Properties

Label 7935.2.a.c.1.1
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,1,2,1,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} +1.00000 q^{5} -2.00000 q^{6} +2.00000 q^{7} +1.00000 q^{9} -2.00000 q^{10} +5.00000 q^{11} +2.00000 q^{12} -4.00000 q^{14} +1.00000 q^{15} -4.00000 q^{16} -4.00000 q^{17} -2.00000 q^{18} +1.00000 q^{19} +2.00000 q^{20} +2.00000 q^{21} -10.0000 q^{22} +1.00000 q^{25} +1.00000 q^{27} +4.00000 q^{28} +2.00000 q^{29} -2.00000 q^{30} +7.00000 q^{31} +8.00000 q^{32} +5.00000 q^{33} +8.00000 q^{34} +2.00000 q^{35} +2.00000 q^{36} +10.0000 q^{37} -2.00000 q^{38} -1.00000 q^{41} -4.00000 q^{42} -10.0000 q^{43} +10.0000 q^{44} +1.00000 q^{45} -6.00000 q^{47} -4.00000 q^{48} -3.00000 q^{49} -2.00000 q^{50} -4.00000 q^{51} +6.00000 q^{53} -2.00000 q^{54} +5.00000 q^{55} +1.00000 q^{57} -4.00000 q^{58} +2.00000 q^{60} -9.00000 q^{61} -14.0000 q^{62} +2.00000 q^{63} -8.00000 q^{64} -10.0000 q^{66} -14.0000 q^{67} -8.00000 q^{68} -4.00000 q^{70} +5.00000 q^{71} +10.0000 q^{73} -20.0000 q^{74} +1.00000 q^{75} +2.00000 q^{76} +10.0000 q^{77} +11.0000 q^{79} -4.00000 q^{80} +1.00000 q^{81} +2.00000 q^{82} -6.00000 q^{83} +4.00000 q^{84} -4.00000 q^{85} +20.0000 q^{86} +2.00000 q^{87} +10.0000 q^{89} -2.00000 q^{90} +7.00000 q^{93} +12.0000 q^{94} +1.00000 q^{95} +8.00000 q^{96} -2.00000 q^{97} +6.00000 q^{98} +5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.00000 1.00000
\(5\) 1.00000 0.447214
\(6\) −2.00000 −0.816497
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) −2.00000 −0.632456
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 2.00000 0.577350
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −4.00000 −1.06904
\(15\) 1.00000 0.258199
\(16\) −4.00000 −1.00000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) −2.00000 −0.471405
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 2.00000 0.447214
\(21\) 2.00000 0.436436
\(22\) −10.0000 −2.13201
\(23\) 0 0
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 4.00000 0.755929
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) −2.00000 −0.365148
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 8.00000 1.41421
\(33\) 5.00000 0.870388
\(34\) 8.00000 1.37199
\(35\) 2.00000 0.338062
\(36\) 2.00000 0.333333
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) 0 0
\(41\) −1.00000 −0.156174 −0.0780869 0.996947i \(-0.524881\pi\)
−0.0780869 + 0.996947i \(0.524881\pi\)
\(42\) −4.00000 −0.617213
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 10.0000 1.50756
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) −4.00000 −0.577350
\(49\) −3.00000 −0.428571
\(50\) −2.00000 −0.282843
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −2.00000 −0.272166
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) −4.00000 −0.525226
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 2.00000 0.258199
\(61\) −9.00000 −1.15233 −0.576166 0.817333i \(-0.695452\pi\)
−0.576166 + 0.817333i \(0.695452\pi\)
\(62\) −14.0000 −1.77800
\(63\) 2.00000 0.251976
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) −10.0000 −1.23091
\(67\) −14.0000 −1.71037 −0.855186 0.518321i \(-0.826557\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) −8.00000 −0.970143
\(69\) 0 0
\(70\) −4.00000 −0.478091
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) −20.0000 −2.32495
\(75\) 1.00000 0.115470
\(76\) 2.00000 0.229416
\(77\) 10.0000 1.13961
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) 2.00000 0.220863
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 4.00000 0.436436
\(85\) −4.00000 −0.433861
\(86\) 20.0000 2.15666
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) −2.00000 −0.210819
\(91\) 0 0
\(92\) 0 0
\(93\) 7.00000 0.725866
\(94\) 12.0000 1.23771
\(95\) 1.00000 0.102598
\(96\) 8.00000 0.816497
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 6.00000 0.606092
\(99\) 5.00000 0.502519
\(100\) 2.00000 0.200000
\(101\) 17.0000 1.69156 0.845782 0.533529i \(-0.179135\pi\)
0.845782 + 0.533529i \(0.179135\pi\)
\(102\) 8.00000 0.792118
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) −12.0000 −1.16554
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 2.00000 0.192450
\(109\) 1.00000 0.0957826 0.0478913 0.998853i \(-0.484750\pi\)
0.0478913 + 0.998853i \(0.484750\pi\)
\(110\) −10.0000 −0.953463
\(111\) 10.0000 0.949158
\(112\) −8.00000 −0.755929
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) −2.00000 −0.187317
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 18.0000 1.62964
\(123\) −1.00000 −0.0901670
\(124\) 14.0000 1.25724
\(125\) 1.00000 0.0894427
\(126\) −4.00000 −0.356348
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 10.0000 0.870388
\(133\) 2.00000 0.173422
\(134\) 28.0000 2.41883
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 4.00000 0.338062
\(141\) −6.00000 −0.505291
\(142\) −10.0000 −0.839181
\(143\) 0 0
\(144\) −4.00000 −0.333333
\(145\) 2.00000 0.166091
\(146\) −20.0000 −1.65521
\(147\) −3.00000 −0.247436
\(148\) 20.0000 1.64399
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) −2.00000 −0.163299
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) −20.0000 −1.61165
\(155\) 7.00000 0.562254
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −22.0000 −1.75023
\(159\) 6.00000 0.475831
\(160\) 8.00000 0.632456
\(161\) 0 0
\(162\) −2.00000 −0.157135
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −2.00000 −0.156174
\(165\) 5.00000 0.389249
\(166\) 12.0000 0.931381
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 8.00000 0.613572
\(171\) 1.00000 0.0764719
\(172\) −20.0000 −1.52499
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) −4.00000 −0.303239
\(175\) 2.00000 0.151186
\(176\) −20.0000 −1.50756
\(177\) 0 0
\(178\) −20.0000 −1.49906
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 2.00000 0.149071
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) −9.00000 −0.665299
\(184\) 0 0
\(185\) 10.0000 0.735215
\(186\) −14.0000 −1.02653
\(187\) −20.0000 −1.46254
\(188\) −12.0000 −0.875190
\(189\) 2.00000 0.145479
\(190\) −2.00000 −0.145095
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −8.00000 −0.577350
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 4.00000 0.287183
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) −10.0000 −0.710669
\(199\) 21.0000 1.48865 0.744325 0.667817i \(-0.232771\pi\)
0.744325 + 0.667817i \(0.232771\pi\)
\(200\) 0 0
\(201\) −14.0000 −0.987484
\(202\) −34.0000 −2.39223
\(203\) 4.00000 0.280745
\(204\) −8.00000 −0.560112
\(205\) −1.00000 −0.0698430
\(206\) −24.0000 −1.67216
\(207\) 0 0
\(208\) 0 0
\(209\) 5.00000 0.345857
\(210\) −4.00000 −0.276026
\(211\) −7.00000 −0.481900 −0.240950 0.970538i \(-0.577459\pi\)
−0.240950 + 0.970538i \(0.577459\pi\)
\(212\) 12.0000 0.824163
\(213\) 5.00000 0.342594
\(214\) 0 0
\(215\) −10.0000 −0.681994
\(216\) 0 0
\(217\) 14.0000 0.950382
\(218\) −2.00000 −0.135457
\(219\) 10.0000 0.675737
\(220\) 10.0000 0.674200
\(221\) 0 0
\(222\) −20.0000 −1.34231
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 16.0000 1.06904
\(225\) 1.00000 0.0666667
\(226\) −16.0000 −1.06430
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 2.00000 0.132453
\(229\) −21.0000 −1.38772 −0.693860 0.720110i \(-0.744091\pi\)
−0.693860 + 0.720110i \(0.744091\pi\)
\(230\) 0 0
\(231\) 10.0000 0.657952
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) 11.0000 0.714527
\(238\) 16.0000 1.03713
\(239\) 11.0000 0.711531 0.355765 0.934575i \(-0.384220\pi\)
0.355765 + 0.934575i \(0.384220\pi\)
\(240\) −4.00000 −0.258199
\(241\) −25.0000 −1.61039 −0.805196 0.593009i \(-0.797940\pi\)
−0.805196 + 0.593009i \(0.797940\pi\)
\(242\) −28.0000 −1.79991
\(243\) 1.00000 0.0641500
\(244\) −18.0000 −1.15233
\(245\) −3.00000 −0.191663
\(246\) 2.00000 0.127515
\(247\) 0 0
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) −2.00000 −0.126491
\(251\) 3.00000 0.189358 0.0946792 0.995508i \(-0.469817\pi\)
0.0946792 + 0.995508i \(0.469817\pi\)
\(252\) 4.00000 0.251976
\(253\) 0 0
\(254\) −24.0000 −1.50589
\(255\) −4.00000 −0.250490
\(256\) 16.0000 1.00000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 20.0000 1.24515
\(259\) 20.0000 1.24274
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 14.0000 0.864923
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) −4.00000 −0.245256
\(267\) 10.0000 0.611990
\(268\) −28.0000 −1.71037
\(269\) 1.00000 0.0609711 0.0304855 0.999535i \(-0.490295\pi\)
0.0304855 + 0.999535i \(0.490295\pi\)
\(270\) −2.00000 −0.121716
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 16.0000 0.970143
\(273\) 0 0
\(274\) −32.0000 −1.93319
\(275\) 5.00000 0.301511
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 10.0000 0.599760
\(279\) 7.00000 0.419079
\(280\) 0 0
\(281\) 21.0000 1.25275 0.626377 0.779520i \(-0.284537\pi\)
0.626377 + 0.779520i \(0.284537\pi\)
\(282\) 12.0000 0.714590
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 10.0000 0.593391
\(285\) 1.00000 0.0592349
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) 8.00000 0.471405
\(289\) −1.00000 −0.0588235
\(290\) −4.00000 −0.234888
\(291\) −2.00000 −0.117242
\(292\) 20.0000 1.17041
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 6.00000 0.349927
\(295\) 0 0
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) −30.0000 −1.73785
\(299\) 0 0
\(300\) 2.00000 0.115470
\(301\) −20.0000 −1.15278
\(302\) −34.0000 −1.95648
\(303\) 17.0000 0.976624
\(304\) −4.00000 −0.229416
\(305\) −9.00000 −0.515339
\(306\) 8.00000 0.457330
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 20.0000 1.13961
\(309\) 12.0000 0.682656
\(310\) −14.0000 −0.795147
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) 44.0000 2.48306
\(315\) 2.00000 0.112687
\(316\) 22.0000 1.23760
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) −12.0000 −0.672927
\(319\) 10.0000 0.559893
\(320\) −8.00000 −0.447214
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 2.00000 0.111111
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 1.00000 0.0553001
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) −10.0000 −0.550482
\(331\) −9.00000 −0.494685 −0.247342 0.968928i \(-0.579557\pi\)
−0.247342 + 0.968928i \(0.579557\pi\)
\(332\) −12.0000 −0.658586
\(333\) 10.0000 0.547997
\(334\) −28.0000 −1.53209
\(335\) −14.0000 −0.764902
\(336\) −8.00000 −0.436436
\(337\) −16.0000 −0.871576 −0.435788 0.900049i \(-0.643530\pi\)
−0.435788 + 0.900049i \(0.643530\pi\)
\(338\) 26.0000 1.41421
\(339\) 8.00000 0.434500
\(340\) −8.00000 −0.433861
\(341\) 35.0000 1.89536
\(342\) −2.00000 −0.108148
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) −28.0000 −1.50529
\(347\) −30.0000 −1.61048 −0.805242 0.592946i \(-0.797965\pi\)
−0.805242 + 0.592946i \(0.797965\pi\)
\(348\) 4.00000 0.214423
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 40.0000 2.13201
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 5.00000 0.265372
\(356\) 20.0000 1.06000
\(357\) −8.00000 −0.423405
\(358\) 30.0000 1.58555
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 14.0000 0.735824
\(363\) 14.0000 0.734809
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 18.0000 0.940875
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) −1.00000 −0.0520579
\(370\) −20.0000 −1.03975
\(371\) 12.0000 0.623009
\(372\) 14.0000 0.725866
\(373\) 32.0000 1.65690 0.828449 0.560065i \(-0.189224\pi\)
0.828449 + 0.560065i \(0.189224\pi\)
\(374\) 40.0000 2.06835
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) −4.00000 −0.205738
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 2.00000 0.102598
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) 34.0000 1.73732 0.868659 0.495410i \(-0.164982\pi\)
0.868659 + 0.495410i \(0.164982\pi\)
\(384\) 0 0
\(385\) 10.0000 0.509647
\(386\) −24.0000 −1.22157
\(387\) −10.0000 −0.508329
\(388\) −4.00000 −0.203069
\(389\) −25.0000 −1.26755 −0.633775 0.773517i \(-0.718496\pi\)
−0.633775 + 0.773517i \(0.718496\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −7.00000 −0.353103
\(394\) 36.0000 1.81365
\(395\) 11.0000 0.553470
\(396\) 10.0000 0.502519
\(397\) −12.0000 −0.602263 −0.301131 0.953583i \(-0.597364\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(398\) −42.0000 −2.10527
\(399\) 2.00000 0.100125
\(400\) −4.00000 −0.200000
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) 28.0000 1.39651
\(403\) 0 0
\(404\) 34.0000 1.69156
\(405\) 1.00000 0.0496904
\(406\) −8.00000 −0.397033
\(407\) 50.0000 2.47841
\(408\) 0 0
\(409\) −5.00000 −0.247234 −0.123617 0.992330i \(-0.539449\pi\)
−0.123617 + 0.992330i \(0.539449\pi\)
\(410\) 2.00000 0.0987730
\(411\) 16.0000 0.789222
\(412\) 24.0000 1.18240
\(413\) 0 0
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) −5.00000 −0.244851
\(418\) −10.0000 −0.489116
\(419\) −11.0000 −0.537385 −0.268693 0.963226i \(-0.586592\pi\)
−0.268693 + 0.963226i \(0.586592\pi\)
\(420\) 4.00000 0.195180
\(421\) −17.0000 −0.828529 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(422\) 14.0000 0.681509
\(423\) −6.00000 −0.291730
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) −10.0000 −0.484502
\(427\) −18.0000 −0.871081
\(428\) 0 0
\(429\) 0 0
\(430\) 20.0000 0.964486
\(431\) 21.0000 1.01153 0.505767 0.862670i \(-0.331209\pi\)
0.505767 + 0.862670i \(0.331209\pi\)
\(432\) −4.00000 −0.192450
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) −28.0000 −1.34404
\(435\) 2.00000 0.0958927
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) −20.0000 −0.955637
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 20.0000 0.949158
\(445\) 10.0000 0.474045
\(446\) 48.0000 2.27287
\(447\) 15.0000 0.709476
\(448\) −16.0000 −0.755929
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) −2.00000 −0.0942809
\(451\) −5.00000 −0.235441
\(452\) 16.0000 0.752577
\(453\) 17.0000 0.798730
\(454\) −48.0000 −2.25275
\(455\) 0 0
\(456\) 0 0
\(457\) 12.0000 0.561336 0.280668 0.959805i \(-0.409444\pi\)
0.280668 + 0.959805i \(0.409444\pi\)
\(458\) 42.0000 1.96253
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) −7.00000 −0.326023 −0.163011 0.986624i \(-0.552121\pi\)
−0.163011 + 0.986624i \(0.552121\pi\)
\(462\) −20.0000 −0.930484
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) −8.00000 −0.371391
\(465\) 7.00000 0.324617
\(466\) 52.0000 2.40885
\(467\) 10.0000 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(468\) 0 0
\(469\) −28.0000 −1.29292
\(470\) 12.0000 0.553519
\(471\) −22.0000 −1.01371
\(472\) 0 0
\(473\) −50.0000 −2.29900
\(474\) −22.0000 −1.01049
\(475\) 1.00000 0.0458831
\(476\) −16.0000 −0.733359
\(477\) 6.00000 0.274721
\(478\) −22.0000 −1.00626
\(479\) −25.0000 −1.14228 −0.571140 0.820853i \(-0.693499\pi\)
−0.571140 + 0.820853i \(0.693499\pi\)
\(480\) 8.00000 0.365148
\(481\) 0 0
\(482\) 50.0000 2.27744
\(483\) 0 0
\(484\) 28.0000 1.27273
\(485\) −2.00000 −0.0908153
\(486\) −2.00000 −0.0907218
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 6.00000 0.271052
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) −2.00000 −0.0901670
\(493\) −8.00000 −0.360302
\(494\) 0 0
\(495\) 5.00000 0.224733
\(496\) −28.0000 −1.25724
\(497\) 10.0000 0.448561
\(498\) 12.0000 0.537733
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) 2.00000 0.0894427
\(501\) 14.0000 0.625474
\(502\) −6.00000 −0.267793
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) 17.0000 0.756490
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 24.0000 1.06483
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 8.00000 0.354246
\(511\) 20.0000 0.884748
\(512\) −32.0000 −1.41421
\(513\) 1.00000 0.0441511
\(514\) −12.0000 −0.529297
\(515\) 12.0000 0.528783
\(516\) −20.0000 −0.880451
\(517\) −30.0000 −1.31940
\(518\) −40.0000 −1.75750
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) −4.00000 −0.175075
\(523\) −8.00000 −0.349816 −0.174908 0.984585i \(-0.555963\pi\)
−0.174908 + 0.984585i \(0.555963\pi\)
\(524\) −14.0000 −0.611593
\(525\) 2.00000 0.0872872
\(526\) −24.0000 −1.04645
\(527\) −28.0000 −1.21970
\(528\) −20.0000 −0.870388
\(529\) 0 0
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 0 0
\(534\) −20.0000 −0.865485
\(535\) 0 0
\(536\) 0 0
\(537\) −15.0000 −0.647298
\(538\) −2.00000 −0.0862261
\(539\) −15.0000 −0.646096
\(540\) 2.00000 0.0860663
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) −32.0000 −1.37452
\(543\) −7.00000 −0.300399
\(544\) −32.0000 −1.37199
\(545\) 1.00000 0.0428353
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 32.0000 1.36697
\(549\) −9.00000 −0.384111
\(550\) −10.0000 −0.426401
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 22.0000 0.935535
\(554\) 44.0000 1.86938
\(555\) 10.0000 0.424476
\(556\) −10.0000 −0.424094
\(557\) 28.0000 1.18640 0.593199 0.805056i \(-0.297865\pi\)
0.593199 + 0.805056i \(0.297865\pi\)
\(558\) −14.0000 −0.592667
\(559\) 0 0
\(560\) −8.00000 −0.338062
\(561\) −20.0000 −0.844401
\(562\) −42.0000 −1.77166
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) −12.0000 −0.505291
\(565\) 8.00000 0.336563
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) −2.00000 −0.0837708
\(571\) 31.0000 1.29731 0.648655 0.761083i \(-0.275332\pi\)
0.648655 + 0.761083i \(0.275332\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 4.00000 0.166957
\(575\) 0 0
\(576\) −8.00000 −0.333333
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 2.00000 0.0831890
\(579\) 12.0000 0.498703
\(580\) 4.00000 0.166091
\(581\) −12.0000 −0.497844
\(582\) 4.00000 0.165805
\(583\) 30.0000 1.24247
\(584\) 0 0
\(585\) 0 0
\(586\) −32.0000 −1.32191
\(587\) −30.0000 −1.23823 −0.619116 0.785299i \(-0.712509\pi\)
−0.619116 + 0.785299i \(0.712509\pi\)
\(588\) −6.00000 −0.247436
\(589\) 7.00000 0.288430
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) −40.0000 −1.64399
\(593\) −38.0000 −1.56047 −0.780236 0.625485i \(-0.784901\pi\)
−0.780236 + 0.625485i \(0.784901\pi\)
\(594\) −10.0000 −0.410305
\(595\) −8.00000 −0.327968
\(596\) 30.0000 1.22885
\(597\) 21.0000 0.859473
\(598\) 0 0
\(599\) 19.0000 0.776319 0.388159 0.921592i \(-0.373111\pi\)
0.388159 + 0.921592i \(0.373111\pi\)
\(600\) 0 0
\(601\) 37.0000 1.50926 0.754631 0.656150i \(-0.227816\pi\)
0.754631 + 0.656150i \(0.227816\pi\)
\(602\) 40.0000 1.63028
\(603\) −14.0000 −0.570124
\(604\) 34.0000 1.38344
\(605\) 14.0000 0.569181
\(606\) −34.0000 −1.38116
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) 8.00000 0.324443
\(609\) 4.00000 0.162088
\(610\) 18.0000 0.728799
\(611\) 0 0
\(612\) −8.00000 −0.323381
\(613\) 36.0000 1.45403 0.727013 0.686624i \(-0.240908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 20.0000 0.807134
\(615\) −1.00000 −0.0403239
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) −24.0000 −0.965422
\(619\) 25.0000 1.00483 0.502417 0.864625i \(-0.332444\pi\)
0.502417 + 0.864625i \(0.332444\pi\)
\(620\) 14.0000 0.562254
\(621\) 0 0
\(622\) −48.0000 −1.92462
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −32.0000 −1.27898
\(627\) 5.00000 0.199681
\(628\) −44.0000 −1.75579
\(629\) −40.0000 −1.59490
\(630\) −4.00000 −0.159364
\(631\) 43.0000 1.71180 0.855901 0.517139i \(-0.173003\pi\)
0.855901 + 0.517139i \(0.173003\pi\)
\(632\) 0 0
\(633\) −7.00000 −0.278225
\(634\) 60.0000 2.38290
\(635\) 12.0000 0.476205
\(636\) 12.0000 0.475831
\(637\) 0 0
\(638\) −20.0000 −0.791808
\(639\) 5.00000 0.197797
\(640\) 0 0
\(641\) 29.0000 1.14543 0.572716 0.819754i \(-0.305890\pi\)
0.572716 + 0.819754i \(0.305890\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) −10.0000 −0.393750
\(646\) 8.00000 0.314756
\(647\) 26.0000 1.02217 0.511083 0.859532i \(-0.329245\pi\)
0.511083 + 0.859532i \(0.329245\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 14.0000 0.548703
\(652\) −8.00000 −0.313304
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) −2.00000 −0.0782062
\(655\) −7.00000 −0.273513
\(656\) 4.00000 0.156174
\(657\) 10.0000 0.390137
\(658\) 24.0000 0.935617
\(659\) 47.0000 1.83086 0.915430 0.402477i \(-0.131851\pi\)
0.915430 + 0.402477i \(0.131851\pi\)
\(660\) 10.0000 0.389249
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) 18.0000 0.699590
\(663\) 0 0
\(664\) 0 0
\(665\) 2.00000 0.0775567
\(666\) −20.0000 −0.774984
\(667\) 0 0
\(668\) 28.0000 1.08335
\(669\) −24.0000 −0.927894
\(670\) 28.0000 1.08173
\(671\) −45.0000 −1.73721
\(672\) 16.0000 0.617213
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 32.0000 1.23259
\(675\) 1.00000 0.0384900
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) −16.0000 −0.614476
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 24.0000 0.919682
\(682\) −70.0000 −2.68044
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 2.00000 0.0764719
\(685\) 16.0000 0.611329
\(686\) 40.0000 1.52721
\(687\) −21.0000 −0.801200
\(688\) 40.0000 1.52499
\(689\) 0 0
\(690\) 0 0
\(691\) 43.0000 1.63580 0.817899 0.575362i \(-0.195139\pi\)
0.817899 + 0.575362i \(0.195139\pi\)
\(692\) 28.0000 1.06440
\(693\) 10.0000 0.379869
\(694\) 60.0000 2.27757
\(695\) −5.00000 −0.189661
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) −4.00000 −0.151402
\(699\) −26.0000 −0.983410
\(700\) 4.00000 0.151186
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) −40.0000 −1.50756
\(705\) −6.00000 −0.225973
\(706\) 12.0000 0.451626
\(707\) 34.0000 1.27870
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) −10.0000 −0.375293
\(711\) 11.0000 0.412532
\(712\) 0 0
\(713\) 0 0
\(714\) 16.0000 0.598785
\(715\) 0 0
\(716\) −30.0000 −1.12115
\(717\) 11.0000 0.410803
\(718\) 16.0000 0.597115
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) −4.00000 −0.149071
\(721\) 24.0000 0.893807
\(722\) 36.0000 1.33978
\(723\) −25.0000 −0.929760
\(724\) −14.0000 −0.520306
\(725\) 2.00000 0.0742781
\(726\) −28.0000 −1.03918
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −20.0000 −0.740233
\(731\) 40.0000 1.47945
\(732\) −18.0000 −0.665299
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 56.0000 2.06700
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) −70.0000 −2.57848
\(738\) 2.00000 0.0736210
\(739\) 15.0000 0.551784 0.275892 0.961189i \(-0.411027\pi\)
0.275892 + 0.961189i \(0.411027\pi\)
\(740\) 20.0000 0.735215
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) 15.0000 0.549557
\(746\) −64.0000 −2.34321
\(747\) −6.00000 −0.219529
\(748\) −40.0000 −1.46254
\(749\) 0 0
\(750\) −2.00000 −0.0730297
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) 24.0000 0.875190
\(753\) 3.00000 0.109326
\(754\) 0 0
\(755\) 17.0000 0.618693
\(756\) 4.00000 0.145479
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 8.00000 0.290573
\(759\) 0 0
\(760\) 0 0
\(761\) −27.0000 −0.978749 −0.489375 0.872074i \(-0.662775\pi\)
−0.489375 + 0.872074i \(0.662775\pi\)
\(762\) −24.0000 −0.869428
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) −4.00000 −0.144620
\(766\) −68.0000 −2.45694
\(767\) 0 0
\(768\) 16.0000 0.577350
\(769\) 51.0000 1.83911 0.919554 0.392965i \(-0.128551\pi\)
0.919554 + 0.392965i \(0.128551\pi\)
\(770\) −20.0000 −0.720750
\(771\) 6.00000 0.216085
\(772\) 24.0000 0.863779
\(773\) 38.0000 1.36677 0.683383 0.730061i \(-0.260508\pi\)
0.683383 + 0.730061i \(0.260508\pi\)
\(774\) 20.0000 0.718885
\(775\) 7.00000 0.251447
\(776\) 0 0
\(777\) 20.0000 0.717496
\(778\) 50.0000 1.79259
\(779\) −1.00000 −0.0358287
\(780\) 0 0
\(781\) 25.0000 0.894570
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 12.0000 0.428571
\(785\) −22.0000 −0.785214
\(786\) 14.0000 0.499363
\(787\) −14.0000 −0.499046 −0.249523 0.968369i \(-0.580274\pi\)
−0.249523 + 0.968369i \(0.580274\pi\)
\(788\) −36.0000 −1.28245
\(789\) 12.0000 0.427211
\(790\) −22.0000 −0.782725
\(791\) 16.0000 0.568895
\(792\) 0 0
\(793\) 0 0
\(794\) 24.0000 0.851728
\(795\) 6.00000 0.212798
\(796\) 42.0000 1.48865
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) −4.00000 −0.141598
\(799\) 24.0000 0.849059
\(800\) 8.00000 0.282843
\(801\) 10.0000 0.353333
\(802\) 10.0000 0.353112
\(803\) 50.0000 1.76446
\(804\) −28.0000 −0.987484
\(805\) 0 0
\(806\) 0 0
\(807\) 1.00000 0.0352017
\(808\) 0 0
\(809\) −41.0000 −1.44148 −0.720742 0.693204i \(-0.756199\pi\)
−0.720742 + 0.693204i \(0.756199\pi\)
\(810\) −2.00000 −0.0702728
\(811\) −37.0000 −1.29925 −0.649623 0.760257i \(-0.725073\pi\)
−0.649623 + 0.760257i \(0.725073\pi\)
\(812\) 8.00000 0.280745
\(813\) 16.0000 0.561144
\(814\) −100.000 −3.50500
\(815\) −4.00000 −0.140114
\(816\) 16.0000 0.560112
\(817\) −10.0000 −0.349856
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) −2.00000 −0.0698430
\(821\) 7.00000 0.244302 0.122151 0.992512i \(-0.461021\pi\)
0.122151 + 0.992512i \(0.461021\pi\)
\(822\) −32.0000 −1.11613
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 0 0
\(825\) 5.00000 0.174078
\(826\) 0 0
\(827\) 4.00000 0.139094 0.0695468 0.997579i \(-0.477845\pi\)
0.0695468 + 0.997579i \(0.477845\pi\)
\(828\) 0 0
\(829\) 19.0000 0.659897 0.329949 0.943999i \(-0.392969\pi\)
0.329949 + 0.943999i \(0.392969\pi\)
\(830\) 12.0000 0.416526
\(831\) −22.0000 −0.763172
\(832\) 0 0
\(833\) 12.0000 0.415775
\(834\) 10.0000 0.346272
\(835\) 14.0000 0.484490
\(836\) 10.0000 0.345857
\(837\) 7.00000 0.241955
\(838\) 22.0000 0.759977
\(839\) 21.0000 0.725001 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 34.0000 1.17172
\(843\) 21.0000 0.723278
\(844\) −14.0000 −0.481900
\(845\) −13.0000 −0.447214
\(846\) 12.0000 0.412568
\(847\) 28.0000 0.962091
\(848\) −24.0000 −0.824163
\(849\) 0 0
\(850\) 8.00000 0.274398
\(851\) 0 0
\(852\) 10.0000 0.342594
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 36.0000 1.23189
\(855\) 1.00000 0.0341993
\(856\) 0 0
\(857\) −28.0000 −0.956462 −0.478231 0.878234i \(-0.658722\pi\)
−0.478231 + 0.878234i \(0.658722\pi\)
\(858\) 0 0
\(859\) 56.0000 1.91070 0.955348 0.295484i \(-0.0954809\pi\)
0.955348 + 0.295484i \(0.0954809\pi\)
\(860\) −20.0000 −0.681994
\(861\) −2.00000 −0.0681598
\(862\) −42.0000 −1.43053
\(863\) −14.0000 −0.476566 −0.238283 0.971196i \(-0.576585\pi\)
−0.238283 + 0.971196i \(0.576585\pi\)
\(864\) 8.00000 0.272166
\(865\) 14.0000 0.476014
\(866\) 16.0000 0.543702
\(867\) −1.00000 −0.0339618
\(868\) 28.0000 0.950382
\(869\) 55.0000 1.86575
\(870\) −4.00000 −0.135613
\(871\) 0 0
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 20.0000 0.675737
\(877\) −36.0000 −1.21563 −0.607817 0.794077i \(-0.707955\pi\)
−0.607817 + 0.794077i \(0.707955\pi\)
\(878\) −64.0000 −2.15990
\(879\) 16.0000 0.539667
\(880\) −20.0000 −0.674200
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 6.00000 0.202031
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −72.0000 −2.41889
\(887\) −6.00000 −0.201460 −0.100730 0.994914i \(-0.532118\pi\)
−0.100730 + 0.994914i \(0.532118\pi\)
\(888\) 0 0
\(889\) 24.0000 0.804934
\(890\) −20.0000 −0.670402
\(891\) 5.00000 0.167506
\(892\) −48.0000 −1.60716
\(893\) −6.00000 −0.200782
\(894\) −30.0000 −1.00335
\(895\) −15.0000 −0.501395
\(896\) 0 0
\(897\) 0 0
\(898\) 4.00000 0.133482
\(899\) 14.0000 0.466926
\(900\) 2.00000 0.0666667
\(901\) −24.0000 −0.799556
\(902\) 10.0000 0.332964
\(903\) −20.0000 −0.665558
\(904\) 0 0
\(905\) −7.00000 −0.232688
\(906\) −34.0000 −1.12957
\(907\) −38.0000 −1.26177 −0.630885 0.775877i \(-0.717308\pi\)
−0.630885 + 0.775877i \(0.717308\pi\)
\(908\) 48.0000 1.59294
\(909\) 17.0000 0.563854
\(910\) 0 0
\(911\) −13.0000 −0.430709 −0.215355 0.976536i \(-0.569091\pi\)
−0.215355 + 0.976536i \(0.569091\pi\)
\(912\) −4.00000 −0.132453
\(913\) −30.0000 −0.992855
\(914\) −24.0000 −0.793849
\(915\) −9.00000 −0.297531
\(916\) −42.0000 −1.38772
\(917\) −14.0000 −0.462321
\(918\) 8.00000 0.264039
\(919\) −37.0000 −1.22052 −0.610259 0.792202i \(-0.708935\pi\)
−0.610259 + 0.792202i \(0.708935\pi\)
\(920\) 0 0
\(921\) −10.0000 −0.329511
\(922\) 14.0000 0.461065
\(923\) 0 0
\(924\) 20.0000 0.657952
\(925\) 10.0000 0.328798
\(926\) 28.0000 0.920137
\(927\) 12.0000 0.394132
\(928\) 16.0000 0.525226
\(929\) −51.0000 −1.67326 −0.836628 0.547772i \(-0.815476\pi\)
−0.836628 + 0.547772i \(0.815476\pi\)
\(930\) −14.0000 −0.459078
\(931\) −3.00000 −0.0983210
\(932\) −52.0000 −1.70332
\(933\) 24.0000 0.785725
\(934\) −20.0000 −0.654420
\(935\) −20.0000 −0.654070
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 56.0000 1.82846
\(939\) 16.0000 0.522140
\(940\) −12.0000 −0.391397
\(941\) −13.0000 −0.423788 −0.211894 0.977293i \(-0.567963\pi\)
−0.211894 + 0.977293i \(0.567963\pi\)
\(942\) 44.0000 1.43360
\(943\) 0 0
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 100.000 3.25128
\(947\) −44.0000 −1.42981 −0.714904 0.699223i \(-0.753530\pi\)
−0.714904 + 0.699223i \(0.753530\pi\)
\(948\) 22.0000 0.714527
\(949\) 0 0
\(950\) −2.00000 −0.0648886
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) −12.0000 −0.388514
\(955\) 0 0
\(956\) 22.0000 0.711531
\(957\) 10.0000 0.323254
\(958\) 50.0000 1.61543
\(959\) 32.0000 1.03333
\(960\) −8.00000 −0.258199
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 0 0
\(964\) −50.0000 −1.61039
\(965\) 12.0000 0.386294
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) −4.00000 −0.128499
\(970\) 4.00000 0.128432
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) 2.00000 0.0641500
\(973\) −10.0000 −0.320585
\(974\) 24.0000 0.769010
\(975\) 0 0
\(976\) 36.0000 1.15233
\(977\) −16.0000 −0.511885 −0.255943 0.966692i \(-0.582386\pi\)
−0.255943 + 0.966692i \(0.582386\pi\)
\(978\) 8.00000 0.255812
\(979\) 50.0000 1.59801
\(980\) −6.00000 −0.191663
\(981\) 1.00000 0.0319275
\(982\) −56.0000 −1.78703
\(983\) −20.0000 −0.637901 −0.318950 0.947771i \(-0.603330\pi\)
−0.318950 + 0.947771i \(0.603330\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 16.0000 0.509544
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) 0 0
\(990\) −10.0000 −0.317821
\(991\) −28.0000 −0.889449 −0.444725 0.895667i \(-0.646698\pi\)
−0.444725 + 0.895667i \(0.646698\pi\)
\(992\) 56.0000 1.77800
\(993\) −9.00000 −0.285606
\(994\) −20.0000 −0.634361
\(995\) 21.0000 0.665745
\(996\) −12.0000 −0.380235
\(997\) −8.00000 −0.253363 −0.126681 0.991943i \(-0.540433\pi\)
−0.126681 + 0.991943i \(0.540433\pi\)
\(998\) 58.0000 1.83596
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.c.1.1 yes 1
23.22 odd 2 7935.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.a.1.1 1 23.22 odd 2
7935.2.a.c.1.1 yes 1 1.1 even 1 trivial