\(672\) 0 0
\(673\) −43.0000 −1.65753 −0.828764 0.559598i \(-0.810955\pi\)
−0.828764 + 0.559598i \(0.810955\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) −6.00000 −0.230769
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −21.0000 −0.805313
\(681\) 0 0
\(682\) 10.5830 0.405244
\(683\) −16.0000 −0.612223 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(684\) 0 0
\(685\) −60.8523 −2.32505
\(686\) 0 0
\(687\) 0 0
\(688\) −8.00000 −0.304997
\(689\) 5.29150 0.201590
\(690\) 0 0
\(691\) 42.3320 1.61039 0.805193 0.593013i \(-0.202062\pi\)
0.805193 + 0.593013i \(0.202062\pi\)
\(692\) 13.2288 0.502882
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −42.0000 −1.59315
\(696\) 0 0
\(697\) 0 0
\(698\) 31.7490 1.20172
\(699\) 0 0
\(700\) 0 0
\(701\) −1.00000 −0.0377695 −0.0188847 0.999822i \(-0.506012\pi\)
−0.0188847 + 0.999822i \(0.506012\pi\)
\(702\) 0 0
\(703\) 15.8745 0.598718
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −31.7490 −1.19489
\(707\) 0 0
\(708\) 0 0
\(709\) 31.0000 1.16423 0.582115 0.813107i \(-0.302225\pi\)
0.582115 + 0.813107i \(0.302225\pi\)
\(710\) −21.1660 −0.794346
\(711\) 0 0
\(712\) 13.2288 0.495769
\(713\) 31.7490 1.18901
\(714\) 0 0
\(715\) 14.0000 0.523570
\(716\) 18.0000 0.672692
\(717\) 0 0
\(718\) −4.00000 −0.149279
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.00000 0.334945
\(723\) 0 0
\(724\) 10.5830 0.393314
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −42.3320 −1.57001 −0.785004 0.619491i \(-0.787339\pi\)
−0.785004 + 0.619491i \(0.787339\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −35.0000 −1.29541
\(731\) 63.4980 2.34856
\(732\) 0 0
\(733\) 10.5830 0.390892 0.195446 0.980714i \(-0.437385\pi\)
0.195446 + 0.980714i \(0.437385\pi\)
\(734\) −5.29150 −0.195313
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) 7.93725 0.291779
\(741\) 0 0
\(742\) 0 0
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) −29.1033 −1.06626
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) 15.8745 0.580429
\(749\) 0 0
\(750\) 0 0
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) −5.29150 −0.192961
\(753\) 0 0
\(754\) 13.2288 0.481763
\(755\) −5.29150 −0.192577
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 6.00000 0.217930
\(759\) 0 0
\(760\) 14.0000 0.507833
\(761\) 2.64575 0.0959084 0.0479542 0.998850i \(-0.484730\pi\)
0.0479542 + 0.998850i \(0.484730\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) −31.7490 −1.14714
\(767\) 14.0000 0.505511
\(768\) 0 0
\(769\) 13.2288 0.477041 0.238521 0.971137i \(-0.423338\pi\)
0.238521 + 0.971137i \(0.423338\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 11.0000 0.395899
\(773\) −7.93725 −0.285483 −0.142742 0.989760i \(-0.545592\pi\)
−0.142742 + 0.989760i \(0.545592\pi\)
\(774\) 0 0
\(775\) −10.5830 −0.380153
\(776\) 10.5830 0.379908
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 0 0
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 47.6235 1.70301
\(783\) 0 0
\(784\) 0 0
\(785\) 35.0000 1.24920
\(786\) 0 0
\(787\) 42.3320 1.50897 0.754487 0.656315i \(-0.227886\pi\)
0.754487 + 0.656315i \(0.227886\pi\)
\(788\) −15.0000 −0.534353
\(789\) 0 0
\(790\) 26.4575 0.941316
\(791\) 0 0
\(792\) 0 0
\(793\) −7.00000 −0.248577
\(794\) 29.1033 1.03284
\(795\) 0 0
\(796\) 26.4575 0.937762
\(797\) −7.93725 −0.281152 −0.140576 0.990070i \(-0.544895\pi\)
−0.140576 + 0.990070i \(0.544895\pi\)
\(798\) 0 0
\(799\) 42.0000 1.48585
\(800\) 2.00000 0.0707107
\(801\) 0 0
\(802\) −39.0000 −1.37714
\(803\) 26.4575 0.933665
\(804\) 0 0
\(805\) 0 0
\(806\) 14.0000 0.493129
\(807\) 0 0
\(808\) 10.5830 0.372309
\(809\) −9.00000 −0.316423 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(810\) 0 0
\(811\) 37.0405 1.30067 0.650334 0.759648i \(-0.274629\pi\)
0.650334 + 0.759648i \(0.274629\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −6.00000 −0.210300
\(815\) 63.4980 2.22424
\(816\) 0 0
\(817\) −42.3320 −1.48101
\(818\) −7.93725 −0.277520
\(819\) 0 0
\(820\) 0 0
\(821\) −11.0000 −0.383903 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) −10.5830 −0.368676
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −21.1660 −0.735126 −0.367563 0.929999i \(-0.619808\pi\)
−0.367563 + 0.929999i \(0.619808\pi\)
\(830\) 42.0000 1.45784
\(831\) 0 0
\(832\) −2.64575 −0.0917249
\(833\) 0 0
\(834\) 0 0
\(835\) 14.0000 0.484490
\(836\) −10.5830 −0.366021
\(837\) 0 0
\(838\) 10.5830 0.365584
\(839\) 31.7490 1.09610 0.548049 0.836446i \(-0.315371\pi\)
0.548049 + 0.836446i \(0.315371\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −15.0000 −0.516934
\(843\) 0 0
\(844\) −22.0000 −0.757271
\(845\) −15.8745 −0.546100
\(846\) 0 0
\(847\) 0 0
\(848\) −2.00000 −0.0686803
\(849\) 0 0
\(850\) −15.8745 −0.544491
\(851\) −18.0000 −0.617032
\(852\) 0 0
\(853\) −42.3320 −1.44942 −0.724710 0.689054i \(-0.758026\pi\)
−0.724710 + 0.689054i \(0.758026\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) 23.8118 0.813394 0.406697 0.913563i \(-0.366680\pi\)
0.406697 + 0.913563i \(0.366680\pi\)
\(858\) 0 0
\(859\) 31.7490 1.08326 0.541631 0.840616i \(-0.317807\pi\)
0.541631 + 0.840616i \(0.317807\pi\)
\(860\) −21.1660 −0.721755
\(861\) 0 0
\(862\) 32.0000 1.08992
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) 35.0000 1.19004
\(866\) −18.5203 −0.629344
\(867\) 0 0
\(868\) 0 0
\(869\) −20.0000 −0.678454
\(870\) 0 0
\(871\) 5.29150 0.179296
\(872\) −17.0000 −0.575693
\(873\) 0 0
\(874\) −31.7490 −1.07393
\(875\) 0 0
\(876\) 0 0
\(877\) 3.00000 0.101303 0.0506514 0.998716i \(-0.483870\pi\)
0.0506514 + 0.998716i \(0.483870\pi\)
\(878\) −31.7490 −1.07148
\(879\) 0 0
\(880\) −5.29150 −0.178377
\(881\) −21.1660 −0.713101 −0.356551 0.934276i \(-0.616047\pi\)
−0.356551 + 0.934276i \(0.616047\pi\)
\(882\) 0 0
\(883\) 34.0000 1.14419 0.572096 0.820187i \(-0.306131\pi\)
0.572096 + 0.820187i \(0.306131\pi\)
\(884\) 21.0000 0.706306
\(885\) 0 0
\(886\) −6.00000 −0.201574
\(887\) −47.6235 −1.59904 −0.799521 0.600639i \(-0.794913\pi\)
−0.799521 + 0.600639i \(0.794913\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 35.0000 1.17320
\(891\) 0 0
\(892\) −21.1660 −0.708690
\(893\) −28.0000 −0.936984
\(894\) 0 0
\(895\) 47.6235 1.59188
\(896\) 0 0
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 26.4575 0.882407
\(900\) 0 0
\(901\) 15.8745 0.528857
\(902\) 0 0
\(903\) 0 0
\(904\) −1.00000 −0.0332595
\(905\) 28.0000 0.930751
\(906\) 0 0
\(907\) 40.0000 1.32818 0.664089 0.747653i \(-0.268820\pi\)
0.664089 + 0.747653i \(0.268820\pi\)
\(908\) −10.5830 −0.351209
\(909\) 0 0
\(910\) 0 0
\(911\) 44.0000 1.45779 0.728893 0.684628i \(-0.240035\pi\)
0.728893 + 0.684628i \(0.240035\pi\)
\(912\) 0 0
\(913\) −31.7490 −1.05074
\(914\) −25.0000 −0.826927
\(915\) 0 0
\(916\) 13.2288 0.437090
\(917\) 0 0
\(918\) 0 0
\(919\) −18.0000 −0.593765 −0.296883 0.954914i \(-0.595947\pi\)
−0.296883 + 0.954914i \(0.595947\pi\)
\(920\) −15.8745 −0.523367
\(921\) 0 0
\(922\) −31.7490 −1.04560
\(923\) 21.1660 0.696688
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −22.0000 −0.722965
\(927\) 0 0
\(928\) −5.00000 −0.164133
\(929\) −23.8118 −0.781239 −0.390619 0.920552i \(-0.627739\pi\)
−0.390619 + 0.920552i \(0.627739\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.00000 0.0327561
\(933\) 0 0
\(934\) 5.29150 0.173143
\(935\) 42.0000 1.37355
\(936\) 0 0
\(937\) 7.93725 0.259299 0.129649 0.991560i \(-0.458615\pi\)
0.129649 + 0.991560i \(0.458615\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −14.0000 −0.456630
\(941\) −55.5608 −1.81123 −0.905615 0.424101i \(-0.860590\pi\)
−0.905615 + 0.424101i \(0.860590\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −5.29150 −0.172224
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 35.0000 1.13615
\(950\) 10.5830 0.343358
\(951\) 0 0
\(952\) 0 0
\(953\) 51.0000 1.65205 0.826026 0.563632i \(-0.190596\pi\)
0.826026 + 0.563632i \(0.190596\pi\)
\(954\) 0 0
\(955\) −47.6235 −1.54106
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) 15.8745 0.512882
\(959\) 0 0
\(960\) 0 0
\(961\) −3.00000 −0.0967742
\(962\) −7.93725 −0.255907
\(963\) 0 0
\(964\) 18.5203 0.596497
\(965\) 29.1033 0.936867
\(966\) 0 0
\(967\) 58.0000 1.86515 0.932577 0.360971i \(-0.117555\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 28.0000 0.899026
\(971\) 58.2065 1.86794 0.933968 0.357356i \(-0.116322\pi\)
0.933968 + 0.357356i \(0.116322\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) 2.64575 0.0846884
\(977\) −38.0000 −1.21573 −0.607864 0.794041i \(-0.707973\pi\)
−0.607864 + 0.794041i \(0.707973\pi\)
\(978\) 0 0
\(979\) −26.4575 −0.845586
\(980\) 0 0
\(981\) 0 0
\(982\) −12.0000 −0.382935
\(983\) 10.5830 0.337545 0.168773 0.985655i \(-0.446020\pi\)
0.168773 + 0.985655i \(0.446020\pi\)
\(984\) 0 0
\(985\) −39.6863 −1.26451
\(986\) 39.6863 1.26387
\(987\) 0 0
\(988\) −14.0000 −0.445399
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 26.0000 0.825917 0.412959 0.910750i \(-0.364495\pi\)
0.412959 + 0.910750i \(0.364495\pi\)
\(992\) −5.29150 −0.168005
\(993\) 0 0
\(994\) 0 0
\(995\) 70.0000 2.21915
\(996\) 0 0
\(997\) −18.5203 −0.586542 −0.293271 0.956029i \(-0.594744\pi\)
−0.293271 + 0.956029i \(0.594744\pi\)
\(998\) −6.00000 −0.189927
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.bo.1.2 yes 2
3.2 odd 2 7938.2.a.bl.1.1 2
7.6 odd 2 inner 7938.2.a.bo.1.1 yes 2
21.20 even 2 7938.2.a.bl.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7938.2.a.bl.1.1 2 3.2 odd 2
7938.2.a.bl.1.2 yes 2 21.20 even 2
7938.2.a.bo.1.1 yes 2 7.6 odd 2 inner
7938.2.a.bo.1.2 yes 2 1.1 even 1 trivial