Properties

Label 7938.2.a.bk.1.1
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 1134)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7938.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{8} -4.24264 q^{11} +6.24264 q^{13} +1.00000 q^{16} +6.24264 q^{19} +4.24264 q^{22} -7.24264 q^{23} -5.00000 q^{25} -6.24264 q^{26} +4.24264 q^{29} +0.757359 q^{31} -1.00000 q^{32} -4.00000 q^{37} -6.24264 q^{38} +5.48528 q^{41} -6.48528 q^{43} -4.24264 q^{44} +7.24264 q^{46} -13.2426 q^{47} +5.00000 q^{50} +6.24264 q^{52} -4.24264 q^{53} -4.24264 q^{58} +6.24264 q^{61} -0.757359 q^{62} +1.00000 q^{64} -8.24264 q^{67} +7.24264 q^{71} -7.00000 q^{73} +4.00000 q^{74} +6.24264 q^{76} +9.24264 q^{79} -5.48528 q^{82} -7.75736 q^{83} +6.48528 q^{86} +4.24264 q^{88} +5.48528 q^{89} -7.24264 q^{92} +13.2426 q^{94} -12.4853 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} + 4 q^{13} + 2 q^{16} + 4 q^{19} - 6 q^{23} - 10 q^{25} - 4 q^{26} + 10 q^{31} - 2 q^{32} - 8 q^{37} - 4 q^{38} - 6 q^{41} + 4 q^{43} + 6 q^{46} - 18 q^{47} + 10 q^{50}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −4.24264 −1.27920 −0.639602 0.768706i \(-0.720901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 0 0
\(13\) 6.24264 1.73140 0.865699 0.500566i \(-0.166875\pi\)
0.865699 + 0.500566i \(0.166875\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 6.24264 1.43216 0.716080 0.698018i \(-0.245935\pi\)
0.716080 + 0.698018i \(0.245935\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.24264 0.904534
\(23\) −7.24264 −1.51019 −0.755097 0.655613i \(-0.772410\pi\)
−0.755097 + 0.655613i \(0.772410\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −6.24264 −1.22428
\(27\) 0 0
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) 0.757359 0.136026 0.0680129 0.997684i \(-0.478334\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) −6.24264 −1.01269
\(39\) 0 0
\(40\) 0 0
\(41\) 5.48528 0.856657 0.428329 0.903623i \(-0.359103\pi\)
0.428329 + 0.903623i \(0.359103\pi\)
\(42\) 0 0
\(43\) −6.48528 −0.988996 −0.494498 0.869179i \(-0.664648\pi\)
−0.494498 + 0.869179i \(0.664648\pi\)
\(44\) −4.24264 −0.639602
\(45\) 0 0
\(46\) 7.24264 1.06787
\(47\) −13.2426 −1.93164 −0.965819 0.259218i \(-0.916535\pi\)
−0.965819 + 0.259218i \(0.916535\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 6.24264 0.865699
\(53\) −4.24264 −0.582772 −0.291386 0.956606i \(-0.594116\pi\)
−0.291386 + 0.956606i \(0.594116\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −4.24264 −0.557086
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 6.24264 0.799288 0.399644 0.916670i \(-0.369134\pi\)
0.399644 + 0.916670i \(0.369134\pi\)
\(62\) −0.757359 −0.0961847
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.24264 −1.00700 −0.503499 0.863996i \(-0.667954\pi\)
−0.503499 + 0.863996i \(0.667954\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.24264 0.859543 0.429772 0.902938i \(-0.358594\pi\)
0.429772 + 0.902938i \(0.358594\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 6.24264 0.716080
\(77\) 0 0
\(78\) 0 0
\(79\) 9.24264 1.03988 0.519939 0.854203i \(-0.325955\pi\)
0.519939 + 0.854203i \(0.325955\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.48528 −0.605748
\(83\) −7.75736 −0.851481 −0.425740 0.904845i \(-0.639986\pi\)
−0.425740 + 0.904845i \(0.639986\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.48528 0.699326
\(87\) 0 0
\(88\) 4.24264 0.452267
\(89\) 5.48528 0.581439 0.290719 0.956808i \(-0.406105\pi\)
0.290719 + 0.956808i \(0.406105\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.24264 −0.755097
\(93\) 0 0
\(94\) 13.2426 1.36587
\(95\) 0 0
\(96\) 0 0
\(97\) −12.4853 −1.26769 −0.633844 0.773461i \(-0.718524\pi\)
−0.633844 + 0.773461i \(0.718524\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) −7.75736 −0.771886 −0.385943 0.922523i \(-0.626124\pi\)
−0.385943 + 0.922523i \(0.626124\pi\)
\(102\) 0 0
\(103\) 0.757359 0.0746248 0.0373124 0.999304i \(-0.488120\pi\)
0.0373124 + 0.999304i \(0.488120\pi\)
\(104\) −6.24264 −0.612141
\(105\) 0 0
\(106\) 4.24264 0.412082
\(107\) 2.48528 0.240261 0.120131 0.992758i \(-0.461669\pi\)
0.120131 + 0.992758i \(0.461669\pi\)
\(108\) 0 0
\(109\) −2.24264 −0.214806 −0.107403 0.994216i \(-0.534254\pi\)
−0.107403 + 0.994216i \(0.534254\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.4853 1.92709 0.963547 0.267541i \(-0.0862110\pi\)
0.963547 + 0.267541i \(0.0862110\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.24264 0.393919
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) −6.24264 −0.565182
\(123\) 0 0
\(124\) 0.757359 0.0680129
\(125\) 0 0
\(126\) 0 0
\(127\) 6.75736 0.599619 0.299809 0.953999i \(-0.403077\pi\)
0.299809 + 0.953999i \(0.403077\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 7.75736 0.677764 0.338882 0.940829i \(-0.389951\pi\)
0.338882 + 0.940829i \(0.389951\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.24264 0.712056
\(135\) 0 0
\(136\) 0 0
\(137\) 19.9706 1.70620 0.853100 0.521747i \(-0.174720\pi\)
0.853100 + 0.521747i \(0.174720\pi\)
\(138\) 0 0
\(139\) −4.72792 −0.401017 −0.200509 0.979692i \(-0.564259\pi\)
−0.200509 + 0.979692i \(0.564259\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.24264 −0.607789
\(143\) −26.4853 −2.21481
\(144\) 0 0
\(145\) 0 0
\(146\) 7.00000 0.579324
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) −16.2426 −1.33065 −0.665324 0.746554i \(-0.731707\pi\)
−0.665324 + 0.746554i \(0.731707\pi\)
\(150\) 0 0
\(151\) −2.75736 −0.224391 −0.112195 0.993686i \(-0.535788\pi\)
−0.112195 + 0.993686i \(0.535788\pi\)
\(152\) −6.24264 −0.506345
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −9.24264 −0.735305
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.7574 −0.920907 −0.460454 0.887684i \(-0.652313\pi\)
−0.460454 + 0.887684i \(0.652313\pi\)
\(164\) 5.48528 0.428329
\(165\) 0 0
\(166\) 7.75736 0.602088
\(167\) −24.2132 −1.87367 −0.936837 0.349766i \(-0.886261\pi\)
−0.936837 + 0.349766i \(0.886261\pi\)
\(168\) 0 0
\(169\) 25.9706 1.99774
\(170\) 0 0
\(171\) 0 0
\(172\) −6.48528 −0.494498
\(173\) 10.9706 0.834076 0.417038 0.908889i \(-0.363068\pi\)
0.417038 + 0.908889i \(0.363068\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.24264 −0.319801
\(177\) 0 0
\(178\) −5.48528 −0.411139
\(179\) 16.2426 1.21403 0.607016 0.794690i \(-0.292366\pi\)
0.607016 + 0.794690i \(0.292366\pi\)
\(180\) 0 0
\(181\) −20.2426 −1.50462 −0.752312 0.658807i \(-0.771061\pi\)
−0.752312 + 0.658807i \(0.771061\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7.24264 0.533935
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −13.2426 −0.965819
\(189\) 0 0
\(190\) 0 0
\(191\) −8.48528 −0.613973 −0.306987 0.951714i \(-0.599321\pi\)
−0.306987 + 0.951714i \(0.599321\pi\)
\(192\) 0 0
\(193\) −4.51472 −0.324977 −0.162488 0.986710i \(-0.551952\pi\)
−0.162488 + 0.986710i \(0.551952\pi\)
\(194\) 12.4853 0.896391
\(195\) 0 0
\(196\) 0 0
\(197\) −16.9706 −1.20910 −0.604551 0.796566i \(-0.706648\pi\)
−0.604551 + 0.796566i \(0.706648\pi\)
\(198\) 0 0
\(199\) −14.7574 −1.04612 −0.523061 0.852295i \(-0.675210\pi\)
−0.523061 + 0.852295i \(0.675210\pi\)
\(200\) 5.00000 0.353553
\(201\) 0 0
\(202\) 7.75736 0.545806
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −0.757359 −0.0527677
\(207\) 0 0
\(208\) 6.24264 0.432849
\(209\) −26.4853 −1.83203
\(210\) 0 0
\(211\) −6.48528 −0.446465 −0.223233 0.974765i \(-0.571661\pi\)
−0.223233 + 0.974765i \(0.571661\pi\)
\(212\) −4.24264 −0.291386
\(213\) 0 0
\(214\) −2.48528 −0.169890
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 2.24264 0.151891
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 11.7279 0.785360 0.392680 0.919675i \(-0.371548\pi\)
0.392680 + 0.919675i \(0.371548\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −20.4853 −1.36266
\(227\) −26.4853 −1.75789 −0.878945 0.476923i \(-0.841752\pi\)
−0.878945 + 0.476923i \(0.841752\pi\)
\(228\) 0 0
\(229\) 24.9706 1.65010 0.825051 0.565059i \(-0.191147\pi\)
0.825051 + 0.565059i \(0.191147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.24264 −0.278543
\(233\) −20.4853 −1.34204 −0.671018 0.741441i \(-0.734143\pi\)
−0.671018 + 0.741441i \(0.734143\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.72792 −0.241139 −0.120570 0.992705i \(-0.538472\pi\)
−0.120570 + 0.992705i \(0.538472\pi\)
\(240\) 0 0
\(241\) 8.51472 0.548481 0.274241 0.961661i \(-0.411574\pi\)
0.274241 + 0.961661i \(0.411574\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) 6.24264 0.399644
\(245\) 0 0
\(246\) 0 0
\(247\) 38.9706 2.47964
\(248\) −0.757359 −0.0480924
\(249\) 0 0
\(250\) 0 0
\(251\) −18.7279 −1.18210 −0.591048 0.806636i \(-0.701286\pi\)
−0.591048 + 0.806636i \(0.701286\pi\)
\(252\) 0 0
\(253\) 30.7279 1.93185
\(254\) −6.75736 −0.423994
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.48528 −0.342162 −0.171081 0.985257i \(-0.554726\pi\)
−0.171081 + 0.985257i \(0.554726\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −7.75736 −0.479251
\(263\) −22.9706 −1.41643 −0.708213 0.705999i \(-0.750498\pi\)
−0.708213 + 0.705999i \(0.750498\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −8.24264 −0.503499
\(269\) 10.9706 0.668887 0.334444 0.942416i \(-0.391452\pi\)
0.334444 + 0.942416i \(0.391452\pi\)
\(270\) 0 0
\(271\) −12.4853 −0.758427 −0.379213 0.925309i \(-0.623805\pi\)
−0.379213 + 0.925309i \(0.623805\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −19.9706 −1.20647
\(275\) 21.2132 1.27920
\(276\) 0 0
\(277\) −19.2132 −1.15441 −0.577205 0.816599i \(-0.695857\pi\)
−0.577205 + 0.816599i \(0.695857\pi\)
\(278\) 4.72792 0.283562
\(279\) 0 0
\(280\) 0 0
\(281\) −22.4558 −1.33960 −0.669802 0.742540i \(-0.733621\pi\)
−0.669802 + 0.742540i \(0.733621\pi\)
\(282\) 0 0
\(283\) 24.9706 1.48435 0.742173 0.670208i \(-0.233795\pi\)
0.742173 + 0.670208i \(0.233795\pi\)
\(284\) 7.24264 0.429772
\(285\) 0 0
\(286\) 26.4853 1.56611
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −7.00000 −0.409644
\(293\) 10.9706 0.640907 0.320454 0.947264i \(-0.396165\pi\)
0.320454 + 0.947264i \(0.396165\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) 16.2426 0.940911
\(299\) −45.2132 −2.61475
\(300\) 0 0
\(301\) 0 0
\(302\) 2.75736 0.158668
\(303\) 0 0
\(304\) 6.24264 0.358040
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.9706 0.622084 0.311042 0.950396i \(-0.399322\pi\)
0.311042 + 0.950396i \(0.399322\pi\)
\(312\) 0 0
\(313\) −17.9706 −1.01576 −0.507878 0.861429i \(-0.669570\pi\)
−0.507878 + 0.861429i \(0.669570\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 9.24264 0.519939
\(317\) 16.9706 0.953162 0.476581 0.879131i \(-0.341876\pi\)
0.476581 + 0.879131i \(0.341876\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −31.2132 −1.73140
\(326\) 11.7574 0.651180
\(327\) 0 0
\(328\) −5.48528 −0.302874
\(329\) 0 0
\(330\) 0 0
\(331\) −18.4853 −1.01604 −0.508021 0.861344i \(-0.669623\pi\)
−0.508021 + 0.861344i \(0.669623\pi\)
\(332\) −7.75736 −0.425740
\(333\) 0 0
\(334\) 24.2132 1.32489
\(335\) 0 0
\(336\) 0 0
\(337\) 4.48528 0.244329 0.122164 0.992510i \(-0.461016\pi\)
0.122164 + 0.992510i \(0.461016\pi\)
\(338\) −25.9706 −1.41261
\(339\) 0 0
\(340\) 0 0
\(341\) −3.21320 −0.174005
\(342\) 0 0
\(343\) 0 0
\(344\) 6.48528 0.349663
\(345\) 0 0
\(346\) −10.9706 −0.589781
\(347\) 6.72792 0.361174 0.180587 0.983559i \(-0.442200\pi\)
0.180587 + 0.983559i \(0.442200\pi\)
\(348\) 0 0
\(349\) 24.9706 1.33664 0.668322 0.743872i \(-0.267013\pi\)
0.668322 + 0.743872i \(0.267013\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.24264 0.226134
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5.48528 0.290719
\(357\) 0 0
\(358\) −16.2426 −0.858450
\(359\) −10.7574 −0.567752 −0.283876 0.958861i \(-0.591620\pi\)
−0.283876 + 0.958861i \(0.591620\pi\)
\(360\) 0 0
\(361\) 19.9706 1.05108
\(362\) 20.2426 1.06393
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.7279 0.612193 0.306096 0.952001i \(-0.400977\pi\)
0.306096 + 0.952001i \(0.400977\pi\)
\(368\) −7.24264 −0.377549
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.21320 −0.373486 −0.186743 0.982409i \(-0.559793\pi\)
−0.186743 + 0.982409i \(0.559793\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 13.2426 0.682937
\(377\) 26.4853 1.36406
\(378\) 0 0
\(379\) 1.27208 0.0653423 0.0326711 0.999466i \(-0.489599\pi\)
0.0326711 + 0.999466i \(0.489599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.48528 0.434145
\(383\) 24.2132 1.23724 0.618618 0.785692i \(-0.287693\pi\)
0.618618 + 0.785692i \(0.287693\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.51472 0.229793
\(387\) 0 0
\(388\) −12.4853 −0.633844
\(389\) −10.2426 −0.519322 −0.259661 0.965700i \(-0.583611\pi\)
−0.259661 + 0.965700i \(0.583611\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 16.9706 0.854965
\(395\) 0 0
\(396\) 0 0
\(397\) −20.2426 −1.01595 −0.507975 0.861372i \(-0.669606\pi\)
−0.507975 + 0.861372i \(0.669606\pi\)
\(398\) 14.7574 0.739720
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −29.4853 −1.47242 −0.736212 0.676751i \(-0.763388\pi\)
−0.736212 + 0.676751i \(0.763388\pi\)
\(402\) 0 0
\(403\) 4.72792 0.235515
\(404\) −7.75736 −0.385943
\(405\) 0 0
\(406\) 0 0
\(407\) 16.9706 0.841200
\(408\) 0 0
\(409\) 35.0000 1.73064 0.865319 0.501221i \(-0.167116\pi\)
0.865319 + 0.501221i \(0.167116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.757359 0.0373124
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −6.24264 −0.306071
\(417\) 0 0
\(418\) 26.4853 1.29544
\(419\) 7.75736 0.378972 0.189486 0.981883i \(-0.439318\pi\)
0.189486 + 0.981883i \(0.439318\pi\)
\(420\) 0 0
\(421\) −14.2426 −0.694144 −0.347072 0.937839i \(-0.612824\pi\)
−0.347072 + 0.937839i \(0.612824\pi\)
\(422\) 6.48528 0.315699
\(423\) 0 0
\(424\) 4.24264 0.206041
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.48528 0.120131
\(429\) 0 0
\(430\) 0 0
\(431\) 37.2426 1.79391 0.896957 0.442117i \(-0.145772\pi\)
0.896957 + 0.442117i \(0.145772\pi\)
\(432\) 0 0
\(433\) 3.97056 0.190813 0.0954065 0.995438i \(-0.469585\pi\)
0.0954065 + 0.995438i \(0.469585\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.24264 −0.107403
\(437\) −45.2132 −2.16284
\(438\) 0 0
\(439\) 11.7279 0.559743 0.279872 0.960037i \(-0.409708\pi\)
0.279872 + 0.960037i \(0.409708\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.51472 −0.452058 −0.226029 0.974121i \(-0.572574\pi\)
−0.226029 + 0.974121i \(0.572574\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −11.7279 −0.555333
\(447\) 0 0
\(448\) 0 0
\(449\) 4.97056 0.234575 0.117288 0.993098i \(-0.462580\pi\)
0.117288 + 0.993098i \(0.462580\pi\)
\(450\) 0 0
\(451\) −23.2721 −1.09584
\(452\) 20.4853 0.963547
\(453\) 0 0
\(454\) 26.4853 1.24302
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5147 0.538636 0.269318 0.963051i \(-0.413202\pi\)
0.269318 + 0.963051i \(0.413202\pi\)
\(458\) −24.9706 −1.16680
\(459\) 0 0
\(460\) 0 0
\(461\) −34.2426 −1.59484 −0.797419 0.603425i \(-0.793802\pi\)
−0.797419 + 0.603425i \(0.793802\pi\)
\(462\) 0 0
\(463\) −8.75736 −0.406989 −0.203495 0.979076i \(-0.565230\pi\)
−0.203495 + 0.979076i \(0.565230\pi\)
\(464\) 4.24264 0.196960
\(465\) 0 0
\(466\) 20.4853 0.948962
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 27.5147 1.26513
\(474\) 0 0
\(475\) −31.2132 −1.43216
\(476\) 0 0
\(477\) 0 0
\(478\) 3.72792 0.170511
\(479\) 13.2426 0.605072 0.302536 0.953138i \(-0.402167\pi\)
0.302536 + 0.953138i \(0.402167\pi\)
\(480\) 0 0
\(481\) −24.9706 −1.13856
\(482\) −8.51472 −0.387835
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) −2.75736 −0.124948 −0.0624739 0.998047i \(-0.519899\pi\)
−0.0624739 + 0.998047i \(0.519899\pi\)
\(488\) −6.24264 −0.282591
\(489\) 0 0
\(490\) 0 0
\(491\) −6.72792 −0.303627 −0.151813 0.988409i \(-0.548511\pi\)
−0.151813 + 0.988409i \(0.548511\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −38.9706 −1.75337
\(495\) 0 0
\(496\) 0.757359 0.0340064
\(497\) 0 0
\(498\) 0 0
\(499\) −10.7279 −0.480248 −0.240124 0.970742i \(-0.577188\pi\)
−0.240124 + 0.970742i \(0.577188\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 18.7279 0.835868
\(503\) 24.2132 1.07961 0.539807 0.841789i \(-0.318497\pi\)
0.539807 + 0.841789i \(0.318497\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −30.7279 −1.36602
\(507\) 0 0
\(508\) 6.75736 0.299809
\(509\) −7.75736 −0.343839 −0.171919 0.985111i \(-0.554997\pi\)
−0.171919 + 0.985111i \(0.554997\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 5.48528 0.241945
\(515\) 0 0
\(516\) 0 0
\(517\) 56.1838 2.47096
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.4558 −0.720944 −0.360472 0.932770i \(-0.617384\pi\)
−0.360472 + 0.932770i \(0.617384\pi\)
\(522\) 0 0
\(523\) −20.2426 −0.885149 −0.442574 0.896732i \(-0.645935\pi\)
−0.442574 + 0.896732i \(0.645935\pi\)
\(524\) 7.75736 0.338882
\(525\) 0 0
\(526\) 22.9706 1.00156
\(527\) 0 0
\(528\) 0 0
\(529\) 29.4558 1.28069
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 34.2426 1.48321
\(534\) 0 0
\(535\) 0 0
\(536\) 8.24264 0.356028
\(537\) 0 0
\(538\) −10.9706 −0.472975
\(539\) 0 0
\(540\) 0 0
\(541\) −14.9706 −0.643635 −0.321817 0.946802i \(-0.604294\pi\)
−0.321817 + 0.946802i \(0.604294\pi\)
\(542\) 12.4853 0.536289
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.48528 −0.277291 −0.138645 0.990342i \(-0.544275\pi\)
−0.138645 + 0.990342i \(0.544275\pi\)
\(548\) 19.9706 0.853100
\(549\) 0 0
\(550\) −21.2132 −0.904534
\(551\) 26.4853 1.12831
\(552\) 0 0
\(553\) 0 0
\(554\) 19.2132 0.816291
\(555\) 0 0
\(556\) −4.72792 −0.200509
\(557\) 40.9706 1.73598 0.867989 0.496583i \(-0.165412\pi\)
0.867989 + 0.496583i \(0.165412\pi\)
\(558\) 0 0
\(559\) −40.4853 −1.71234
\(560\) 0 0
\(561\) 0 0
\(562\) 22.4558 0.947243
\(563\) −18.7279 −0.789288 −0.394644 0.918834i \(-0.629132\pi\)
−0.394644 + 0.918834i \(0.629132\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −24.9706 −1.04959
\(567\) 0 0
\(568\) −7.24264 −0.303894
\(569\) −24.9411 −1.04559 −0.522793 0.852460i \(-0.675110\pi\)
−0.522793 + 0.852460i \(0.675110\pi\)
\(570\) 0 0
\(571\) −20.9706 −0.877591 −0.438795 0.898587i \(-0.644595\pi\)
−0.438795 + 0.898587i \(0.644595\pi\)
\(572\) −26.4853 −1.10741
\(573\) 0 0
\(574\) 0 0
\(575\) 36.2132 1.51019
\(576\) 0 0
\(577\) 35.9411 1.49625 0.748124 0.663559i \(-0.230955\pi\)
0.748124 + 0.663559i \(0.230955\pi\)
\(578\) 17.0000 0.707107
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 18.0000 0.745484
\(584\) 7.00000 0.289662
\(585\) 0 0
\(586\) −10.9706 −0.453190
\(587\) 3.21320 0.132623 0.0663115 0.997799i \(-0.478877\pi\)
0.0663115 + 0.997799i \(0.478877\pi\)
\(588\) 0 0
\(589\) 4.72792 0.194811
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) 5.48528 0.225254 0.112627 0.993637i \(-0.464074\pi\)
0.112627 + 0.993637i \(0.464074\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.2426 −0.665324
\(597\) 0 0
\(598\) 45.2132 1.84891
\(599\) −22.9706 −0.938552 −0.469276 0.883052i \(-0.655485\pi\)
−0.469276 + 0.883052i \(0.655485\pi\)
\(600\) 0 0
\(601\) −17.9706 −0.733035 −0.366517 0.930411i \(-0.619450\pi\)
−0.366517 + 0.930411i \(0.619450\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.75736 −0.112195
\(605\) 0 0
\(606\) 0 0
\(607\) −38.9706 −1.58177 −0.790883 0.611967i \(-0.790378\pi\)
−0.790883 + 0.611967i \(0.790378\pi\)
\(608\) −6.24264 −0.253173
\(609\) 0 0
\(610\) 0 0
\(611\) −82.6690 −3.34443
\(612\) 0 0
\(613\) −37.9411 −1.53243 −0.766214 0.642586i \(-0.777862\pi\)
−0.766214 + 0.642586i \(0.777862\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) 28.4558 1.14559 0.572795 0.819699i \(-0.305859\pi\)
0.572795 + 0.819699i \(0.305859\pi\)
\(618\) 0 0
\(619\) −1.51472 −0.0608817 −0.0304408 0.999537i \(-0.509691\pi\)
−0.0304408 + 0.999537i \(0.509691\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.9706 −0.439879
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 17.9706 0.718248
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 0 0
\(630\) 0 0
\(631\) −24.4853 −0.974744 −0.487372 0.873195i \(-0.662044\pi\)
−0.487372 + 0.873195i \(0.662044\pi\)
\(632\) −9.24264 −0.367653
\(633\) 0 0
\(634\) −16.9706 −0.673987
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) 4.45584 0.175995 0.0879976 0.996121i \(-0.471953\pi\)
0.0879976 + 0.996121i \(0.471953\pi\)
\(642\) 0 0
\(643\) −46.7279 −1.84277 −0.921385 0.388652i \(-0.872941\pi\)
−0.921385 + 0.388652i \(0.872941\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.27208 −0.0893246 −0.0446623 0.999002i \(-0.514221\pi\)
−0.0446623 + 0.999002i \(0.514221\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 31.2132 1.22428
\(651\) 0 0
\(652\) −11.7574 −0.460454
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.48528 0.214164
\(657\) 0 0
\(658\) 0 0
\(659\) 39.2132 1.52753 0.763765 0.645495i \(-0.223349\pi\)
0.763765 + 0.645495i \(0.223349\pi\)
\(660\) 0 0
\(661\) −42.1838 −1.64076 −0.820379 0.571820i \(-0.806238\pi\)
−0.820379 + 0.571820i \(0.806238\pi\)
\(662\) 18.4853 0.718451
\(663\) 0 0
\(664\) 7.75736 0.301044
\(665\) 0 0
\(666\) 0 0
\(667\) −30.7279 −1.18979
\(668\) −24.2132 −0.936837
\(669\) 0 0
\(670\) 0 0
\(671\) −26.4853 −1.02245
\(672\) 0 0
\(673\) −27.4853 −1.05948 −0.529740 0.848160i \(-0.677710\pi\)
−0.529740 + 0.848160i \(0.677710\pi\)
\(674\) −4.48528 −0.172767
\(675\) 0 0
\(676\) 25.9706 0.998868
\(677\) −34.2426 −1.31605 −0.658026 0.752995i \(-0.728608\pi\)
−0.658026 + 0.752995i \(0.728608\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 3.21320 0.123040
\(683\) −41.6985 −1.59555 −0.797774 0.602956i \(-0.793989\pi\)
−0.797774 + 0.602956i \(0.793989\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −6.48528 −0.247249
\(689\) −26.4853 −1.00901
\(690\) 0 0
\(691\) 6.24264 0.237481 0.118741 0.992925i \(-0.462114\pi\)
0.118741 + 0.992925i \(0.462114\pi\)
\(692\) 10.9706 0.417038
\(693\) 0 0
\(694\) −6.72792 −0.255388
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −24.9706 −0.945150
\(699\) 0 0
\(700\) 0 0
\(701\) −13.7574 −0.519608 −0.259804 0.965661i \(-0.583658\pi\)
−0.259804 + 0.965661i \(0.583658\pi\)
\(702\) 0 0
\(703\) −24.9706 −0.941783
\(704\) −4.24264 −0.159901
\(705\) 0 0
\(706\) 21.0000 0.790345
\(707\) 0 0
\(708\) 0 0
\(709\) 25.6985 0.965127 0.482563 0.875861i \(-0.339706\pi\)
0.482563 + 0.875861i \(0.339706\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −5.48528 −0.205570
\(713\) −5.48528 −0.205425
\(714\) 0 0
\(715\) 0 0
\(716\) 16.2426 0.607016
\(717\) 0 0
\(718\) 10.7574 0.401461
\(719\) 2.27208 0.0847342 0.0423671 0.999102i \(-0.486510\pi\)
0.0423671 + 0.999102i \(0.486510\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −19.9706 −0.743227
\(723\) 0 0
\(724\) −20.2426 −0.752312
\(725\) −21.2132 −0.787839
\(726\) 0 0
\(727\) −25.7279 −0.954196 −0.477098 0.878850i \(-0.658311\pi\)
−0.477098 + 0.878850i \(0.658311\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −38.9706 −1.43941 −0.719705 0.694280i \(-0.755723\pi\)
−0.719705 + 0.694280i \(0.755723\pi\)
\(734\) −11.7279 −0.432886
\(735\) 0 0
\(736\) 7.24264 0.266967
\(737\) 34.9706 1.28816
\(738\) 0 0
\(739\) 10.4853 0.385707 0.192854 0.981228i \(-0.438226\pi\)
0.192854 + 0.981228i \(0.438226\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34.7574 −1.27512 −0.637562 0.770399i \(-0.720057\pi\)
−0.637562 + 0.770399i \(0.720057\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 7.21320 0.264094
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −17.2426 −0.629193 −0.314596 0.949226i \(-0.601869\pi\)
−0.314596 + 0.949226i \(0.601869\pi\)
\(752\) −13.2426 −0.482909
\(753\) 0 0
\(754\) −26.4853 −0.964537
\(755\) 0 0
\(756\) 0 0
\(757\) 12.9706 0.471423 0.235712 0.971823i \(-0.424258\pi\)
0.235712 + 0.971823i \(0.424258\pi\)
\(758\) −1.27208 −0.0462040
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.48528 −0.306987
\(765\) 0 0
\(766\) −24.2132 −0.874859
\(767\) 0 0
\(768\) 0 0
\(769\) −12.4853 −0.450231 −0.225115 0.974332i \(-0.572276\pi\)
−0.225115 + 0.974332i \(0.572276\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.51472 −0.162488
\(773\) 45.2132 1.62621 0.813103 0.582120i \(-0.197777\pi\)
0.813103 + 0.582120i \(0.197777\pi\)
\(774\) 0 0
\(775\) −3.78680 −0.136026
\(776\) 12.4853 0.448195
\(777\) 0 0
\(778\) 10.2426 0.367216
\(779\) 34.2426 1.22687
\(780\) 0 0
\(781\) −30.7279 −1.09953
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −31.2132 −1.11263 −0.556315 0.830971i \(-0.687785\pi\)
−0.556315 + 0.830971i \(0.687785\pi\)
\(788\) −16.9706 −0.604551
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 38.9706 1.38389
\(794\) 20.2426 0.718384
\(795\) 0 0
\(796\) −14.7574 −0.523061
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) 29.4853 1.04116
\(803\) 29.6985 1.04804
\(804\) 0 0
\(805\) 0 0
\(806\) −4.72792 −0.166534
\(807\) 0 0
\(808\) 7.75736 0.272903
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) −23.4558 −0.823646 −0.411823 0.911264i \(-0.635108\pi\)
−0.411823 + 0.911264i \(0.635108\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16.9706 −0.594818
\(815\) 0 0
\(816\) 0 0
\(817\) −40.4853 −1.41640
\(818\) −35.0000 −1.22375
\(819\) 0 0
\(820\) 0 0
\(821\) 32.1838 1.12322 0.561611 0.827402i \(-0.310182\pi\)
0.561611 + 0.827402i \(0.310182\pi\)
\(822\) 0 0
\(823\) 40.6985 1.41866 0.709330 0.704877i \(-0.248998\pi\)
0.709330 + 0.704877i \(0.248998\pi\)
\(824\) −0.757359 −0.0263839
\(825\) 0 0
\(826\) 0 0
\(827\) −16.9706 −0.590124 −0.295062 0.955478i \(-0.595340\pi\)
−0.295062 + 0.955478i \(0.595340\pi\)
\(828\) 0 0
\(829\) −49.9411 −1.73453 −0.867263 0.497849i \(-0.834123\pi\)
−0.867263 + 0.497849i \(0.834123\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6.24264 0.216425
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −26.4853 −0.916013
\(837\) 0 0
\(838\) −7.75736 −0.267974
\(839\) −15.5147 −0.535628 −0.267814 0.963471i \(-0.586301\pi\)
−0.267814 + 0.963471i \(0.586301\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 14.2426 0.490834
\(843\) 0 0
\(844\) −6.48528 −0.223233
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −4.24264 −0.145693
\(849\) 0 0
\(850\) 0 0
\(851\) 28.9706 0.993098
\(852\) 0 0
\(853\) 28.1838 0.964994 0.482497 0.875898i \(-0.339730\pi\)
0.482497 + 0.875898i \(0.339730\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2.48528 −0.0849452
\(857\) 5.48528 0.187374 0.0936868 0.995602i \(-0.470135\pi\)
0.0936868 + 0.995602i \(0.470135\pi\)
\(858\) 0 0
\(859\) 43.6985 1.49097 0.745487 0.666521i \(-0.232217\pi\)
0.745487 + 0.666521i \(0.232217\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −37.2426 −1.26849
\(863\) 0.213203 0.00725753 0.00362876 0.999993i \(-0.498845\pi\)
0.00362876 + 0.999993i \(0.498845\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −3.97056 −0.134925
\(867\) 0 0
\(868\) 0 0
\(869\) −39.2132 −1.33022
\(870\) 0 0
\(871\) −51.4558 −1.74351
\(872\) 2.24264 0.0759454
\(873\) 0 0
\(874\) 45.2132 1.52936
\(875\) 0 0
\(876\) 0 0
\(877\) 25.6985 0.867776 0.433888 0.900967i \(-0.357141\pi\)
0.433888 + 0.900967i \(0.357141\pi\)
\(878\) −11.7279 −0.395798
\(879\) 0 0
\(880\) 0 0
\(881\) 36.5147 1.23021 0.615106 0.788444i \(-0.289113\pi\)
0.615106 + 0.788444i \(0.289113\pi\)
\(882\) 0 0
\(883\) 49.6985 1.67249 0.836244 0.548358i \(-0.184747\pi\)
0.836244 + 0.548358i \(0.184747\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 9.51472 0.319653
\(887\) −39.7279 −1.33393 −0.666967 0.745088i \(-0.732408\pi\)
−0.666967 + 0.745088i \(0.732408\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 11.7279 0.392680
\(893\) −82.6690 −2.76641
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −4.97056 −0.165870
\(899\) 3.21320 0.107166
\(900\) 0 0
\(901\) 0 0
\(902\) 23.2721 0.774875
\(903\) 0 0
\(904\) −20.4853 −0.681330
\(905\) 0 0
\(906\) 0 0
\(907\) −37.9411 −1.25981 −0.629907 0.776670i \(-0.716907\pi\)
−0.629907 + 0.776670i \(0.716907\pi\)
\(908\) −26.4853 −0.878945
\(909\) 0 0
\(910\) 0 0
\(911\) 14.2721 0.472855 0.236428 0.971649i \(-0.424023\pi\)
0.236428 + 0.971649i \(0.424023\pi\)
\(912\) 0 0
\(913\) 32.9117 1.08922
\(914\) −11.5147 −0.380873
\(915\) 0 0
\(916\) 24.9706 0.825051
\(917\) 0 0
\(918\) 0 0
\(919\) 33.4558 1.10361 0.551803 0.833974i \(-0.313940\pi\)
0.551803 + 0.833974i \(0.313940\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 34.2426 1.12772
\(923\) 45.2132 1.48821
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 8.75736 0.287785
\(927\) 0 0
\(928\) −4.24264 −0.139272
\(929\) 10.0294 0.329055 0.164528 0.986372i \(-0.447390\pi\)
0.164528 + 0.986372i \(0.447390\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −20.4853 −0.671018
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 30.4558 0.994949 0.497475 0.867479i \(-0.334261\pi\)
0.497475 + 0.867479i \(0.334261\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.6690 1.32577 0.662887 0.748720i \(-0.269331\pi\)
0.662887 + 0.748720i \(0.269331\pi\)
\(942\) 0 0
\(943\) −39.7279 −1.29372
\(944\) 0 0
\(945\) 0 0
\(946\) −27.5147 −0.894581
\(947\) 21.5147 0.699134 0.349567 0.936911i \(-0.386329\pi\)
0.349567 + 0.936911i \(0.386329\pi\)
\(948\) 0 0
\(949\) −43.6985 −1.41851
\(950\) 31.2132 1.01269
\(951\) 0 0
\(952\) 0 0
\(953\) 6.51472 0.211032 0.105516 0.994418i \(-0.466351\pi\)
0.105516 + 0.994418i \(0.466351\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.72792 −0.120570
\(957\) 0 0
\(958\) −13.2426 −0.427850
\(959\) 0 0
\(960\) 0 0
\(961\) −30.4264 −0.981497
\(962\) 24.9706 0.805083
\(963\) 0 0
\(964\) 8.51472 0.274241
\(965\) 0 0
\(966\) 0 0
\(967\) −6.69848 −0.215409 −0.107704 0.994183i \(-0.534350\pi\)
−0.107704 + 0.994183i \(0.534350\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 26.4853 0.849953 0.424977 0.905204i \(-0.360282\pi\)
0.424977 + 0.905204i \(0.360282\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 2.75736 0.0883515
\(975\) 0 0
\(976\) 6.24264 0.199822
\(977\) 13.9706 0.446958 0.223479 0.974709i \(-0.428259\pi\)
0.223479 + 0.974709i \(0.428259\pi\)
\(978\) 0 0
\(979\) −23.2721 −0.743779
\(980\) 0 0
\(981\) 0 0
\(982\) 6.72792 0.214697
\(983\) 15.5147 0.494843 0.247421 0.968908i \(-0.420417\pi\)
0.247421 + 0.968908i \(0.420417\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 38.9706 1.23982
\(989\) 46.9706 1.49358
\(990\) 0 0
\(991\) 50.2132 1.59507 0.797537 0.603269i \(-0.206136\pi\)
0.797537 + 0.603269i \(0.206136\pi\)
\(992\) −0.757359 −0.0240462
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 10.7279 0.339586
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.bk.1.1 2
3.2 odd 2 7938.2.a.bq.1.2 2
7.2 even 3 1134.2.g.j.487.1 yes 4
7.4 even 3 1134.2.g.j.163.1 yes 4
7.6 odd 2 7938.2.a.bj.1.1 2
21.2 odd 6 1134.2.g.i.487.1 yes 4
21.11 odd 6 1134.2.g.i.163.1 4
21.20 even 2 7938.2.a.bp.1.2 2
63.2 odd 6 1134.2.h.r.109.2 4
63.4 even 3 1134.2.h.s.541.1 4
63.11 odd 6 1134.2.e.s.919.2 4
63.16 even 3 1134.2.h.s.109.2 4
63.23 odd 6 1134.2.e.s.865.2 4
63.25 even 3 1134.2.e.r.919.2 4
63.32 odd 6 1134.2.h.r.541.1 4
63.58 even 3 1134.2.e.r.865.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.e.r.865.2 4 63.58 even 3
1134.2.e.r.919.2 4 63.25 even 3
1134.2.e.s.865.2 4 63.23 odd 6
1134.2.e.s.919.2 4 63.11 odd 6
1134.2.g.i.163.1 4 21.11 odd 6
1134.2.g.i.487.1 yes 4 21.2 odd 6
1134.2.g.j.163.1 yes 4 7.4 even 3
1134.2.g.j.487.1 yes 4 7.2 even 3
1134.2.h.r.109.2 4 63.2 odd 6
1134.2.h.r.541.1 4 63.32 odd 6
1134.2.h.s.109.2 4 63.16 even 3
1134.2.h.s.541.1 4 63.4 even 3
7938.2.a.bj.1.1 2 7.6 odd 2
7938.2.a.bk.1.1 2 1.1 even 1 trivial
7938.2.a.bp.1.2 2 21.20 even 2
7938.2.a.bq.1.2 2 3.2 odd 2