Properties

Label 7935.2.a.n.1.1
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,-2,4,-2,2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{2} -1.00000 q^{3} +5.46410 q^{4} -1.00000 q^{5} +2.73205 q^{6} +3.00000 q^{7} -9.46410 q^{8} +1.00000 q^{9} +2.73205 q^{10} +2.73205 q^{11} -5.46410 q^{12} +6.19615 q^{13} -8.19615 q^{14} +1.00000 q^{15} +14.9282 q^{16} +2.26795 q^{17} -2.73205 q^{18} +3.26795 q^{19} -5.46410 q^{20} -3.00000 q^{21} -7.46410 q^{22} +9.46410 q^{24} +1.00000 q^{25} -16.9282 q^{26} -1.00000 q^{27} +16.3923 q^{28} -3.73205 q^{29} -2.73205 q^{30} -9.92820 q^{31} -21.8564 q^{32} -2.73205 q^{33} -6.19615 q^{34} -3.00000 q^{35} +5.46410 q^{36} +1.92820 q^{37} -8.92820 q^{38} -6.19615 q^{39} +9.46410 q^{40} -3.73205 q^{41} +8.19615 q^{42} +11.4641 q^{43} +14.9282 q^{44} -1.00000 q^{45} +7.66025 q^{47} -14.9282 q^{48} +2.00000 q^{49} -2.73205 q^{50} -2.26795 q^{51} +33.8564 q^{52} +5.73205 q^{53} +2.73205 q^{54} -2.73205 q^{55} -28.3923 q^{56} -3.26795 q^{57} +10.1962 q^{58} +7.19615 q^{59} +5.46410 q^{60} +11.1244 q^{61} +27.1244 q^{62} +3.00000 q^{63} +29.8564 q^{64} -6.19615 q^{65} +7.46410 q^{66} +6.46410 q^{67} +12.3923 q^{68} +8.19615 q^{70} -3.73205 q^{71} -9.46410 q^{72} -7.66025 q^{73} -5.26795 q^{74} -1.00000 q^{75} +17.8564 q^{76} +8.19615 q^{77} +16.9282 q^{78} -6.92820 q^{79} -14.9282 q^{80} +1.00000 q^{81} +10.1962 q^{82} +13.7321 q^{83} -16.3923 q^{84} -2.26795 q^{85} -31.3205 q^{86} +3.73205 q^{87} -25.8564 q^{88} -2.53590 q^{89} +2.73205 q^{90} +18.5885 q^{91} +9.92820 q^{93} -20.9282 q^{94} -3.26795 q^{95} +21.8564 q^{96} +4.00000 q^{97} -5.46410 q^{98} +2.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 2 q^{5} + 2 q^{6} + 6 q^{7} - 12 q^{8} + 2 q^{9} + 2 q^{10} + 2 q^{11} - 4 q^{12} + 2 q^{13} - 6 q^{14} + 2 q^{15} + 16 q^{16} + 8 q^{17} - 2 q^{18} + 10 q^{19} - 4 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73205 −1.93185 −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.46410 2.73205
\(5\) −1.00000 −0.447214
\(6\) 2.73205 1.11536
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) −9.46410 −3.34607
\(9\) 1.00000 0.333333
\(10\) 2.73205 0.863950
\(11\) 2.73205 0.823744 0.411872 0.911242i \(-0.364875\pi\)
0.411872 + 0.911242i \(0.364875\pi\)
\(12\) −5.46410 −1.57735
\(13\) 6.19615 1.71850 0.859252 0.511553i \(-0.170930\pi\)
0.859252 + 0.511553i \(0.170930\pi\)
\(14\) −8.19615 −2.19051
\(15\) 1.00000 0.258199
\(16\) 14.9282 3.73205
\(17\) 2.26795 0.550058 0.275029 0.961436i \(-0.411312\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(18\) −2.73205 −0.643951
\(19\) 3.26795 0.749719 0.374859 0.927082i \(-0.377691\pi\)
0.374859 + 0.927082i \(0.377691\pi\)
\(20\) −5.46410 −1.22181
\(21\) −3.00000 −0.654654
\(22\) −7.46410 −1.59135
\(23\) 0 0
\(24\) 9.46410 1.93185
\(25\) 1.00000 0.200000
\(26\) −16.9282 −3.31989
\(27\) −1.00000 −0.192450
\(28\) 16.3923 3.09785
\(29\) −3.73205 −0.693024 −0.346512 0.938045i \(-0.612634\pi\)
−0.346512 + 0.938045i \(0.612634\pi\)
\(30\) −2.73205 −0.498802
\(31\) −9.92820 −1.78316 −0.891579 0.452865i \(-0.850402\pi\)
−0.891579 + 0.452865i \(0.850402\pi\)
\(32\) −21.8564 −3.86370
\(33\) −2.73205 −0.475589
\(34\) −6.19615 −1.06263
\(35\) −3.00000 −0.507093
\(36\) 5.46410 0.910684
\(37\) 1.92820 0.316995 0.158497 0.987359i \(-0.449335\pi\)
0.158497 + 0.987359i \(0.449335\pi\)
\(38\) −8.92820 −1.44835
\(39\) −6.19615 −0.992178
\(40\) 9.46410 1.49641
\(41\) −3.73205 −0.582848 −0.291424 0.956594i \(-0.594129\pi\)
−0.291424 + 0.956594i \(0.594129\pi\)
\(42\) 8.19615 1.26469
\(43\) 11.4641 1.74826 0.874130 0.485693i \(-0.161433\pi\)
0.874130 + 0.485693i \(0.161433\pi\)
\(44\) 14.9282 2.25051
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 7.66025 1.11736 0.558681 0.829382i \(-0.311307\pi\)
0.558681 + 0.829382i \(0.311307\pi\)
\(48\) −14.9282 −2.15470
\(49\) 2.00000 0.285714
\(50\) −2.73205 −0.386370
\(51\) −2.26795 −0.317576
\(52\) 33.8564 4.69504
\(53\) 5.73205 0.787358 0.393679 0.919248i \(-0.371202\pi\)
0.393679 + 0.919248i \(0.371202\pi\)
\(54\) 2.73205 0.371785
\(55\) −2.73205 −0.368390
\(56\) −28.3923 −3.79408
\(57\) −3.26795 −0.432850
\(58\) 10.1962 1.33882
\(59\) 7.19615 0.936859 0.468430 0.883501i \(-0.344820\pi\)
0.468430 + 0.883501i \(0.344820\pi\)
\(60\) 5.46410 0.705412
\(61\) 11.1244 1.42433 0.712164 0.702013i \(-0.247715\pi\)
0.712164 + 0.702013i \(0.247715\pi\)
\(62\) 27.1244 3.44480
\(63\) 3.00000 0.377964
\(64\) 29.8564 3.73205
\(65\) −6.19615 −0.768538
\(66\) 7.46410 0.918767
\(67\) 6.46410 0.789716 0.394858 0.918742i \(-0.370794\pi\)
0.394858 + 0.918742i \(0.370794\pi\)
\(68\) 12.3923 1.50279
\(69\) 0 0
\(70\) 8.19615 0.979628
\(71\) −3.73205 −0.442913 −0.221456 0.975170i \(-0.571081\pi\)
−0.221456 + 0.975170i \(0.571081\pi\)
\(72\) −9.46410 −1.11536
\(73\) −7.66025 −0.896565 −0.448282 0.893892i \(-0.647964\pi\)
−0.448282 + 0.893892i \(0.647964\pi\)
\(74\) −5.26795 −0.612387
\(75\) −1.00000 −0.115470
\(76\) 17.8564 2.04827
\(77\) 8.19615 0.934038
\(78\) 16.9282 1.91674
\(79\) −6.92820 −0.779484 −0.389742 0.920924i \(-0.627436\pi\)
−0.389742 + 0.920924i \(0.627436\pi\)
\(80\) −14.9282 −1.66902
\(81\) 1.00000 0.111111
\(82\) 10.1962 1.12598
\(83\) 13.7321 1.50729 0.753644 0.657283i \(-0.228294\pi\)
0.753644 + 0.657283i \(0.228294\pi\)
\(84\) −16.3923 −1.78855
\(85\) −2.26795 −0.245994
\(86\) −31.3205 −3.37738
\(87\) 3.73205 0.400118
\(88\) −25.8564 −2.75630
\(89\) −2.53590 −0.268805 −0.134402 0.990927i \(-0.542911\pi\)
−0.134402 + 0.990927i \(0.542911\pi\)
\(90\) 2.73205 0.287983
\(91\) 18.5885 1.94860
\(92\) 0 0
\(93\) 9.92820 1.02951
\(94\) −20.9282 −2.15858
\(95\) −3.26795 −0.335285
\(96\) 21.8564 2.23071
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) −5.46410 −0.551958
\(99\) 2.73205 0.274581
\(100\) 5.46410 0.546410
\(101\) 5.19615 0.517036 0.258518 0.966006i \(-0.416766\pi\)
0.258518 + 0.966006i \(0.416766\pi\)
\(102\) 6.19615 0.613511
\(103\) −15.8564 −1.56238 −0.781189 0.624295i \(-0.785387\pi\)
−0.781189 + 0.624295i \(0.785387\pi\)
\(104\) −58.6410 −5.75022
\(105\) 3.00000 0.292770
\(106\) −15.6603 −1.52106
\(107\) −6.12436 −0.592064 −0.296032 0.955178i \(-0.595663\pi\)
−0.296032 + 0.955178i \(0.595663\pi\)
\(108\) −5.46410 −0.525783
\(109\) −3.26795 −0.313013 −0.156506 0.987677i \(-0.550023\pi\)
−0.156506 + 0.987677i \(0.550023\pi\)
\(110\) 7.46410 0.711674
\(111\) −1.92820 −0.183017
\(112\) 44.7846 4.23175
\(113\) −1.19615 −0.112525 −0.0562623 0.998416i \(-0.517918\pi\)
−0.0562623 + 0.998416i \(0.517918\pi\)
\(114\) 8.92820 0.836203
\(115\) 0 0
\(116\) −20.3923 −1.89338
\(117\) 6.19615 0.572834
\(118\) −19.6603 −1.80987
\(119\) 6.80385 0.623708
\(120\) −9.46410 −0.863950
\(121\) −3.53590 −0.321445
\(122\) −30.3923 −2.75159
\(123\) 3.73205 0.336508
\(124\) −54.2487 −4.87168
\(125\) −1.00000 −0.0894427
\(126\) −8.19615 −0.730171
\(127\) 12.1962 1.08223 0.541117 0.840947i \(-0.318002\pi\)
0.541117 + 0.840947i \(0.318002\pi\)
\(128\) −37.8564 −3.34607
\(129\) −11.4641 −1.00936
\(130\) 16.9282 1.48470
\(131\) 18.9282 1.65376 0.826882 0.562375i \(-0.190112\pi\)
0.826882 + 0.562375i \(0.190112\pi\)
\(132\) −14.9282 −1.29933
\(133\) 9.80385 0.850101
\(134\) −17.6603 −1.52561
\(135\) 1.00000 0.0860663
\(136\) −21.4641 −1.84053
\(137\) 20.7846 1.77575 0.887875 0.460086i \(-0.152181\pi\)
0.887875 + 0.460086i \(0.152181\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) −16.3923 −1.38540
\(141\) −7.66025 −0.645110
\(142\) 10.1962 0.855642
\(143\) 16.9282 1.41561
\(144\) 14.9282 1.24402
\(145\) 3.73205 0.309930
\(146\) 20.9282 1.73203
\(147\) −2.00000 −0.164957
\(148\) 10.5359 0.866046
\(149\) 5.80385 0.475470 0.237735 0.971330i \(-0.423595\pi\)
0.237735 + 0.971330i \(0.423595\pi\)
\(150\) 2.73205 0.223071
\(151\) 2.39230 0.194683 0.0973415 0.995251i \(-0.468966\pi\)
0.0973415 + 0.995251i \(0.468966\pi\)
\(152\) −30.9282 −2.50861
\(153\) 2.26795 0.183353
\(154\) −22.3923 −1.80442
\(155\) 9.92820 0.797452
\(156\) −33.8564 −2.71068
\(157\) 0.0717968 0.00573001 0.00286500 0.999996i \(-0.499088\pi\)
0.00286500 + 0.999996i \(0.499088\pi\)
\(158\) 18.9282 1.50585
\(159\) −5.73205 −0.454581
\(160\) 21.8564 1.72790
\(161\) 0 0
\(162\) −2.73205 −0.214650
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) −20.3923 −1.59237
\(165\) 2.73205 0.212690
\(166\) −37.5167 −2.91186
\(167\) −23.6603 −1.83089 −0.915443 0.402448i \(-0.868159\pi\)
−0.915443 + 0.402448i \(0.868159\pi\)
\(168\) 28.3923 2.19051
\(169\) 25.3923 1.95325
\(170\) 6.19615 0.475223
\(171\) 3.26795 0.249906
\(172\) 62.6410 4.77633
\(173\) 1.85641 0.141140 0.0705700 0.997507i \(-0.477518\pi\)
0.0705700 + 0.997507i \(0.477518\pi\)
\(174\) −10.1962 −0.772968
\(175\) 3.00000 0.226779
\(176\) 40.7846 3.07426
\(177\) −7.19615 −0.540896
\(178\) 6.92820 0.519291
\(179\) 4.53590 0.339029 0.169514 0.985528i \(-0.445780\pi\)
0.169514 + 0.985528i \(0.445780\pi\)
\(180\) −5.46410 −0.407270
\(181\) −12.3923 −0.921113 −0.460556 0.887630i \(-0.652350\pi\)
−0.460556 + 0.887630i \(0.652350\pi\)
\(182\) −50.7846 −3.76441
\(183\) −11.1244 −0.822336
\(184\) 0 0
\(185\) −1.92820 −0.141764
\(186\) −27.1244 −1.98885
\(187\) 6.19615 0.453108
\(188\) 41.8564 3.05269
\(189\) −3.00000 −0.218218
\(190\) 8.92820 0.647720
\(191\) −3.66025 −0.264847 −0.132423 0.991193i \(-0.542276\pi\)
−0.132423 + 0.991193i \(0.542276\pi\)
\(192\) −29.8564 −2.15470
\(193\) 10.5359 0.758391 0.379195 0.925317i \(-0.376201\pi\)
0.379195 + 0.925317i \(0.376201\pi\)
\(194\) −10.9282 −0.784599
\(195\) 6.19615 0.443716
\(196\) 10.9282 0.780586
\(197\) −1.60770 −0.114544 −0.0572718 0.998359i \(-0.518240\pi\)
−0.0572718 + 0.998359i \(0.518240\pi\)
\(198\) −7.46410 −0.530451
\(199\) 11.4641 0.812669 0.406334 0.913724i \(-0.366807\pi\)
0.406334 + 0.913724i \(0.366807\pi\)
\(200\) −9.46410 −0.669213
\(201\) −6.46410 −0.455943
\(202\) −14.1962 −0.998838
\(203\) −11.1962 −0.785816
\(204\) −12.3923 −0.867635
\(205\) 3.73205 0.260658
\(206\) 43.3205 3.01828
\(207\) 0 0
\(208\) 92.4974 6.41354
\(209\) 8.92820 0.617577
\(210\) −8.19615 −0.565588
\(211\) −21.7846 −1.49971 −0.749857 0.661600i \(-0.769878\pi\)
−0.749857 + 0.661600i \(0.769878\pi\)
\(212\) 31.3205 2.15110
\(213\) 3.73205 0.255716
\(214\) 16.7321 1.14378
\(215\) −11.4641 −0.781845
\(216\) 9.46410 0.643951
\(217\) −29.7846 −2.02191
\(218\) 8.92820 0.604694
\(219\) 7.66025 0.517632
\(220\) −14.9282 −1.00646
\(221\) 14.0526 0.945277
\(222\) 5.26795 0.353562
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) −65.5692 −4.38103
\(225\) 1.00000 0.0666667
\(226\) 3.26795 0.217381
\(227\) −22.9282 −1.52180 −0.760899 0.648870i \(-0.775242\pi\)
−0.760899 + 0.648870i \(0.775242\pi\)
\(228\) −17.8564 −1.18257
\(229\) −23.3205 −1.54106 −0.770531 0.637402i \(-0.780009\pi\)
−0.770531 + 0.637402i \(0.780009\pi\)
\(230\) 0 0
\(231\) −8.19615 −0.539267
\(232\) 35.3205 2.31890
\(233\) −1.85641 −0.121617 −0.0608086 0.998149i \(-0.519368\pi\)
−0.0608086 + 0.998149i \(0.519368\pi\)
\(234\) −16.9282 −1.10663
\(235\) −7.66025 −0.499700
\(236\) 39.3205 2.55955
\(237\) 6.92820 0.450035
\(238\) −18.5885 −1.20491
\(239\) −17.0526 −1.10304 −0.551519 0.834162i \(-0.685952\pi\)
−0.551519 + 0.834162i \(0.685952\pi\)
\(240\) 14.9282 0.963611
\(241\) 27.2679 1.75648 0.878242 0.478217i \(-0.158717\pi\)
0.878242 + 0.478217i \(0.158717\pi\)
\(242\) 9.66025 0.620985
\(243\) −1.00000 −0.0641500
\(244\) 60.7846 3.89134
\(245\) −2.00000 −0.127775
\(246\) −10.1962 −0.650083
\(247\) 20.2487 1.28839
\(248\) 93.9615 5.96656
\(249\) −13.7321 −0.870233
\(250\) 2.73205 0.172790
\(251\) 7.85641 0.495892 0.247946 0.968774i \(-0.420244\pi\)
0.247946 + 0.968774i \(0.420244\pi\)
\(252\) 16.3923 1.03262
\(253\) 0 0
\(254\) −33.3205 −2.09071
\(255\) 2.26795 0.142024
\(256\) 43.7128 2.73205
\(257\) 11.6603 0.727347 0.363673 0.931527i \(-0.381522\pi\)
0.363673 + 0.931527i \(0.381522\pi\)
\(258\) 31.3205 1.94993
\(259\) 5.78461 0.359438
\(260\) −33.8564 −2.09969
\(261\) −3.73205 −0.231008
\(262\) −51.7128 −3.19483
\(263\) −11.7321 −0.723429 −0.361715 0.932289i \(-0.617809\pi\)
−0.361715 + 0.932289i \(0.617809\pi\)
\(264\) 25.8564 1.59135
\(265\) −5.73205 −0.352117
\(266\) −26.7846 −1.64227
\(267\) 2.53590 0.155194
\(268\) 35.3205 2.15754
\(269\) 11.3397 0.691397 0.345698 0.938346i \(-0.387642\pi\)
0.345698 + 0.938346i \(0.387642\pi\)
\(270\) −2.73205 −0.166267
\(271\) −15.3923 −0.935016 −0.467508 0.883989i \(-0.654848\pi\)
−0.467508 + 0.883989i \(0.654848\pi\)
\(272\) 33.8564 2.05285
\(273\) −18.5885 −1.12502
\(274\) −56.7846 −3.43048
\(275\) 2.73205 0.164749
\(276\) 0 0
\(277\) −26.7846 −1.60933 −0.804666 0.593728i \(-0.797655\pi\)
−0.804666 + 0.593728i \(0.797655\pi\)
\(278\) −13.6603 −0.819288
\(279\) −9.92820 −0.594386
\(280\) 28.3923 1.69676
\(281\) −22.0526 −1.31555 −0.657773 0.753216i \(-0.728501\pi\)
−0.657773 + 0.753216i \(0.728501\pi\)
\(282\) 20.9282 1.24626
\(283\) −0.464102 −0.0275880 −0.0137940 0.999905i \(-0.504391\pi\)
−0.0137940 + 0.999905i \(0.504391\pi\)
\(284\) −20.3923 −1.21006
\(285\) 3.26795 0.193577
\(286\) −46.2487 −2.73474
\(287\) −11.1962 −0.660888
\(288\) −21.8564 −1.28790
\(289\) −11.8564 −0.697436
\(290\) −10.1962 −0.598739
\(291\) −4.00000 −0.234484
\(292\) −41.8564 −2.44946
\(293\) 4.26795 0.249336 0.124668 0.992198i \(-0.460213\pi\)
0.124668 + 0.992198i \(0.460213\pi\)
\(294\) 5.46410 0.318673
\(295\) −7.19615 −0.418976
\(296\) −18.2487 −1.06068
\(297\) −2.73205 −0.158530
\(298\) −15.8564 −0.918537
\(299\) 0 0
\(300\) −5.46410 −0.315470
\(301\) 34.3923 1.98234
\(302\) −6.53590 −0.376099
\(303\) −5.19615 −0.298511
\(304\) 48.7846 2.79799
\(305\) −11.1244 −0.636979
\(306\) −6.19615 −0.354210
\(307\) 13.8038 0.787827 0.393914 0.919147i \(-0.371121\pi\)
0.393914 + 0.919147i \(0.371121\pi\)
\(308\) 44.7846 2.55184
\(309\) 15.8564 0.902039
\(310\) −27.1244 −1.54056
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 58.6410 3.31989
\(313\) 7.92820 0.448129 0.224064 0.974574i \(-0.428067\pi\)
0.224064 + 0.974574i \(0.428067\pi\)
\(314\) −0.196152 −0.0110695
\(315\) −3.00000 −0.169031
\(316\) −37.8564 −2.12959
\(317\) 17.5167 0.983834 0.491917 0.870642i \(-0.336296\pi\)
0.491917 + 0.870642i \(0.336296\pi\)
\(318\) 15.6603 0.878183
\(319\) −10.1962 −0.570875
\(320\) −29.8564 −1.66902
\(321\) 6.12436 0.341828
\(322\) 0 0
\(323\) 7.41154 0.412389
\(324\) 5.46410 0.303561
\(325\) 6.19615 0.343701
\(326\) −38.2487 −2.11840
\(327\) 3.26795 0.180718
\(328\) 35.3205 1.95025
\(329\) 22.9808 1.26697
\(330\) −7.46410 −0.410885
\(331\) 20.3205 1.11692 0.558458 0.829533i \(-0.311393\pi\)
0.558458 + 0.829533i \(0.311393\pi\)
\(332\) 75.0333 4.11799
\(333\) 1.92820 0.105665
\(334\) 64.6410 3.53700
\(335\) −6.46410 −0.353172
\(336\) −44.7846 −2.44320
\(337\) −18.7846 −1.02326 −0.511631 0.859205i \(-0.670959\pi\)
−0.511631 + 0.859205i \(0.670959\pi\)
\(338\) −69.3731 −3.77340
\(339\) 1.19615 0.0649661
\(340\) −12.3923 −0.672067
\(341\) −27.1244 −1.46887
\(342\) −8.92820 −0.482782
\(343\) −15.0000 −0.809924
\(344\) −108.497 −5.84979
\(345\) 0 0
\(346\) −5.07180 −0.272661
\(347\) −27.3205 −1.46664 −0.733321 0.679883i \(-0.762031\pi\)
−0.733321 + 0.679883i \(0.762031\pi\)
\(348\) 20.3923 1.09314
\(349\) −4.32051 −0.231271 −0.115636 0.993292i \(-0.536891\pi\)
−0.115636 + 0.993292i \(0.536891\pi\)
\(350\) −8.19615 −0.438103
\(351\) −6.19615 −0.330726
\(352\) −59.7128 −3.18270
\(353\) 4.73205 0.251862 0.125931 0.992039i \(-0.459808\pi\)
0.125931 + 0.992039i \(0.459808\pi\)
\(354\) 19.6603 1.04493
\(355\) 3.73205 0.198077
\(356\) −13.8564 −0.734388
\(357\) −6.80385 −0.360098
\(358\) −12.3923 −0.654954
\(359\) 2.87564 0.151771 0.0758854 0.997117i \(-0.475822\pi\)
0.0758854 + 0.997117i \(0.475822\pi\)
\(360\) 9.46410 0.498802
\(361\) −8.32051 −0.437921
\(362\) 33.8564 1.77945
\(363\) 3.53590 0.185587
\(364\) 101.569 5.32367
\(365\) 7.66025 0.400956
\(366\) 30.3923 1.58863
\(367\) 15.0000 0.782994 0.391497 0.920179i \(-0.371957\pi\)
0.391497 + 0.920179i \(0.371957\pi\)
\(368\) 0 0
\(369\) −3.73205 −0.194283
\(370\) 5.26795 0.273868
\(371\) 17.1962 0.892780
\(372\) 54.2487 2.81266
\(373\) −11.6077 −0.601024 −0.300512 0.953778i \(-0.597157\pi\)
−0.300512 + 0.953778i \(0.597157\pi\)
\(374\) −16.9282 −0.875337
\(375\) 1.00000 0.0516398
\(376\) −72.4974 −3.73877
\(377\) −23.1244 −1.19096
\(378\) 8.19615 0.421565
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −17.8564 −0.916014
\(381\) −12.1962 −0.624828
\(382\) 10.0000 0.511645
\(383\) 33.5885 1.71629 0.858145 0.513407i \(-0.171617\pi\)
0.858145 + 0.513407i \(0.171617\pi\)
\(384\) 37.8564 1.93185
\(385\) −8.19615 −0.417715
\(386\) −28.7846 −1.46510
\(387\) 11.4641 0.582753
\(388\) 21.8564 1.10959
\(389\) 3.46410 0.175637 0.0878185 0.996136i \(-0.472010\pi\)
0.0878185 + 0.996136i \(0.472010\pi\)
\(390\) −16.9282 −0.857193
\(391\) 0 0
\(392\) −18.9282 −0.956019
\(393\) −18.9282 −0.954802
\(394\) 4.39230 0.221281
\(395\) 6.92820 0.348596
\(396\) 14.9282 0.750170
\(397\) −16.7846 −0.842395 −0.421198 0.906969i \(-0.638390\pi\)
−0.421198 + 0.906969i \(0.638390\pi\)
\(398\) −31.3205 −1.56996
\(399\) −9.80385 −0.490806
\(400\) 14.9282 0.746410
\(401\) 29.3205 1.46420 0.732098 0.681199i \(-0.238541\pi\)
0.732098 + 0.681199i \(0.238541\pi\)
\(402\) 17.6603 0.880813
\(403\) −61.5167 −3.06436
\(404\) 28.3923 1.41257
\(405\) −1.00000 −0.0496904
\(406\) 30.5885 1.51808
\(407\) 5.26795 0.261123
\(408\) 21.4641 1.06263
\(409\) 9.39230 0.464420 0.232210 0.972666i \(-0.425404\pi\)
0.232210 + 0.972666i \(0.425404\pi\)
\(410\) −10.1962 −0.503552
\(411\) −20.7846 −1.02523
\(412\) −86.6410 −4.26850
\(413\) 21.5885 1.06230
\(414\) 0 0
\(415\) −13.7321 −0.674080
\(416\) −135.426 −6.63979
\(417\) −5.00000 −0.244851
\(418\) −24.3923 −1.19307
\(419\) −14.7321 −0.719708 −0.359854 0.933009i \(-0.617173\pi\)
−0.359854 + 0.933009i \(0.617173\pi\)
\(420\) 16.3923 0.799863
\(421\) −4.33975 −0.211506 −0.105753 0.994392i \(-0.533725\pi\)
−0.105753 + 0.994392i \(0.533725\pi\)
\(422\) 59.5167 2.89723
\(423\) 7.66025 0.372454
\(424\) −54.2487 −2.63455
\(425\) 2.26795 0.110012
\(426\) −10.1962 −0.494005
\(427\) 33.3731 1.61504
\(428\) −33.4641 −1.61755
\(429\) −16.9282 −0.817301
\(430\) 31.3205 1.51041
\(431\) −4.39230 −0.211570 −0.105785 0.994389i \(-0.533736\pi\)
−0.105785 + 0.994389i \(0.533736\pi\)
\(432\) −14.9282 −0.718234
\(433\) −37.9282 −1.82271 −0.911357 0.411618i \(-0.864964\pi\)
−0.911357 + 0.411618i \(0.864964\pi\)
\(434\) 81.3731 3.90603
\(435\) −3.73205 −0.178938
\(436\) −17.8564 −0.855167
\(437\) 0 0
\(438\) −20.9282 −0.999988
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 25.8564 1.23266
\(441\) 2.00000 0.0952381
\(442\) −38.3923 −1.82614
\(443\) −25.5167 −1.21233 −0.606167 0.795338i \(-0.707294\pi\)
−0.606167 + 0.795338i \(0.707294\pi\)
\(444\) −10.5359 −0.500012
\(445\) 2.53590 0.120213
\(446\) −5.46410 −0.258733
\(447\) −5.80385 −0.274513
\(448\) 89.5692 4.23175
\(449\) 9.05256 0.427217 0.213608 0.976919i \(-0.431478\pi\)
0.213608 + 0.976919i \(0.431478\pi\)
\(450\) −2.73205 −0.128790
\(451\) −10.1962 −0.480118
\(452\) −6.53590 −0.307423
\(453\) −2.39230 −0.112400
\(454\) 62.6410 2.93989
\(455\) −18.5885 −0.871440
\(456\) 30.9282 1.44835
\(457\) 10.0718 0.471139 0.235569 0.971858i \(-0.424305\pi\)
0.235569 + 0.971858i \(0.424305\pi\)
\(458\) 63.7128 2.97710
\(459\) −2.26795 −0.105859
\(460\) 0 0
\(461\) −20.5359 −0.956452 −0.478226 0.878237i \(-0.658720\pi\)
−0.478226 + 0.878237i \(0.658720\pi\)
\(462\) 22.3923 1.04178
\(463\) 0.339746 0.0157893 0.00789467 0.999969i \(-0.497487\pi\)
0.00789467 + 0.999969i \(0.497487\pi\)
\(464\) −55.7128 −2.58640
\(465\) −9.92820 −0.460409
\(466\) 5.07180 0.234946
\(467\) 15.7321 0.727992 0.363996 0.931400i \(-0.381412\pi\)
0.363996 + 0.931400i \(0.381412\pi\)
\(468\) 33.8564 1.56501
\(469\) 19.3923 0.895453
\(470\) 20.9282 0.965346
\(471\) −0.0717968 −0.00330822
\(472\) −68.1051 −3.13479
\(473\) 31.3205 1.44012
\(474\) −18.9282 −0.869401
\(475\) 3.26795 0.149944
\(476\) 37.1769 1.70400
\(477\) 5.73205 0.262453
\(478\) 46.5885 2.13091
\(479\) −20.4449 −0.934150 −0.467075 0.884218i \(-0.654692\pi\)
−0.467075 + 0.884218i \(0.654692\pi\)
\(480\) −21.8564 −0.997604
\(481\) 11.9474 0.544756
\(482\) −74.4974 −3.39326
\(483\) 0 0
\(484\) −19.3205 −0.878205
\(485\) −4.00000 −0.181631
\(486\) 2.73205 0.123928
\(487\) −9.66025 −0.437748 −0.218874 0.975753i \(-0.570238\pi\)
−0.218874 + 0.975753i \(0.570238\pi\)
\(488\) −105.282 −4.76589
\(489\) −14.0000 −0.633102
\(490\) 5.46410 0.246843
\(491\) 33.4449 1.50935 0.754673 0.656101i \(-0.227796\pi\)
0.754673 + 0.656101i \(0.227796\pi\)
\(492\) 20.3923 0.919356
\(493\) −8.46410 −0.381204
\(494\) −55.3205 −2.48899
\(495\) −2.73205 −0.122797
\(496\) −148.210 −6.65484
\(497\) −11.1962 −0.502216
\(498\) 37.5167 1.68116
\(499\) 35.3923 1.58438 0.792189 0.610276i \(-0.208942\pi\)
0.792189 + 0.610276i \(0.208942\pi\)
\(500\) −5.46410 −0.244362
\(501\) 23.6603 1.05706
\(502\) −21.4641 −0.957990
\(503\) 22.6603 1.01037 0.505185 0.863011i \(-0.331424\pi\)
0.505185 + 0.863011i \(0.331424\pi\)
\(504\) −28.3923 −1.26469
\(505\) −5.19615 −0.231226
\(506\) 0 0
\(507\) −25.3923 −1.12771
\(508\) 66.6410 2.95672
\(509\) −21.0718 −0.933991 −0.466995 0.884260i \(-0.654664\pi\)
−0.466995 + 0.884260i \(0.654664\pi\)
\(510\) −6.19615 −0.274370
\(511\) −22.9808 −1.01661
\(512\) −43.7128 −1.93185
\(513\) −3.26795 −0.144283
\(514\) −31.8564 −1.40513
\(515\) 15.8564 0.698717
\(516\) −62.6410 −2.75762
\(517\) 20.9282 0.920421
\(518\) −15.8038 −0.694381
\(519\) −1.85641 −0.0814872
\(520\) 58.6410 2.57158
\(521\) 9.26795 0.406036 0.203018 0.979175i \(-0.434925\pi\)
0.203018 + 0.979175i \(0.434925\pi\)
\(522\) 10.1962 0.446273
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 103.426 4.51817
\(525\) −3.00000 −0.130931
\(526\) 32.0526 1.39756
\(527\) −22.5167 −0.980841
\(528\) −40.7846 −1.77492
\(529\) 0 0
\(530\) 15.6603 0.680238
\(531\) 7.19615 0.312286
\(532\) 53.5692 2.32252
\(533\) −23.1244 −1.00163
\(534\) −6.92820 −0.299813
\(535\) 6.12436 0.264779
\(536\) −61.1769 −2.64244
\(537\) −4.53590 −0.195738
\(538\) −30.9808 −1.33568
\(539\) 5.46410 0.235356
\(540\) 5.46410 0.235137
\(541\) 25.8564 1.11165 0.555827 0.831298i \(-0.312402\pi\)
0.555827 + 0.831298i \(0.312402\pi\)
\(542\) 42.0526 1.80631
\(543\) 12.3923 0.531805
\(544\) −49.5692 −2.12526
\(545\) 3.26795 0.139984
\(546\) 50.7846 2.17338
\(547\) 21.0718 0.900965 0.450482 0.892785i \(-0.351252\pi\)
0.450482 + 0.892785i \(0.351252\pi\)
\(548\) 113.569 4.85144
\(549\) 11.1244 0.474776
\(550\) −7.46410 −0.318270
\(551\) −12.1962 −0.519574
\(552\) 0 0
\(553\) −20.7846 −0.883852
\(554\) 73.1769 3.10899
\(555\) 1.92820 0.0818477
\(556\) 27.3205 1.15865
\(557\) 27.5885 1.16896 0.584480 0.811408i \(-0.301298\pi\)
0.584480 + 0.811408i \(0.301298\pi\)
\(558\) 27.1244 1.14827
\(559\) 71.0333 3.00439
\(560\) −44.7846 −1.89250
\(561\) −6.19615 −0.261602
\(562\) 60.2487 2.54144
\(563\) −40.5167 −1.70757 −0.853787 0.520623i \(-0.825700\pi\)
−0.853787 + 0.520623i \(0.825700\pi\)
\(564\) −41.8564 −1.76247
\(565\) 1.19615 0.0503225
\(566\) 1.26795 0.0532959
\(567\) 3.00000 0.125988
\(568\) 35.3205 1.48202
\(569\) −17.3205 −0.726113 −0.363057 0.931767i \(-0.618267\pi\)
−0.363057 + 0.931767i \(0.618267\pi\)
\(570\) −8.92820 −0.373961
\(571\) 16.5885 0.694205 0.347103 0.937827i \(-0.387166\pi\)
0.347103 + 0.937827i \(0.387166\pi\)
\(572\) 92.4974 3.86751
\(573\) 3.66025 0.152909
\(574\) 30.5885 1.27674
\(575\) 0 0
\(576\) 29.8564 1.24402
\(577\) 2.92820 0.121903 0.0609513 0.998141i \(-0.480587\pi\)
0.0609513 + 0.998141i \(0.480587\pi\)
\(578\) 32.3923 1.34734
\(579\) −10.5359 −0.437857
\(580\) 20.3923 0.846744
\(581\) 41.1962 1.70910
\(582\) 10.9282 0.452989
\(583\) 15.6603 0.648581
\(584\) 72.4974 2.99996
\(585\) −6.19615 −0.256179
\(586\) −11.6603 −0.481681
\(587\) −7.85641 −0.324269 −0.162134 0.986769i \(-0.551838\pi\)
−0.162134 + 0.986769i \(0.551838\pi\)
\(588\) −10.9282 −0.450672
\(589\) −32.4449 −1.33687
\(590\) 19.6603 0.809400
\(591\) 1.60770 0.0661317
\(592\) 28.7846 1.18304
\(593\) −26.5885 −1.09186 −0.545929 0.837832i \(-0.683823\pi\)
−0.545929 + 0.837832i \(0.683823\pi\)
\(594\) 7.46410 0.306256
\(595\) −6.80385 −0.278931
\(596\) 31.7128 1.29901
\(597\) −11.4641 −0.469194
\(598\) 0 0
\(599\) −7.32051 −0.299108 −0.149554 0.988754i \(-0.547784\pi\)
−0.149554 + 0.988754i \(0.547784\pi\)
\(600\) 9.46410 0.386370
\(601\) −4.46410 −0.182095 −0.0910473 0.995847i \(-0.529021\pi\)
−0.0910473 + 0.995847i \(0.529021\pi\)
\(602\) −93.9615 −3.82959
\(603\) 6.46410 0.263239
\(604\) 13.0718 0.531884
\(605\) 3.53590 0.143755
\(606\) 14.1962 0.576679
\(607\) 12.8756 0.522606 0.261303 0.965257i \(-0.415848\pi\)
0.261303 + 0.965257i \(0.415848\pi\)
\(608\) −71.4256 −2.89669
\(609\) 11.1962 0.453691
\(610\) 30.3923 1.23055
\(611\) 47.4641 1.92019
\(612\) 12.3923 0.500929
\(613\) −47.8564 −1.93290 −0.966451 0.256851i \(-0.917315\pi\)
−0.966451 + 0.256851i \(0.917315\pi\)
\(614\) −37.7128 −1.52197
\(615\) −3.73205 −0.150491
\(616\) −77.5692 −3.12535
\(617\) −4.51666 −0.181834 −0.0909170 0.995858i \(-0.528980\pi\)
−0.0909170 + 0.995858i \(0.528980\pi\)
\(618\) −43.3205 −1.74261
\(619\) 0.784610 0.0315361 0.0157681 0.999876i \(-0.494981\pi\)
0.0157681 + 0.999876i \(0.494981\pi\)
\(620\) 54.2487 2.17868
\(621\) 0 0
\(622\) 32.7846 1.31454
\(623\) −7.60770 −0.304796
\(624\) −92.4974 −3.70286
\(625\) 1.00000 0.0400000
\(626\) −21.6603 −0.865718
\(627\) −8.92820 −0.356558
\(628\) 0.392305 0.0156547
\(629\) 4.37307 0.174366
\(630\) 8.19615 0.326543
\(631\) −7.12436 −0.283616 −0.141808 0.989894i \(-0.545292\pi\)
−0.141808 + 0.989894i \(0.545292\pi\)
\(632\) 65.5692 2.60820
\(633\) 21.7846 0.865861
\(634\) −47.8564 −1.90062
\(635\) −12.1962 −0.483990
\(636\) −31.3205 −1.24194
\(637\) 12.3923 0.491001
\(638\) 27.8564 1.10285
\(639\) −3.73205 −0.147638
\(640\) 37.8564 1.49641
\(641\) −19.5167 −0.770862 −0.385431 0.922737i \(-0.625947\pi\)
−0.385431 + 0.922737i \(0.625947\pi\)
\(642\) −16.7321 −0.660361
\(643\) −25.6410 −1.01118 −0.505591 0.862773i \(-0.668726\pi\)
−0.505591 + 0.862773i \(0.668726\pi\)
\(644\) 0 0
\(645\) 11.4641 0.451399
\(646\) −20.2487 −0.796675
\(647\) −21.6603 −0.851552 −0.425776 0.904828i \(-0.639999\pi\)
−0.425776 + 0.904828i \(0.639999\pi\)
\(648\) −9.46410 −0.371785
\(649\) 19.6603 0.771732
\(650\) −16.9282 −0.663979
\(651\) 29.7846 1.16735
\(652\) 76.4974 2.99587
\(653\) 40.5885 1.58835 0.794175 0.607690i \(-0.207904\pi\)
0.794175 + 0.607690i \(0.207904\pi\)
\(654\) −8.92820 −0.349120
\(655\) −18.9282 −0.739586
\(656\) −55.7128 −2.17522
\(657\) −7.66025 −0.298855
\(658\) −62.7846 −2.44760
\(659\) −16.1962 −0.630913 −0.315456 0.948940i \(-0.602158\pi\)
−0.315456 + 0.948940i \(0.602158\pi\)
\(660\) 14.9282 0.581080
\(661\) 25.3205 0.984854 0.492427 0.870354i \(-0.336110\pi\)
0.492427 + 0.870354i \(0.336110\pi\)
\(662\) −55.5167 −2.15772
\(663\) −14.0526 −0.545756
\(664\) −129.962 −5.04349
\(665\) −9.80385 −0.380177
\(666\) −5.26795 −0.204129
\(667\) 0 0
\(668\) −129.282 −5.00207
\(669\) −2.00000 −0.0773245
\(670\) 17.6603 0.682275
\(671\) 30.3923 1.17328
\(672\) 65.5692 2.52939
\(673\) 6.33975 0.244379 0.122190 0.992507i \(-0.461008\pi\)
0.122190 + 0.992507i \(0.461008\pi\)
\(674\) 51.3205 1.97679
\(675\) −1.00000 −0.0384900
\(676\) 138.746 5.33639
\(677\) 39.8372 1.53107 0.765533 0.643396i \(-0.222475\pi\)
0.765533 + 0.643396i \(0.222475\pi\)
\(678\) −3.26795 −0.125505
\(679\) 12.0000 0.460518
\(680\) 21.4641 0.823111
\(681\) 22.9282 0.878611
\(682\) 74.1051 2.83763
\(683\) −28.0526 −1.07340 −0.536701 0.843773i \(-0.680330\pi\)
−0.536701 + 0.843773i \(0.680330\pi\)
\(684\) 17.8564 0.682757
\(685\) −20.7846 −0.794139
\(686\) 40.9808 1.56465
\(687\) 23.3205 0.889733
\(688\) 171.138 6.52459
\(689\) 35.5167 1.35308
\(690\) 0 0
\(691\) −37.3205 −1.41974 −0.709870 0.704333i \(-0.751246\pi\)
−0.709870 + 0.704333i \(0.751246\pi\)
\(692\) 10.1436 0.385602
\(693\) 8.19615 0.311346
\(694\) 74.6410 2.83333
\(695\) −5.00000 −0.189661
\(696\) −35.3205 −1.33882
\(697\) −8.46410 −0.320601
\(698\) 11.8038 0.446782
\(699\) 1.85641 0.0702157
\(700\) 16.3923 0.619571
\(701\) −29.5167 −1.11483 −0.557414 0.830234i \(-0.688207\pi\)
−0.557414 + 0.830234i \(0.688207\pi\)
\(702\) 16.9282 0.638914
\(703\) 6.30127 0.237657
\(704\) 81.5692 3.07426
\(705\) 7.66025 0.288502
\(706\) −12.9282 −0.486559
\(707\) 15.5885 0.586264
\(708\) −39.3205 −1.47776
\(709\) −9.66025 −0.362798 −0.181399 0.983410i \(-0.558063\pi\)
−0.181399 + 0.983410i \(0.558063\pi\)
\(710\) −10.1962 −0.382655
\(711\) −6.92820 −0.259828
\(712\) 24.0000 0.899438
\(713\) 0 0
\(714\) 18.5885 0.695656
\(715\) −16.9282 −0.633079
\(716\) 24.7846 0.926244
\(717\) 17.0526 0.636839
\(718\) −7.85641 −0.293198
\(719\) −5.19615 −0.193784 −0.0968919 0.995295i \(-0.530890\pi\)
−0.0968919 + 0.995295i \(0.530890\pi\)
\(720\) −14.9282 −0.556341
\(721\) −47.5692 −1.77157
\(722\) 22.7321 0.845999
\(723\) −27.2679 −1.01411
\(724\) −67.7128 −2.51653
\(725\) −3.73205 −0.138605
\(726\) −9.66025 −0.358526
\(727\) −12.1769 −0.451617 −0.225808 0.974172i \(-0.572502\pi\)
−0.225808 + 0.974172i \(0.572502\pi\)
\(728\) −175.923 −6.52014
\(729\) 1.00000 0.0370370
\(730\) −20.9282 −0.774588
\(731\) 26.0000 0.961645
\(732\) −60.7846 −2.24666
\(733\) −49.1051 −1.81374 −0.906869 0.421412i \(-0.861535\pi\)
−0.906869 + 0.421412i \(0.861535\pi\)
\(734\) −40.9808 −1.51263
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) 17.6603 0.650524
\(738\) 10.1962 0.375326
\(739\) 13.6795 0.503208 0.251604 0.967830i \(-0.419042\pi\)
0.251604 + 0.967830i \(0.419042\pi\)
\(740\) −10.5359 −0.387307
\(741\) −20.2487 −0.743855
\(742\) −46.9808 −1.72472
\(743\) 28.0000 1.02722 0.513610 0.858024i \(-0.328308\pi\)
0.513610 + 0.858024i \(0.328308\pi\)
\(744\) −93.9615 −3.44480
\(745\) −5.80385 −0.212637
\(746\) 31.7128 1.16109
\(747\) 13.7321 0.502429
\(748\) 33.8564 1.23791
\(749\) −18.3731 −0.671337
\(750\) −2.73205 −0.0997604
\(751\) −8.73205 −0.318637 −0.159319 0.987227i \(-0.550930\pi\)
−0.159319 + 0.987227i \(0.550930\pi\)
\(752\) 114.354 4.17006
\(753\) −7.85641 −0.286303
\(754\) 63.1769 2.30077
\(755\) −2.39230 −0.0870649
\(756\) −16.3923 −0.596182
\(757\) 39.3923 1.43174 0.715869 0.698235i \(-0.246031\pi\)
0.715869 + 0.698235i \(0.246031\pi\)
\(758\) 10.9282 0.396930
\(759\) 0 0
\(760\) 30.9282 1.12188
\(761\) −20.6603 −0.748934 −0.374467 0.927240i \(-0.622174\pi\)
−0.374467 + 0.927240i \(0.622174\pi\)
\(762\) 33.3205 1.20707
\(763\) −9.80385 −0.354923
\(764\) −20.0000 −0.723575
\(765\) −2.26795 −0.0819979
\(766\) −91.7654 −3.31562
\(767\) 44.5885 1.61000
\(768\) −43.7128 −1.57735
\(769\) 12.1962 0.439805 0.219902 0.975522i \(-0.429426\pi\)
0.219902 + 0.975522i \(0.429426\pi\)
\(770\) 22.3923 0.806963
\(771\) −11.6603 −0.419934
\(772\) 57.5692 2.07196
\(773\) −8.53590 −0.307015 −0.153507 0.988147i \(-0.549057\pi\)
−0.153507 + 0.988147i \(0.549057\pi\)
\(774\) −31.3205 −1.12579
\(775\) −9.92820 −0.356632
\(776\) −37.8564 −1.35897
\(777\) −5.78461 −0.207522
\(778\) −9.46410 −0.339304
\(779\) −12.1962 −0.436973
\(780\) 33.8564 1.21225
\(781\) −10.1962 −0.364847
\(782\) 0 0
\(783\) 3.73205 0.133373
\(784\) 29.8564 1.06630
\(785\) −0.0717968 −0.00256254
\(786\) 51.7128 1.84453
\(787\) 17.0000 0.605985 0.302992 0.952993i \(-0.402014\pi\)
0.302992 + 0.952993i \(0.402014\pi\)
\(788\) −8.78461 −0.312939
\(789\) 11.7321 0.417672
\(790\) −18.9282 −0.673435
\(791\) −3.58846 −0.127591
\(792\) −25.8564 −0.918767
\(793\) 68.9282 2.44771
\(794\) 45.8564 1.62738
\(795\) 5.73205 0.203295
\(796\) 62.6410 2.22025
\(797\) 21.9808 0.778599 0.389299 0.921111i \(-0.372717\pi\)
0.389299 + 0.921111i \(0.372717\pi\)
\(798\) 26.7846 0.948165
\(799\) 17.3731 0.614615
\(800\) −21.8564 −0.772741
\(801\) −2.53590 −0.0896016
\(802\) −80.1051 −2.82861
\(803\) −20.9282 −0.738540
\(804\) −35.3205 −1.24566
\(805\) 0 0
\(806\) 168.067 5.91989
\(807\) −11.3397 −0.399178
\(808\) −49.1769 −1.73004
\(809\) −14.1244 −0.496586 −0.248293 0.968685i \(-0.579870\pi\)
−0.248293 + 0.968685i \(0.579870\pi\)
\(810\) 2.73205 0.0959945
\(811\) 3.00000 0.105344 0.0526721 0.998612i \(-0.483226\pi\)
0.0526721 + 0.998612i \(0.483226\pi\)
\(812\) −61.1769 −2.14689
\(813\) 15.3923 0.539832
\(814\) −14.3923 −0.504450
\(815\) −14.0000 −0.490399
\(816\) −33.8564 −1.18521
\(817\) 37.4641 1.31070
\(818\) −25.6603 −0.897190
\(819\) 18.5885 0.649533
\(820\) 20.3923 0.712130
\(821\) 15.7128 0.548381 0.274190 0.961675i \(-0.411590\pi\)
0.274190 + 0.961675i \(0.411590\pi\)
\(822\) 56.7846 1.98059
\(823\) −33.0718 −1.15281 −0.576405 0.817164i \(-0.695545\pi\)
−0.576405 + 0.817164i \(0.695545\pi\)
\(824\) 150.067 5.22782
\(825\) −2.73205 −0.0951178
\(826\) −58.9808 −2.05220
\(827\) 40.3731 1.40391 0.701955 0.712222i \(-0.252311\pi\)
0.701955 + 0.712222i \(0.252311\pi\)
\(828\) 0 0
\(829\) −14.0718 −0.488734 −0.244367 0.969683i \(-0.578580\pi\)
−0.244367 + 0.969683i \(0.578580\pi\)
\(830\) 37.5167 1.30222
\(831\) 26.7846 0.929148
\(832\) 184.995 6.41354
\(833\) 4.53590 0.157160
\(834\) 13.6603 0.473016
\(835\) 23.6603 0.818797
\(836\) 48.7846 1.68725
\(837\) 9.92820 0.343169
\(838\) 40.2487 1.39037
\(839\) 15.8564 0.547424 0.273712 0.961812i \(-0.411748\pi\)
0.273712 + 0.961812i \(0.411748\pi\)
\(840\) −28.3923 −0.979628
\(841\) −15.0718 −0.519717
\(842\) 11.8564 0.408599
\(843\) 22.0526 0.759530
\(844\) −119.033 −4.09730
\(845\) −25.3923 −0.873522
\(846\) −20.9282 −0.719526
\(847\) −10.6077 −0.364485
\(848\) 85.5692 2.93846
\(849\) 0.464102 0.0159279
\(850\) −6.19615 −0.212526
\(851\) 0 0
\(852\) 20.3923 0.698629
\(853\) 8.53590 0.292264 0.146132 0.989265i \(-0.453318\pi\)
0.146132 + 0.989265i \(0.453318\pi\)
\(854\) −91.1769 −3.12001
\(855\) −3.26795 −0.111762
\(856\) 57.9615 1.98108
\(857\) 8.92820 0.304982 0.152491 0.988305i \(-0.451271\pi\)
0.152491 + 0.988305i \(0.451271\pi\)
\(858\) 46.2487 1.57890
\(859\) 49.9282 1.70353 0.851764 0.523925i \(-0.175533\pi\)
0.851764 + 0.523925i \(0.175533\pi\)
\(860\) −62.6410 −2.13604
\(861\) 11.1962 0.381564
\(862\) 12.0000 0.408722
\(863\) 14.3923 0.489920 0.244960 0.969533i \(-0.421225\pi\)
0.244960 + 0.969533i \(0.421225\pi\)
\(864\) 21.8564 0.743570
\(865\) −1.85641 −0.0631197
\(866\) 103.622 3.52121
\(867\) 11.8564 0.402665
\(868\) −162.746 −5.52396
\(869\) −18.9282 −0.642095
\(870\) 10.1962 0.345682
\(871\) 40.0526 1.35713
\(872\) 30.9282 1.04736
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 41.8564 1.41420
\(877\) 27.4641 0.927397 0.463698 0.885993i \(-0.346522\pi\)
0.463698 + 0.885993i \(0.346522\pi\)
\(878\) 71.0333 2.39726
\(879\) −4.26795 −0.143954
\(880\) −40.7846 −1.37485
\(881\) 13.8038 0.465063 0.232532 0.972589i \(-0.425299\pi\)
0.232532 + 0.972589i \(0.425299\pi\)
\(882\) −5.46410 −0.183986
\(883\) −5.94744 −0.200147 −0.100074 0.994980i \(-0.531908\pi\)
−0.100074 + 0.994980i \(0.531908\pi\)
\(884\) 76.7846 2.58255
\(885\) 7.19615 0.241896
\(886\) 69.7128 2.34205
\(887\) 3.46410 0.116313 0.0581566 0.998307i \(-0.481478\pi\)
0.0581566 + 0.998307i \(0.481478\pi\)
\(888\) 18.2487 0.612387
\(889\) 36.5885 1.22714
\(890\) −6.92820 −0.232234
\(891\) 2.73205 0.0915271
\(892\) 10.9282 0.365903
\(893\) 25.0333 0.837708
\(894\) 15.8564 0.530318
\(895\) −4.53590 −0.151618
\(896\) −113.569 −3.79408
\(897\) 0 0
\(898\) −24.7321 −0.825319
\(899\) 37.0526 1.23577
\(900\) 5.46410 0.182137
\(901\) 13.0000 0.433093
\(902\) 27.8564 0.927517
\(903\) −34.3923 −1.14450
\(904\) 11.3205 0.376514
\(905\) 12.3923 0.411934
\(906\) 6.53590 0.217141
\(907\) 22.1769 0.736372 0.368186 0.929752i \(-0.379979\pi\)
0.368186 + 0.929752i \(0.379979\pi\)
\(908\) −125.282 −4.15763
\(909\) 5.19615 0.172345
\(910\) 50.7846 1.68349
\(911\) 21.0718 0.698140 0.349070 0.937097i \(-0.386498\pi\)
0.349070 + 0.937097i \(0.386498\pi\)
\(912\) −48.7846 −1.61542
\(913\) 37.5167 1.24162
\(914\) −27.5167 −0.910170
\(915\) 11.1244 0.367760
\(916\) −127.426 −4.21026
\(917\) 56.7846 1.87519
\(918\) 6.19615 0.204504
\(919\) 6.14359 0.202658 0.101329 0.994853i \(-0.467690\pi\)
0.101329 + 0.994853i \(0.467690\pi\)
\(920\) 0 0
\(921\) −13.8038 −0.454852
\(922\) 56.1051 1.84772
\(923\) −23.1244 −0.761147
\(924\) −44.7846 −1.47331
\(925\) 1.92820 0.0633989
\(926\) −0.928203 −0.0305027
\(927\) −15.8564 −0.520793
\(928\) 81.5692 2.67764
\(929\) −21.9808 −0.721165 −0.360583 0.932727i \(-0.617422\pi\)
−0.360583 + 0.932727i \(0.617422\pi\)
\(930\) 27.1244 0.889443
\(931\) 6.53590 0.214205
\(932\) −10.1436 −0.332264
\(933\) 12.0000 0.392862
\(934\) −42.9808 −1.40637
\(935\) −6.19615 −0.202636
\(936\) −58.6410 −1.91674
\(937\) 60.4974 1.97636 0.988182 0.153283i \(-0.0489846\pi\)
0.988182 + 0.153283i \(0.0489846\pi\)
\(938\) −52.9808 −1.72988
\(939\) −7.92820 −0.258727
\(940\) −41.8564 −1.36521
\(941\) 58.6936 1.91336 0.956678 0.291148i \(-0.0940373\pi\)
0.956678 + 0.291148i \(0.0940373\pi\)
\(942\) 0.196152 0.00639099
\(943\) 0 0
\(944\) 107.426 3.49641
\(945\) 3.00000 0.0975900
\(946\) −85.5692 −2.78210
\(947\) 52.3923 1.70252 0.851261 0.524743i \(-0.175839\pi\)
0.851261 + 0.524743i \(0.175839\pi\)
\(948\) 37.8564 1.22952
\(949\) −47.4641 −1.54075
\(950\) −8.92820 −0.289669
\(951\) −17.5167 −0.568017
\(952\) −64.3923 −2.08697
\(953\) −39.8564 −1.29108 −0.645538 0.763728i \(-0.723367\pi\)
−0.645538 + 0.763728i \(0.723367\pi\)
\(954\) −15.6603 −0.507019
\(955\) 3.66025 0.118443
\(956\) −93.1769 −3.01356
\(957\) 10.1962 0.329595
\(958\) 55.8564 1.80464
\(959\) 62.3538 2.01351
\(960\) 29.8564 0.963611
\(961\) 67.5692 2.17965
\(962\) −32.6410 −1.05239
\(963\) −6.12436 −0.197355
\(964\) 148.995 4.79880
\(965\) −10.5359 −0.339163
\(966\) 0 0
\(967\) 16.1962 0.520833 0.260417 0.965496i \(-0.416140\pi\)
0.260417 + 0.965496i \(0.416140\pi\)
\(968\) 33.4641 1.07558
\(969\) −7.41154 −0.238093
\(970\) 10.9282 0.350883
\(971\) −9.46410 −0.303717 −0.151859 0.988402i \(-0.548526\pi\)
−0.151859 + 0.988402i \(0.548526\pi\)
\(972\) −5.46410 −0.175261
\(973\) 15.0000 0.480878
\(974\) 26.3923 0.845664
\(975\) −6.19615 −0.198436
\(976\) 166.067 5.31566
\(977\) −8.12436 −0.259921 −0.129961 0.991519i \(-0.541485\pi\)
−0.129961 + 0.991519i \(0.541485\pi\)
\(978\) 38.2487 1.22306
\(979\) −6.92820 −0.221426
\(980\) −10.9282 −0.349089
\(981\) −3.26795 −0.104338
\(982\) −91.3731 −2.91583
\(983\) −37.9808 −1.21140 −0.605699 0.795694i \(-0.707106\pi\)
−0.605699 + 0.795694i \(0.707106\pi\)
\(984\) −35.3205 −1.12598
\(985\) 1.60770 0.0512254
\(986\) 23.1244 0.736430
\(987\) −22.9808 −0.731486
\(988\) 110.641 3.51996
\(989\) 0 0
\(990\) 7.46410 0.237225
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 216.995 6.88959
\(993\) −20.3205 −0.644852
\(994\) 30.5885 0.970207
\(995\) −11.4641 −0.363436
\(996\) −75.0333 −2.37752
\(997\) −50.5359 −1.60049 −0.800244 0.599675i \(-0.795297\pi\)
−0.800244 + 0.599675i \(0.795297\pi\)
\(998\) −96.6936 −3.06078
\(999\) −1.92820 −0.0610057
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.n.1.1 2
23.22 odd 2 345.2.a.g.1.1 2
69.68 even 2 1035.2.a.l.1.2 2
92.91 even 2 5520.2.a.bu.1.2 2
115.22 even 4 1725.2.b.p.1174.1 4
115.68 even 4 1725.2.b.p.1174.4 4
115.114 odd 2 1725.2.a.bd.1.2 2
345.344 even 2 5175.2.a.bd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.a.g.1.1 2 23.22 odd 2
1035.2.a.l.1.2 2 69.68 even 2
1725.2.a.bd.1.2 2 115.114 odd 2
1725.2.b.p.1174.1 4 115.22 even 4
1725.2.b.p.1174.4 4 115.68 even 4
5175.2.a.bd.1.1 2 345.344 even 2
5520.2.a.bu.1.2 2 92.91 even 2
7935.2.a.n.1.1 2 1.1 even 1 trivial