Properties

Label 7935.2.a.d
Level $7935$
Weight $2$
Character orbit 7935.a
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} + 3q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} + 3q^{8} + q^{9} + q^{10} + 4q^{11} + q^{12} - 2q^{13} + q^{15} - q^{16} - 2q^{17} - q^{18} - 4q^{19} + q^{20} - 4q^{22} - 3q^{24} + q^{25} + 2q^{26} - q^{27} - 2q^{29} - q^{30} - 5q^{32} - 4q^{33} + 2q^{34} - q^{36} + 10q^{37} + 4q^{38} + 2q^{39} - 3q^{40} + 10q^{41} - 4q^{43} - 4q^{44} - q^{45} + 8q^{47} + q^{48} - 7q^{49} - q^{50} + 2q^{51} + 2q^{52} + 10q^{53} + q^{54} - 4q^{55} + 4q^{57} + 2q^{58} - 4q^{59} - q^{60} + 2q^{61} + 7q^{64} + 2q^{65} + 4q^{66} - 12q^{67} + 2q^{68} - 8q^{71} + 3q^{72} + 10q^{73} - 10q^{74} - q^{75} + 4q^{76} - 2q^{78} + q^{80} + q^{81} - 10q^{82} - 12q^{83} + 2q^{85} + 4q^{86} + 2q^{87} + 12q^{88} + 6q^{89} + q^{90} - 8q^{94} + 4q^{95} + 5q^{96} - 2q^{97} + 7q^{98} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 −1.00000 −1.00000 1.00000 0 3.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7935.2.a.d 1
23.b odd 2 1 15.2.a.a 1
69.c even 2 1 45.2.a.a 1
92.b even 2 1 240.2.a.d 1
115.c odd 2 1 75.2.a.b 1
115.e even 4 2 75.2.b.b 2
161.c even 2 1 735.2.a.c 1
161.f odd 6 2 735.2.i.e 2
161.g even 6 2 735.2.i.d 2
184.e odd 2 1 960.2.a.l 1
184.h even 2 1 960.2.a.a 1
207.f odd 6 2 405.2.e.f 2
207.g even 6 2 405.2.e.c 2
253.b even 2 1 1815.2.a.d 1
276.h odd 2 1 720.2.a.c 1
299.c odd 2 1 2535.2.a.j 1
345.h even 2 1 225.2.a.b 1
345.l odd 4 2 225.2.b.b 2
368.i even 4 2 3840.2.k.r 2
368.k odd 4 2 3840.2.k.m 2
391.c odd 2 1 4335.2.a.c 1
437.b even 2 1 5415.2.a.j 1
460.g even 2 1 1200.2.a.e 1
460.k odd 4 2 1200.2.f.h 2
483.c odd 2 1 2205.2.a.i 1
552.b even 2 1 2880.2.a.y 1
552.h odd 2 1 2880.2.a.bc 1
759.h odd 2 1 5445.2.a.c 1
805.d even 2 1 3675.2.a.j 1
897.g even 2 1 7605.2.a.g 1
920.b even 2 1 4800.2.a.bz 1
920.p odd 2 1 4800.2.a.t 1
920.t odd 4 2 4800.2.f.c 2
920.x even 4 2 4800.2.f.bf 2
1265.f even 2 1 9075.2.a.g 1
1380.b odd 2 1 3600.2.a.u 1
1380.q even 4 2 3600.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.2.a.a 1 23.b odd 2 1
45.2.a.a 1 69.c even 2 1
75.2.a.b 1 115.c odd 2 1
75.2.b.b 2 115.e even 4 2
225.2.a.b 1 345.h even 2 1
225.2.b.b 2 345.l odd 4 2
240.2.a.d 1 92.b even 2 1
405.2.e.c 2 207.g even 6 2
405.2.e.f 2 207.f odd 6 2
720.2.a.c 1 276.h odd 2 1
735.2.a.c 1 161.c even 2 1
735.2.i.d 2 161.g even 6 2
735.2.i.e 2 161.f odd 6 2
960.2.a.a 1 184.h even 2 1
960.2.a.l 1 184.e odd 2 1
1200.2.a.e 1 460.g even 2 1
1200.2.f.h 2 460.k odd 4 2
1815.2.a.d 1 253.b even 2 1
2205.2.a.i 1 483.c odd 2 1
2535.2.a.j 1 299.c odd 2 1
2880.2.a.y 1 552.b even 2 1
2880.2.a.bc 1 552.h odd 2 1
3600.2.a.u 1 1380.b odd 2 1
3600.2.f.e 2 1380.q even 4 2
3675.2.a.j 1 805.d even 2 1
3840.2.k.m 2 368.k odd 4 2
3840.2.k.r 2 368.i even 4 2
4335.2.a.c 1 391.c odd 2 1
4800.2.a.t 1 920.p odd 2 1
4800.2.a.bz 1 920.b even 2 1
4800.2.f.c 2 920.t odd 4 2
4800.2.f.bf 2 920.x even 4 2
5415.2.a.j 1 437.b even 2 1
5445.2.a.c 1 759.h odd 2 1
7605.2.a.g 1 897.g even 2 1
7935.2.a.d 1 1.a even 1 1 trivial
9075.2.a.g 1 1265.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7935))\):

\( T_{2} + 1 \)
\( T_{7} \)
\( T_{11} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 + T \)
$5$ \( 1 + T \)
$7$ \( T \)
$11$ \( -4 + T \)
$13$ \( 2 + T \)
$17$ \( 2 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( 2 + T \)
$31$ \( T \)
$37$ \( -10 + T \)
$41$ \( -10 + T \)
$43$ \( 4 + T \)
$47$ \( -8 + T \)
$53$ \( -10 + T \)
$59$ \( 4 + T \)
$61$ \( -2 + T \)
$67$ \( 12 + T \)
$71$ \( 8 + T \)
$73$ \( -10 + T \)
$79$ \( T \)
$83$ \( 12 + T \)
$89$ \( -6 + T \)
$97$ \( 2 + T \)
show more
show less