Properties

Label 7935.2.a.bw.1.12
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,11,25,31,25,11,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.134140 q^{2} +1.00000 q^{3} -1.98201 q^{4} +1.00000 q^{5} +0.134140 q^{6} +1.40831 q^{7} -0.534145 q^{8} +1.00000 q^{9} +0.134140 q^{10} -1.28753 q^{11} -1.98201 q^{12} +3.37933 q^{13} +0.188910 q^{14} +1.00000 q^{15} +3.89236 q^{16} +0.861872 q^{17} +0.134140 q^{18} +4.53452 q^{19} -1.98201 q^{20} +1.40831 q^{21} -0.172709 q^{22} -0.534145 q^{24} +1.00000 q^{25} +0.453302 q^{26} +1.00000 q^{27} -2.79128 q^{28} +0.141924 q^{29} +0.134140 q^{30} +2.54119 q^{31} +1.59041 q^{32} -1.28753 q^{33} +0.115611 q^{34} +1.40831 q^{35} -1.98201 q^{36} +1.11109 q^{37} +0.608259 q^{38} +3.37933 q^{39} -0.534145 q^{40} -6.00377 q^{41} +0.188910 q^{42} +0.457979 q^{43} +2.55190 q^{44} +1.00000 q^{45} +9.79441 q^{47} +3.89236 q^{48} -5.01666 q^{49} +0.134140 q^{50} +0.861872 q^{51} -6.69785 q^{52} +6.86866 q^{53} +0.134140 q^{54} -1.28753 q^{55} -0.752242 q^{56} +4.53452 q^{57} +0.0190377 q^{58} -2.57337 q^{59} -1.98201 q^{60} -12.6363 q^{61} +0.340875 q^{62} +1.40831 q^{63} -7.57139 q^{64} +3.37933 q^{65} -0.172709 q^{66} +1.94132 q^{67} -1.70824 q^{68} +0.188910 q^{70} +11.7487 q^{71} -0.534145 q^{72} -13.1015 q^{73} +0.149041 q^{74} +1.00000 q^{75} -8.98745 q^{76} -1.81325 q^{77} +0.453302 q^{78} +9.02887 q^{79} +3.89236 q^{80} +1.00000 q^{81} -0.805344 q^{82} +8.77272 q^{83} -2.79128 q^{84} +0.861872 q^{85} +0.0614331 q^{86} +0.141924 q^{87} +0.687730 q^{88} +4.17368 q^{89} +0.134140 q^{90} +4.75915 q^{91} +2.54119 q^{93} +1.31382 q^{94} +4.53452 q^{95} +1.59041 q^{96} -9.81329 q^{97} -0.672933 q^{98} -1.28753 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 11 q^{2} + 25 q^{3} + 31 q^{4} + 25 q^{5} + 11 q^{6} + 7 q^{7} + 33 q^{8} + 25 q^{9} + 11 q^{10} + 9 q^{11} + 31 q^{12} + 18 q^{13} + 11 q^{14} + 25 q^{15} + 39 q^{16} - 8 q^{17} + 11 q^{18} + 11 q^{19}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.134140 0.0948510 0.0474255 0.998875i \(-0.484898\pi\)
0.0474255 + 0.998875i \(0.484898\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.98201 −0.991003
\(5\) 1.00000 0.447214
\(6\) 0.134140 0.0547623
\(7\) 1.40831 0.532292 0.266146 0.963933i \(-0.414250\pi\)
0.266146 + 0.963933i \(0.414250\pi\)
\(8\) −0.534145 −0.188849
\(9\) 1.00000 0.333333
\(10\) 0.134140 0.0424187
\(11\) −1.28753 −0.388206 −0.194103 0.980981i \(-0.562180\pi\)
−0.194103 + 0.980981i \(0.562180\pi\)
\(12\) −1.98201 −0.572156
\(13\) 3.37933 0.937258 0.468629 0.883395i \(-0.344748\pi\)
0.468629 + 0.883395i \(0.344748\pi\)
\(14\) 0.188910 0.0504884
\(15\) 1.00000 0.258199
\(16\) 3.89236 0.973091
\(17\) 0.861872 0.209035 0.104517 0.994523i \(-0.466670\pi\)
0.104517 + 0.994523i \(0.466670\pi\)
\(18\) 0.134140 0.0316170
\(19\) 4.53452 1.04029 0.520145 0.854078i \(-0.325878\pi\)
0.520145 + 0.854078i \(0.325878\pi\)
\(20\) −1.98201 −0.443190
\(21\) 1.40831 0.307319
\(22\) −0.172709 −0.0368218
\(23\) 0 0
\(24\) −0.534145 −0.109032
\(25\) 1.00000 0.200000
\(26\) 0.453302 0.0888999
\(27\) 1.00000 0.192450
\(28\) −2.79128 −0.527503
\(29\) 0.141924 0.0263546 0.0131773 0.999913i \(-0.495805\pi\)
0.0131773 + 0.999913i \(0.495805\pi\)
\(30\) 0.134140 0.0244904
\(31\) 2.54119 0.456412 0.228206 0.973613i \(-0.426714\pi\)
0.228206 + 0.973613i \(0.426714\pi\)
\(32\) 1.59041 0.281147
\(33\) −1.28753 −0.224131
\(34\) 0.115611 0.0198271
\(35\) 1.40831 0.238048
\(36\) −1.98201 −0.330334
\(37\) 1.11109 0.182662 0.0913312 0.995821i \(-0.470888\pi\)
0.0913312 + 0.995821i \(0.470888\pi\)
\(38\) 0.608259 0.0986726
\(39\) 3.37933 0.541126
\(40\) −0.534145 −0.0844557
\(41\) −6.00377 −0.937632 −0.468816 0.883296i \(-0.655319\pi\)
−0.468816 + 0.883296i \(0.655319\pi\)
\(42\) 0.188910 0.0291495
\(43\) 0.457979 0.0698412 0.0349206 0.999390i \(-0.488882\pi\)
0.0349206 + 0.999390i \(0.488882\pi\)
\(44\) 2.55190 0.384714
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 9.79441 1.42866 0.714331 0.699808i \(-0.246731\pi\)
0.714331 + 0.699808i \(0.246731\pi\)
\(48\) 3.89236 0.561814
\(49\) −5.01666 −0.716666
\(50\) 0.134140 0.0189702
\(51\) 0.861872 0.120686
\(52\) −6.69785 −0.928825
\(53\) 6.86866 0.943483 0.471741 0.881737i \(-0.343626\pi\)
0.471741 + 0.881737i \(0.343626\pi\)
\(54\) 0.134140 0.0182541
\(55\) −1.28753 −0.173611
\(56\) −0.752242 −0.100523
\(57\) 4.53452 0.600612
\(58\) 0.0190377 0.00249977
\(59\) −2.57337 −0.335024 −0.167512 0.985870i \(-0.553573\pi\)
−0.167512 + 0.985870i \(0.553573\pi\)
\(60\) −1.98201 −0.255876
\(61\) −12.6363 −1.61792 −0.808959 0.587866i \(-0.799968\pi\)
−0.808959 + 0.587866i \(0.799968\pi\)
\(62\) 0.340875 0.0432911
\(63\) 1.40831 0.177431
\(64\) −7.57139 −0.946424
\(65\) 3.37933 0.419154
\(66\) −0.172709 −0.0212590
\(67\) 1.94132 0.237171 0.118585 0.992944i \(-0.462164\pi\)
0.118585 + 0.992944i \(0.462164\pi\)
\(68\) −1.70824 −0.207154
\(69\) 0 0
\(70\) 0.188910 0.0225791
\(71\) 11.7487 1.39431 0.697155 0.716920i \(-0.254449\pi\)
0.697155 + 0.716920i \(0.254449\pi\)
\(72\) −0.534145 −0.0629496
\(73\) −13.1015 −1.53342 −0.766710 0.641993i \(-0.778108\pi\)
−0.766710 + 0.641993i \(0.778108\pi\)
\(74\) 0.149041 0.0173257
\(75\) 1.00000 0.115470
\(76\) −8.98745 −1.03093
\(77\) −1.81325 −0.206639
\(78\) 0.453302 0.0513264
\(79\) 9.02887 1.01583 0.507914 0.861408i \(-0.330417\pi\)
0.507914 + 0.861408i \(0.330417\pi\)
\(80\) 3.89236 0.435179
\(81\) 1.00000 0.111111
\(82\) −0.805344 −0.0889354
\(83\) 8.77272 0.962931 0.481465 0.876465i \(-0.340105\pi\)
0.481465 + 0.876465i \(0.340105\pi\)
\(84\) −2.79128 −0.304554
\(85\) 0.861872 0.0934831
\(86\) 0.0614331 0.00662451
\(87\) 0.141924 0.0152159
\(88\) 0.687730 0.0733122
\(89\) 4.17368 0.442409 0.221205 0.975227i \(-0.429001\pi\)
0.221205 + 0.975227i \(0.429001\pi\)
\(90\) 0.134140 0.0141396
\(91\) 4.75915 0.498894
\(92\) 0 0
\(93\) 2.54119 0.263510
\(94\) 1.31382 0.135510
\(95\) 4.53452 0.465232
\(96\) 1.59041 0.162321
\(97\) −9.81329 −0.996388 −0.498194 0.867066i \(-0.666003\pi\)
−0.498194 + 0.867066i \(0.666003\pi\)
\(98\) −0.672933 −0.0679765
\(99\) −1.28753 −0.129402
\(100\) −1.98201 −0.198201
\(101\) 11.7058 1.16477 0.582385 0.812913i \(-0.302120\pi\)
0.582385 + 0.812913i \(0.302120\pi\)
\(102\) 0.115611 0.0114472
\(103\) 1.60861 0.158501 0.0792507 0.996855i \(-0.474747\pi\)
0.0792507 + 0.996855i \(0.474747\pi\)
\(104\) −1.80505 −0.177000
\(105\) 1.40831 0.137437
\(106\) 0.921359 0.0894903
\(107\) −11.4559 −1.10748 −0.553742 0.832688i \(-0.686801\pi\)
−0.553742 + 0.832688i \(0.686801\pi\)
\(108\) −1.98201 −0.190719
\(109\) −13.3491 −1.27861 −0.639305 0.768953i \(-0.720778\pi\)
−0.639305 + 0.768953i \(0.720778\pi\)
\(110\) −0.172709 −0.0164672
\(111\) 1.11109 0.105460
\(112\) 5.48166 0.517968
\(113\) 0.688799 0.0647968 0.0323984 0.999475i \(-0.489685\pi\)
0.0323984 + 0.999475i \(0.489685\pi\)
\(114\) 0.608259 0.0569686
\(115\) 0 0
\(116\) −0.281295 −0.0261175
\(117\) 3.37933 0.312419
\(118\) −0.345190 −0.0317773
\(119\) 1.21378 0.111267
\(120\) −0.534145 −0.0487605
\(121\) −9.34226 −0.849296
\(122\) −1.69503 −0.153461
\(123\) −6.00377 −0.541342
\(124\) −5.03666 −0.452306
\(125\) 1.00000 0.0894427
\(126\) 0.188910 0.0168295
\(127\) 11.7849 1.04574 0.522871 0.852412i \(-0.324861\pi\)
0.522871 + 0.852412i \(0.324861\pi\)
\(128\) −4.19644 −0.370917
\(129\) 0.457979 0.0403228
\(130\) 0.453302 0.0397572
\(131\) −3.01470 −0.263396 −0.131698 0.991290i \(-0.542043\pi\)
−0.131698 + 0.991290i \(0.542043\pi\)
\(132\) 2.55190 0.222114
\(133\) 6.38602 0.553738
\(134\) 0.260409 0.0224959
\(135\) 1.00000 0.0860663
\(136\) −0.460364 −0.0394759
\(137\) −13.3619 −1.14158 −0.570792 0.821095i \(-0.693364\pi\)
−0.570792 + 0.821095i \(0.693364\pi\)
\(138\) 0 0
\(139\) 21.1795 1.79642 0.898211 0.439564i \(-0.144867\pi\)
0.898211 + 0.439564i \(0.144867\pi\)
\(140\) −2.79128 −0.235906
\(141\) 9.79441 0.824838
\(142\) 1.57596 0.132252
\(143\) −4.35100 −0.363849
\(144\) 3.89236 0.324364
\(145\) 0.141924 0.0117862
\(146\) −1.75744 −0.145447
\(147\) −5.01666 −0.413767
\(148\) −2.20219 −0.181019
\(149\) 18.8009 1.54023 0.770116 0.637903i \(-0.220198\pi\)
0.770116 + 0.637903i \(0.220198\pi\)
\(150\) 0.134140 0.0109525
\(151\) 8.46485 0.688860 0.344430 0.938812i \(-0.388072\pi\)
0.344430 + 0.938812i \(0.388072\pi\)
\(152\) −2.42209 −0.196457
\(153\) 0.861872 0.0696782
\(154\) −0.243229 −0.0195999
\(155\) 2.54119 0.204114
\(156\) −6.69785 −0.536258
\(157\) 10.9352 0.872725 0.436363 0.899771i \(-0.356266\pi\)
0.436363 + 0.899771i \(0.356266\pi\)
\(158\) 1.21113 0.0963523
\(159\) 6.86866 0.544720
\(160\) 1.59041 0.125733
\(161\) 0 0
\(162\) 0.134140 0.0105390
\(163\) −0.692478 −0.0542391 −0.0271196 0.999632i \(-0.508633\pi\)
−0.0271196 + 0.999632i \(0.508633\pi\)
\(164\) 11.8995 0.929196
\(165\) −1.28753 −0.100234
\(166\) 1.17677 0.0913350
\(167\) 10.1707 0.787029 0.393515 0.919318i \(-0.371259\pi\)
0.393515 + 0.919318i \(0.371259\pi\)
\(168\) −0.752242 −0.0580368
\(169\) −1.58013 −0.121548
\(170\) 0.115611 0.00886697
\(171\) 4.53452 0.346763
\(172\) −0.907717 −0.0692128
\(173\) −4.95681 −0.376860 −0.188430 0.982087i \(-0.560340\pi\)
−0.188430 + 0.982087i \(0.560340\pi\)
\(174\) 0.0190377 0.00144324
\(175\) 1.40831 0.106458
\(176\) −5.01155 −0.377760
\(177\) −2.57337 −0.193426
\(178\) 0.559856 0.0419630
\(179\) 3.66827 0.274179 0.137090 0.990559i \(-0.456225\pi\)
0.137090 + 0.990559i \(0.456225\pi\)
\(180\) −1.98201 −0.147730
\(181\) −11.2547 −0.836553 −0.418277 0.908320i \(-0.637366\pi\)
−0.418277 + 0.908320i \(0.637366\pi\)
\(182\) 0.638391 0.0473207
\(183\) −12.6363 −0.934105
\(184\) 0 0
\(185\) 1.11109 0.0816891
\(186\) 0.340875 0.0249942
\(187\) −1.10969 −0.0811485
\(188\) −19.4126 −1.41581
\(189\) 1.40831 0.102440
\(190\) 0.608259 0.0441277
\(191\) −14.6343 −1.05890 −0.529450 0.848341i \(-0.677602\pi\)
−0.529450 + 0.848341i \(0.677602\pi\)
\(192\) −7.57139 −0.546418
\(193\) 16.6634 1.19945 0.599727 0.800204i \(-0.295276\pi\)
0.599727 + 0.800204i \(0.295276\pi\)
\(194\) −1.31635 −0.0945085
\(195\) 3.37933 0.241999
\(196\) 9.94305 0.710218
\(197\) −0.330824 −0.0235702 −0.0117851 0.999931i \(-0.503751\pi\)
−0.0117851 + 0.999931i \(0.503751\pi\)
\(198\) −0.172709 −0.0122739
\(199\) −0.859901 −0.0609568 −0.0304784 0.999535i \(-0.509703\pi\)
−0.0304784 + 0.999535i \(0.509703\pi\)
\(200\) −0.534145 −0.0377697
\(201\) 1.94132 0.136930
\(202\) 1.57021 0.110480
\(203\) 0.199873 0.0140284
\(204\) −1.70824 −0.119600
\(205\) −6.00377 −0.419322
\(206\) 0.215779 0.0150340
\(207\) 0 0
\(208\) 13.1536 0.912037
\(209\) −5.83835 −0.403847
\(210\) 0.188910 0.0130361
\(211\) −9.90476 −0.681872 −0.340936 0.940087i \(-0.610744\pi\)
−0.340936 + 0.940087i \(0.610744\pi\)
\(212\) −13.6137 −0.934995
\(213\) 11.7487 0.805005
\(214\) −1.53669 −0.105046
\(215\) 0.457979 0.0312339
\(216\) −0.534145 −0.0363440
\(217\) 3.57879 0.242944
\(218\) −1.79064 −0.121278
\(219\) −13.1015 −0.885321
\(220\) 2.55190 0.172049
\(221\) 2.91255 0.195919
\(222\) 0.149041 0.0100030
\(223\) 16.2314 1.08694 0.543468 0.839430i \(-0.317111\pi\)
0.543468 + 0.839430i \(0.317111\pi\)
\(224\) 2.23979 0.149652
\(225\) 1.00000 0.0666667
\(226\) 0.0923953 0.00614604
\(227\) −4.16741 −0.276601 −0.138300 0.990390i \(-0.544164\pi\)
−0.138300 + 0.990390i \(0.544164\pi\)
\(228\) −8.98745 −0.595208
\(229\) 16.8228 1.11168 0.555842 0.831288i \(-0.312396\pi\)
0.555842 + 0.831288i \(0.312396\pi\)
\(230\) 0 0
\(231\) −1.81325 −0.119303
\(232\) −0.0758081 −0.00497704
\(233\) 15.1068 0.989678 0.494839 0.868985i \(-0.335227\pi\)
0.494839 + 0.868985i \(0.335227\pi\)
\(234\) 0.453302 0.0296333
\(235\) 9.79441 0.638917
\(236\) 5.10043 0.332010
\(237\) 9.02887 0.586488
\(238\) 0.162817 0.0105538
\(239\) 12.3303 0.797580 0.398790 0.917042i \(-0.369430\pi\)
0.398790 + 0.917042i \(0.369430\pi\)
\(240\) 3.89236 0.251251
\(241\) −12.9679 −0.835336 −0.417668 0.908600i \(-0.637153\pi\)
−0.417668 + 0.908600i \(0.637153\pi\)
\(242\) −1.25317 −0.0805566
\(243\) 1.00000 0.0641500
\(244\) 25.0453 1.60336
\(245\) −5.01666 −0.320503
\(246\) −0.805344 −0.0513469
\(247\) 15.3236 0.975020
\(248\) −1.35737 −0.0861928
\(249\) 8.77272 0.555948
\(250\) 0.134140 0.00848374
\(251\) −5.73804 −0.362182 −0.181091 0.983466i \(-0.557963\pi\)
−0.181091 + 0.983466i \(0.557963\pi\)
\(252\) −2.79128 −0.175834
\(253\) 0 0
\(254\) 1.58082 0.0991897
\(255\) 0.861872 0.0539725
\(256\) 14.5799 0.911242
\(257\) 14.3494 0.895091 0.447546 0.894261i \(-0.352298\pi\)
0.447546 + 0.894261i \(0.352298\pi\)
\(258\) 0.0614331 0.00382466
\(259\) 1.56476 0.0972297
\(260\) −6.69785 −0.415383
\(261\) 0.141924 0.00878488
\(262\) −0.404391 −0.0249833
\(263\) 26.1373 1.61170 0.805848 0.592122i \(-0.201710\pi\)
0.805848 + 0.592122i \(0.201710\pi\)
\(264\) 0.687730 0.0423268
\(265\) 6.86866 0.421938
\(266\) 0.856618 0.0525226
\(267\) 4.17368 0.255425
\(268\) −3.84772 −0.235037
\(269\) 22.9787 1.40104 0.700519 0.713633i \(-0.252952\pi\)
0.700519 + 0.713633i \(0.252952\pi\)
\(270\) 0.134140 0.00816348
\(271\) −0.852912 −0.0518107 −0.0259054 0.999664i \(-0.508247\pi\)
−0.0259054 + 0.999664i \(0.508247\pi\)
\(272\) 3.35472 0.203410
\(273\) 4.75915 0.288037
\(274\) −1.79236 −0.108280
\(275\) −1.28753 −0.0776412
\(276\) 0 0
\(277\) 25.8752 1.55469 0.777346 0.629074i \(-0.216566\pi\)
0.777346 + 0.629074i \(0.216566\pi\)
\(278\) 2.84101 0.170393
\(279\) 2.54119 0.152137
\(280\) −0.752242 −0.0449551
\(281\) −13.8201 −0.824438 −0.412219 0.911085i \(-0.635246\pi\)
−0.412219 + 0.911085i \(0.635246\pi\)
\(282\) 1.31382 0.0782367
\(283\) −24.8397 −1.47657 −0.738285 0.674489i \(-0.764364\pi\)
−0.738285 + 0.674489i \(0.764364\pi\)
\(284\) −23.2859 −1.38177
\(285\) 4.53452 0.268602
\(286\) −0.583642 −0.0345115
\(287\) −8.45518 −0.499094
\(288\) 1.59041 0.0937158
\(289\) −16.2572 −0.956305
\(290\) 0.0190377 0.00111793
\(291\) −9.81329 −0.575265
\(292\) 25.9674 1.51962
\(293\) 29.1869 1.70511 0.852557 0.522634i \(-0.175051\pi\)
0.852557 + 0.522634i \(0.175051\pi\)
\(294\) −0.672933 −0.0392462
\(295\) −2.57337 −0.149827
\(296\) −0.593484 −0.0344956
\(297\) −1.28753 −0.0747103
\(298\) 2.52195 0.146093
\(299\) 0 0
\(300\) −1.98201 −0.114431
\(301\) 0.644977 0.0371759
\(302\) 1.13547 0.0653391
\(303\) 11.7058 0.672480
\(304\) 17.6500 1.01230
\(305\) −12.6363 −0.723554
\(306\) 0.115611 0.00660905
\(307\) −6.60542 −0.376991 −0.188496 0.982074i \(-0.560361\pi\)
−0.188496 + 0.982074i \(0.560361\pi\)
\(308\) 3.59387 0.204780
\(309\) 1.60861 0.0915109
\(310\) 0.340875 0.0193604
\(311\) 10.4145 0.590551 0.295275 0.955412i \(-0.404589\pi\)
0.295275 + 0.955412i \(0.404589\pi\)
\(312\) −1.80505 −0.102191
\(313\) −11.7947 −0.666673 −0.333337 0.942808i \(-0.608175\pi\)
−0.333337 + 0.942808i \(0.608175\pi\)
\(314\) 1.46685 0.0827789
\(315\) 1.40831 0.0793494
\(316\) −17.8953 −1.00669
\(317\) 6.78166 0.380896 0.190448 0.981697i \(-0.439006\pi\)
0.190448 + 0.981697i \(0.439006\pi\)
\(318\) 0.921359 0.0516673
\(319\) −0.182732 −0.0102310
\(320\) −7.57139 −0.423254
\(321\) −11.4559 −0.639406
\(322\) 0 0
\(323\) 3.90817 0.217457
\(324\) −1.98201 −0.110111
\(325\) 3.37933 0.187452
\(326\) −0.0928888 −0.00514464
\(327\) −13.3491 −0.738206
\(328\) 3.20689 0.177071
\(329\) 13.7936 0.760464
\(330\) −0.172709 −0.00950734
\(331\) −2.93591 −0.161372 −0.0806861 0.996740i \(-0.525711\pi\)
−0.0806861 + 0.996740i \(0.525711\pi\)
\(332\) −17.3876 −0.954268
\(333\) 1.11109 0.0608875
\(334\) 1.36429 0.0746505
\(335\) 1.94132 0.106066
\(336\) 5.48166 0.299049
\(337\) 0.496772 0.0270609 0.0135304 0.999908i \(-0.495693\pi\)
0.0135304 + 0.999908i \(0.495693\pi\)
\(338\) −0.211958 −0.0115290
\(339\) 0.688799 0.0374105
\(340\) −1.70824 −0.0926421
\(341\) −3.27187 −0.177182
\(342\) 0.608259 0.0328909
\(343\) −16.9232 −0.913767
\(344\) −0.244627 −0.0131894
\(345\) 0 0
\(346\) −0.664905 −0.0357455
\(347\) −1.64036 −0.0880591 −0.0440295 0.999030i \(-0.514020\pi\)
−0.0440295 + 0.999030i \(0.514020\pi\)
\(348\) −0.281295 −0.0150790
\(349\) 3.83098 0.205068 0.102534 0.994730i \(-0.467305\pi\)
0.102534 + 0.994730i \(0.467305\pi\)
\(350\) 0.188910 0.0100977
\(351\) 3.37933 0.180375
\(352\) −2.04771 −0.109143
\(353\) 24.6561 1.31231 0.656156 0.754625i \(-0.272181\pi\)
0.656156 + 0.754625i \(0.272181\pi\)
\(354\) −0.345190 −0.0183467
\(355\) 11.7487 0.623554
\(356\) −8.27226 −0.438429
\(357\) 1.21378 0.0642402
\(358\) 0.492060 0.0260062
\(359\) −0.343744 −0.0181421 −0.00907105 0.999959i \(-0.502887\pi\)
−0.00907105 + 0.999959i \(0.502887\pi\)
\(360\) −0.534145 −0.0281519
\(361\) 1.56186 0.0822033
\(362\) −1.50970 −0.0793479
\(363\) −9.34226 −0.490341
\(364\) −9.43267 −0.494406
\(365\) −13.1015 −0.685766
\(366\) −1.69503 −0.0886008
\(367\) 37.1658 1.94004 0.970018 0.243032i \(-0.0781420\pi\)
0.970018 + 0.243032i \(0.0781420\pi\)
\(368\) 0 0
\(369\) −6.00377 −0.312544
\(370\) 0.149041 0.00774830
\(371\) 9.67321 0.502208
\(372\) −5.03666 −0.261139
\(373\) −16.6661 −0.862938 −0.431469 0.902128i \(-0.642005\pi\)
−0.431469 + 0.902128i \(0.642005\pi\)
\(374\) −0.148853 −0.00769702
\(375\) 1.00000 0.0516398
\(376\) −5.23163 −0.269801
\(377\) 0.479609 0.0247011
\(378\) 0.188910 0.00971650
\(379\) −24.2487 −1.24557 −0.622787 0.782391i \(-0.714000\pi\)
−0.622787 + 0.782391i \(0.714000\pi\)
\(380\) −8.98745 −0.461046
\(381\) 11.7849 0.603759
\(382\) −1.96304 −0.100438
\(383\) −33.1413 −1.69344 −0.846719 0.532040i \(-0.821426\pi\)
−0.846719 + 0.532040i \(0.821426\pi\)
\(384\) −4.19644 −0.214149
\(385\) −1.81325 −0.0924117
\(386\) 2.23522 0.113770
\(387\) 0.457979 0.0232804
\(388\) 19.4500 0.987424
\(389\) −23.9454 −1.21408 −0.607039 0.794672i \(-0.707643\pi\)
−0.607039 + 0.794672i \(0.707643\pi\)
\(390\) 0.453302 0.0229538
\(391\) 0 0
\(392\) 2.67962 0.135341
\(393\) −3.01470 −0.152071
\(394\) −0.0443766 −0.00223566
\(395\) 9.02887 0.454292
\(396\) 2.55190 0.128238
\(397\) 28.0776 1.40918 0.704588 0.709617i \(-0.251132\pi\)
0.704588 + 0.709617i \(0.251132\pi\)
\(398\) −0.115347 −0.00578181
\(399\) 6.38602 0.319701
\(400\) 3.89236 0.194618
\(401\) 32.0970 1.60285 0.801425 0.598096i \(-0.204076\pi\)
0.801425 + 0.598096i \(0.204076\pi\)
\(402\) 0.260409 0.0129880
\(403\) 8.58753 0.427775
\(404\) −23.2010 −1.15429
\(405\) 1.00000 0.0496904
\(406\) 0.0268109 0.00133060
\(407\) −1.43057 −0.0709106
\(408\) −0.460364 −0.0227914
\(409\) 21.2017 1.04835 0.524177 0.851609i \(-0.324373\pi\)
0.524177 + 0.851609i \(0.324373\pi\)
\(410\) −0.805344 −0.0397731
\(411\) −13.3619 −0.659094
\(412\) −3.18828 −0.157075
\(413\) −3.62410 −0.178330
\(414\) 0 0
\(415\) 8.77272 0.430636
\(416\) 5.37452 0.263508
\(417\) 21.1795 1.03717
\(418\) −0.783154 −0.0383053
\(419\) −11.6106 −0.567216 −0.283608 0.958940i \(-0.591531\pi\)
−0.283608 + 0.958940i \(0.591531\pi\)
\(420\) −2.79128 −0.136201
\(421\) −31.6491 −1.54248 −0.771241 0.636543i \(-0.780364\pi\)
−0.771241 + 0.636543i \(0.780364\pi\)
\(422\) −1.32862 −0.0646762
\(423\) 9.79441 0.476220
\(424\) −3.66886 −0.178176
\(425\) 0.861872 0.0418069
\(426\) 1.57596 0.0763556
\(427\) −17.7959 −0.861204
\(428\) 22.7057 1.09752
\(429\) −4.35100 −0.210068
\(430\) 0.0614331 0.00296257
\(431\) −39.1490 −1.88574 −0.942870 0.333160i \(-0.891885\pi\)
−0.942870 + 0.333160i \(0.891885\pi\)
\(432\) 3.89236 0.187271
\(433\) 17.4268 0.837480 0.418740 0.908106i \(-0.362472\pi\)
0.418740 + 0.908106i \(0.362472\pi\)
\(434\) 0.480058 0.0230435
\(435\) 0.141924 0.00680474
\(436\) 26.4580 1.26711
\(437\) 0 0
\(438\) −1.75744 −0.0839736
\(439\) −18.9444 −0.904168 −0.452084 0.891975i \(-0.649319\pi\)
−0.452084 + 0.891975i \(0.649319\pi\)
\(440\) 0.687730 0.0327862
\(441\) −5.01666 −0.238889
\(442\) 0.390688 0.0185831
\(443\) 38.0054 1.80569 0.902846 0.429963i \(-0.141474\pi\)
0.902846 + 0.429963i \(0.141474\pi\)
\(444\) −2.20219 −0.104511
\(445\) 4.17368 0.197851
\(446\) 2.17728 0.103097
\(447\) 18.8009 0.889254
\(448\) −10.6629 −0.503773
\(449\) 12.4939 0.589622 0.294811 0.955556i \(-0.404743\pi\)
0.294811 + 0.955556i \(0.404743\pi\)
\(450\) 0.134140 0.00632340
\(451\) 7.73006 0.363994
\(452\) −1.36520 −0.0642138
\(453\) 8.46485 0.397713
\(454\) −0.559015 −0.0262359
\(455\) 4.75915 0.223112
\(456\) −2.42209 −0.113425
\(457\) −11.2994 −0.528566 −0.264283 0.964445i \(-0.585135\pi\)
−0.264283 + 0.964445i \(0.585135\pi\)
\(458\) 2.25661 0.105444
\(459\) 0.861872 0.0402287
\(460\) 0 0
\(461\) −28.8897 −1.34553 −0.672764 0.739857i \(-0.734893\pi\)
−0.672764 + 0.739857i \(0.734893\pi\)
\(462\) −0.243229 −0.0113160
\(463\) −40.4788 −1.88121 −0.940605 0.339503i \(-0.889741\pi\)
−0.940605 + 0.339503i \(0.889741\pi\)
\(464\) 0.552420 0.0256455
\(465\) 2.54119 0.117845
\(466\) 2.02642 0.0938720
\(467\) 25.5647 1.18299 0.591496 0.806308i \(-0.298538\pi\)
0.591496 + 0.806308i \(0.298538\pi\)
\(468\) −6.69785 −0.309608
\(469\) 2.73399 0.126244
\(470\) 1.31382 0.0606019
\(471\) 10.9352 0.503868
\(472\) 1.37455 0.0632688
\(473\) −0.589664 −0.0271128
\(474\) 1.21113 0.0556290
\(475\) 4.53452 0.208058
\(476\) −2.40573 −0.110266
\(477\) 6.86866 0.314494
\(478\) 1.65398 0.0756513
\(479\) −3.38669 −0.154742 −0.0773709 0.997002i \(-0.524653\pi\)
−0.0773709 + 0.997002i \(0.524653\pi\)
\(480\) 1.59041 0.0725920
\(481\) 3.75475 0.171202
\(482\) −1.73951 −0.0792325
\(483\) 0 0
\(484\) 18.5164 0.841655
\(485\) −9.81329 −0.445598
\(486\) 0.134140 0.00608470
\(487\) −15.8311 −0.717374 −0.358687 0.933458i \(-0.616775\pi\)
−0.358687 + 0.933458i \(0.616775\pi\)
\(488\) 6.74963 0.305542
\(489\) −0.692478 −0.0313150
\(490\) −0.672933 −0.0304000
\(491\) −42.9674 −1.93909 −0.969545 0.244912i \(-0.921241\pi\)
−0.969545 + 0.244912i \(0.921241\pi\)
\(492\) 11.8995 0.536472
\(493\) 0.122320 0.00550903
\(494\) 2.05551 0.0924816
\(495\) −1.28753 −0.0578703
\(496\) 9.89125 0.444130
\(497\) 16.5458 0.742180
\(498\) 1.17677 0.0527323
\(499\) 6.76943 0.303041 0.151521 0.988454i \(-0.451583\pi\)
0.151521 + 0.988454i \(0.451583\pi\)
\(500\) −1.98201 −0.0886380
\(501\) 10.1707 0.454391
\(502\) −0.769699 −0.0343533
\(503\) −0.984445 −0.0438942 −0.0219471 0.999759i \(-0.506987\pi\)
−0.0219471 + 0.999759i \(0.506987\pi\)
\(504\) −0.752242 −0.0335075
\(505\) 11.7058 0.520901
\(506\) 0 0
\(507\) −1.58013 −0.0701759
\(508\) −23.3578 −1.03633
\(509\) 44.4901 1.97199 0.985995 0.166775i \(-0.0533354\pi\)
0.985995 + 0.166775i \(0.0533354\pi\)
\(510\) 0.115611 0.00511935
\(511\) −18.4511 −0.816227
\(512\) 10.3486 0.457349
\(513\) 4.53452 0.200204
\(514\) 1.92482 0.0849003
\(515\) 1.60861 0.0708840
\(516\) −0.907717 −0.0399600
\(517\) −12.6106 −0.554615
\(518\) 0.209897 0.00922234
\(519\) −4.95681 −0.217580
\(520\) −1.80505 −0.0791568
\(521\) −11.9964 −0.525574 −0.262787 0.964854i \(-0.584642\pi\)
−0.262787 + 0.964854i \(0.584642\pi\)
\(522\) 0.0190377 0.000833255 0
\(523\) 32.0276 1.40047 0.700234 0.713913i \(-0.253079\pi\)
0.700234 + 0.713913i \(0.253079\pi\)
\(524\) 5.97515 0.261026
\(525\) 1.40831 0.0614638
\(526\) 3.50605 0.152871
\(527\) 2.19018 0.0954059
\(528\) −5.01155 −0.218100
\(529\) 0 0
\(530\) 0.921359 0.0400213
\(531\) −2.57337 −0.111675
\(532\) −12.6571 −0.548756
\(533\) −20.2887 −0.878803
\(534\) 0.559856 0.0242273
\(535\) −11.4559 −0.495282
\(536\) −1.03695 −0.0447894
\(537\) 3.66827 0.158297
\(538\) 3.08236 0.132890
\(539\) 6.45912 0.278214
\(540\) −1.98201 −0.0852920
\(541\) 37.0420 1.59256 0.796281 0.604928i \(-0.206798\pi\)
0.796281 + 0.604928i \(0.206798\pi\)
\(542\) −0.114409 −0.00491430
\(543\) −11.2547 −0.482984
\(544\) 1.37073 0.0587695
\(545\) −13.3491 −0.571812
\(546\) 0.638391 0.0273206
\(547\) 25.1082 1.07355 0.536775 0.843725i \(-0.319642\pi\)
0.536775 + 0.843725i \(0.319642\pi\)
\(548\) 26.4834 1.13131
\(549\) −12.6363 −0.539306
\(550\) −0.172709 −0.00736435
\(551\) 0.643558 0.0274165
\(552\) 0 0
\(553\) 12.7155 0.540717
\(554\) 3.47089 0.147464
\(555\) 1.11109 0.0471632
\(556\) −41.9779 −1.78026
\(557\) 23.0692 0.977474 0.488737 0.872431i \(-0.337458\pi\)
0.488737 + 0.872431i \(0.337458\pi\)
\(558\) 0.340875 0.0144304
\(559\) 1.54766 0.0654592
\(560\) 5.48166 0.231642
\(561\) −1.10969 −0.0468511
\(562\) −1.85382 −0.0781988
\(563\) −4.58369 −0.193180 −0.0965898 0.995324i \(-0.530794\pi\)
−0.0965898 + 0.995324i \(0.530794\pi\)
\(564\) −19.4126 −0.817417
\(565\) 0.688799 0.0289780
\(566\) −3.33199 −0.140054
\(567\) 1.40831 0.0591435
\(568\) −6.27549 −0.263314
\(569\) −6.41641 −0.268990 −0.134495 0.990914i \(-0.542941\pi\)
−0.134495 + 0.990914i \(0.542941\pi\)
\(570\) 0.608259 0.0254772
\(571\) −7.89001 −0.330187 −0.165093 0.986278i \(-0.552793\pi\)
−0.165093 + 0.986278i \(0.552793\pi\)
\(572\) 8.62372 0.360576
\(573\) −14.6343 −0.611356
\(574\) −1.13418 −0.0473396
\(575\) 0 0
\(576\) −7.57139 −0.315475
\(577\) 16.4756 0.685887 0.342943 0.939356i \(-0.388576\pi\)
0.342943 + 0.939356i \(0.388576\pi\)
\(578\) −2.18073 −0.0907065
\(579\) 16.6634 0.692505
\(580\) −0.281295 −0.0116801
\(581\) 12.3547 0.512560
\(582\) −1.31635 −0.0545645
\(583\) −8.84363 −0.366266
\(584\) 6.99813 0.289585
\(585\) 3.37933 0.139718
\(586\) 3.91511 0.161732
\(587\) 1.41824 0.0585369 0.0292684 0.999572i \(-0.490682\pi\)
0.0292684 + 0.999572i \(0.490682\pi\)
\(588\) 9.94305 0.410044
\(589\) 11.5231 0.474801
\(590\) −0.345190 −0.0142113
\(591\) −0.330824 −0.0136083
\(592\) 4.32477 0.177747
\(593\) −4.81969 −0.197921 −0.0989605 0.995091i \(-0.531552\pi\)
−0.0989605 + 0.995091i \(0.531552\pi\)
\(594\) −0.172709 −0.00708635
\(595\) 1.21378 0.0497603
\(596\) −37.2636 −1.52638
\(597\) −0.859901 −0.0351934
\(598\) 0 0
\(599\) 32.5707 1.33080 0.665400 0.746487i \(-0.268261\pi\)
0.665400 + 0.746487i \(0.268261\pi\)
\(600\) −0.534145 −0.0218064
\(601\) −26.5112 −1.08141 −0.540707 0.841211i \(-0.681843\pi\)
−0.540707 + 0.841211i \(0.681843\pi\)
\(602\) 0.0865170 0.00352617
\(603\) 1.94132 0.0790569
\(604\) −16.7774 −0.682662
\(605\) −9.34226 −0.379817
\(606\) 1.57021 0.0637855
\(607\) −23.1138 −0.938162 −0.469081 0.883155i \(-0.655415\pi\)
−0.469081 + 0.883155i \(0.655415\pi\)
\(608\) 7.21174 0.292475
\(609\) 0.199873 0.00809928
\(610\) −1.69503 −0.0686299
\(611\) 33.0985 1.33902
\(612\) −1.70824 −0.0690513
\(613\) 6.96631 0.281367 0.140683 0.990055i \(-0.455070\pi\)
0.140683 + 0.990055i \(0.455070\pi\)
\(614\) −0.886049 −0.0357580
\(615\) −6.00377 −0.242096
\(616\) 0.968538 0.0390235
\(617\) 1.10971 0.0446752 0.0223376 0.999750i \(-0.492889\pi\)
0.0223376 + 0.999750i \(0.492889\pi\)
\(618\) 0.215779 0.00867990
\(619\) 20.4682 0.822688 0.411344 0.911480i \(-0.365059\pi\)
0.411344 + 0.911480i \(0.365059\pi\)
\(620\) −5.03666 −0.202277
\(621\) 0 0
\(622\) 1.39699 0.0560144
\(623\) 5.87784 0.235491
\(624\) 13.1536 0.526565
\(625\) 1.00000 0.0400000
\(626\) −1.58213 −0.0632346
\(627\) −5.83835 −0.233161
\(628\) −21.6737 −0.864874
\(629\) 0.957619 0.0381828
\(630\) 0.188910 0.00752637
\(631\) 41.8153 1.66464 0.832320 0.554296i \(-0.187012\pi\)
0.832320 + 0.554296i \(0.187012\pi\)
\(632\) −4.82273 −0.191838
\(633\) −9.90476 −0.393679
\(634\) 0.909690 0.0361284
\(635\) 11.7849 0.467670
\(636\) −13.6137 −0.539819
\(637\) −16.9529 −0.671700
\(638\) −0.0245116 −0.000970424 0
\(639\) 11.7487 0.464770
\(640\) −4.19644 −0.165879
\(641\) −3.61951 −0.142962 −0.0714811 0.997442i \(-0.522773\pi\)
−0.0714811 + 0.997442i \(0.522773\pi\)
\(642\) −1.53669 −0.0606483
\(643\) −15.3747 −0.606319 −0.303159 0.952940i \(-0.598041\pi\)
−0.303159 + 0.952940i \(0.598041\pi\)
\(644\) 0 0
\(645\) 0.457979 0.0180329
\(646\) 0.524241 0.0206260
\(647\) −24.7287 −0.972184 −0.486092 0.873908i \(-0.661578\pi\)
−0.486092 + 0.873908i \(0.661578\pi\)
\(648\) −0.534145 −0.0209832
\(649\) 3.31330 0.130058
\(650\) 0.453302 0.0177800
\(651\) 3.57879 0.140264
\(652\) 1.37250 0.0537511
\(653\) 17.0730 0.668117 0.334058 0.942552i \(-0.391582\pi\)
0.334058 + 0.942552i \(0.391582\pi\)
\(654\) −1.79064 −0.0700196
\(655\) −3.01470 −0.117794
\(656\) −23.3689 −0.912401
\(657\) −13.1015 −0.511140
\(658\) 1.85027 0.0721308
\(659\) 35.7517 1.39269 0.696344 0.717708i \(-0.254809\pi\)
0.696344 + 0.717708i \(0.254809\pi\)
\(660\) 2.55190 0.0993326
\(661\) 33.2447 1.29307 0.646535 0.762884i \(-0.276217\pi\)
0.646535 + 0.762884i \(0.276217\pi\)
\(662\) −0.393822 −0.0153063
\(663\) 2.91255 0.113114
\(664\) −4.68590 −0.181848
\(665\) 6.38602 0.247639
\(666\) 0.149041 0.00577524
\(667\) 0 0
\(668\) −20.1583 −0.779948
\(669\) 16.2314 0.627543
\(670\) 0.260409 0.0100605
\(671\) 16.2697 0.628085
\(672\) 2.23979 0.0864019
\(673\) 30.4717 1.17460 0.587300 0.809370i \(-0.300191\pi\)
0.587300 + 0.809370i \(0.300191\pi\)
\(674\) 0.0666368 0.00256675
\(675\) 1.00000 0.0384900
\(676\) 3.13182 0.120455
\(677\) 7.32746 0.281617 0.140809 0.990037i \(-0.455030\pi\)
0.140809 + 0.990037i \(0.455030\pi\)
\(678\) 0.0923953 0.00354842
\(679\) −13.8202 −0.530369
\(680\) −0.460364 −0.0176542
\(681\) −4.16741 −0.159696
\(682\) −0.438888 −0.0168059
\(683\) −40.1671 −1.53695 −0.768475 0.639879i \(-0.778984\pi\)
−0.768475 + 0.639879i \(0.778984\pi\)
\(684\) −8.98745 −0.343644
\(685\) −13.3619 −0.510532
\(686\) −2.27007 −0.0866717
\(687\) 16.8228 0.641831
\(688\) 1.78262 0.0679618
\(689\) 23.2115 0.884287
\(690\) 0 0
\(691\) −7.48468 −0.284731 −0.142365 0.989814i \(-0.545471\pi\)
−0.142365 + 0.989814i \(0.545471\pi\)
\(692\) 9.82444 0.373469
\(693\) −1.81325 −0.0688796
\(694\) −0.220037 −0.00835250
\(695\) 21.1795 0.803385
\(696\) −0.0758081 −0.00287350
\(697\) −5.17448 −0.195997
\(698\) 0.513886 0.0194509
\(699\) 15.1068 0.571391
\(700\) −2.79128 −0.105501
\(701\) −0.806050 −0.0304441 −0.0152220 0.999884i \(-0.504846\pi\)
−0.0152220 + 0.999884i \(0.504846\pi\)
\(702\) 0.453302 0.0171088
\(703\) 5.03827 0.190022
\(704\) 9.74842 0.367407
\(705\) 9.79441 0.368879
\(706\) 3.30736 0.124474
\(707\) 16.4854 0.619998
\(708\) 5.10043 0.191686
\(709\) −12.4518 −0.467639 −0.233819 0.972280i \(-0.575122\pi\)
−0.233819 + 0.972280i \(0.575122\pi\)
\(710\) 1.57596 0.0591448
\(711\) 9.02887 0.338609
\(712\) −2.22935 −0.0835484
\(713\) 0 0
\(714\) 0.162817 0.00609325
\(715\) −4.35100 −0.162718
\(716\) −7.27053 −0.271712
\(717\) 12.3303 0.460483
\(718\) −0.0461096 −0.00172080
\(719\) −51.2299 −1.91055 −0.955276 0.295714i \(-0.904442\pi\)
−0.955276 + 0.295714i \(0.904442\pi\)
\(720\) 3.89236 0.145060
\(721\) 2.26543 0.0843690
\(722\) 0.209508 0.00779707
\(723\) −12.9679 −0.482282
\(724\) 22.3068 0.829027
\(725\) 0.141924 0.00527093
\(726\) −1.25317 −0.0465094
\(727\) 25.6236 0.950325 0.475163 0.879898i \(-0.342389\pi\)
0.475163 + 0.879898i \(0.342389\pi\)
\(728\) −2.54208 −0.0942156
\(729\) 1.00000 0.0370370
\(730\) −1.75744 −0.0650457
\(731\) 0.394719 0.0145992
\(732\) 25.0453 0.925701
\(733\) −19.7238 −0.728515 −0.364257 0.931298i \(-0.618677\pi\)
−0.364257 + 0.931298i \(0.618677\pi\)
\(734\) 4.98540 0.184014
\(735\) −5.01666 −0.185042
\(736\) 0 0
\(737\) −2.49952 −0.0920711
\(738\) −0.805344 −0.0296451
\(739\) −12.4989 −0.459778 −0.229889 0.973217i \(-0.573836\pi\)
−0.229889 + 0.973217i \(0.573836\pi\)
\(740\) −2.20219 −0.0809542
\(741\) 15.3236 0.562928
\(742\) 1.29756 0.0476350
\(743\) −16.0706 −0.589574 −0.294787 0.955563i \(-0.595249\pi\)
−0.294787 + 0.955563i \(0.595249\pi\)
\(744\) −1.35737 −0.0497634
\(745\) 18.8009 0.688813
\(746\) −2.23559 −0.0818506
\(747\) 8.77272 0.320977
\(748\) 2.19941 0.0804184
\(749\) −16.1335 −0.589504
\(750\) 0.134140 0.00489809
\(751\) −22.9626 −0.837918 −0.418959 0.908005i \(-0.637605\pi\)
−0.418959 + 0.908005i \(0.637605\pi\)
\(752\) 38.1234 1.39022
\(753\) −5.73804 −0.209106
\(754\) 0.0643345 0.00234292
\(755\) 8.46485 0.308067
\(756\) −2.79128 −0.101518
\(757\) 35.5853 1.29337 0.646685 0.762757i \(-0.276155\pi\)
0.646685 + 0.762757i \(0.276155\pi\)
\(758\) −3.25272 −0.118144
\(759\) 0 0
\(760\) −2.42209 −0.0878584
\(761\) 36.1897 1.31188 0.655938 0.754815i \(-0.272273\pi\)
0.655938 + 0.754815i \(0.272273\pi\)
\(762\) 1.58082 0.0572672
\(763\) −18.7997 −0.680594
\(764\) 29.0053 1.04937
\(765\) 0.861872 0.0311610
\(766\) −4.44556 −0.160624
\(767\) −8.69625 −0.314003
\(768\) 14.5799 0.526106
\(769\) 13.5259 0.487757 0.243879 0.969806i \(-0.421580\pi\)
0.243879 + 0.969806i \(0.421580\pi\)
\(770\) −0.243229 −0.00876535
\(771\) 14.3494 0.516781
\(772\) −33.0269 −1.18866
\(773\) −43.3601 −1.55955 −0.779777 0.626057i \(-0.784668\pi\)
−0.779777 + 0.626057i \(0.784668\pi\)
\(774\) 0.0614331 0.00220817
\(775\) 2.54119 0.0912824
\(776\) 5.24172 0.188167
\(777\) 1.56476 0.0561356
\(778\) −3.21202 −0.115157
\(779\) −27.2242 −0.975409
\(780\) −6.69785 −0.239822
\(781\) −15.1268 −0.541280
\(782\) 0 0
\(783\) 0.141924 0.00507195
\(784\) −19.5267 −0.697381
\(785\) 10.9352 0.390295
\(786\) −0.404391 −0.0144241
\(787\) −47.0308 −1.67647 −0.838234 0.545311i \(-0.816412\pi\)
−0.838234 + 0.545311i \(0.816412\pi\)
\(788\) 0.655695 0.0233582
\(789\) 26.1373 0.930513
\(790\) 1.21113 0.0430901
\(791\) 0.970044 0.0344908
\(792\) 0.687730 0.0244374
\(793\) −42.7024 −1.51641
\(794\) 3.76632 0.133662
\(795\) 6.86866 0.243606
\(796\) 1.70433 0.0604084
\(797\) −52.1974 −1.84893 −0.924464 0.381269i \(-0.875487\pi\)
−0.924464 + 0.381269i \(0.875487\pi\)
\(798\) 0.856618 0.0303239
\(799\) 8.44152 0.298640
\(800\) 1.59041 0.0562295
\(801\) 4.17368 0.147470
\(802\) 4.30548 0.152032
\(803\) 16.8687 0.595283
\(804\) −3.84772 −0.135699
\(805\) 0 0
\(806\) 1.15193 0.0405750
\(807\) 22.9787 0.808890
\(808\) −6.25259 −0.219965
\(809\) 46.5559 1.63682 0.818409 0.574636i \(-0.194856\pi\)
0.818409 + 0.574636i \(0.194856\pi\)
\(810\) 0.134140 0.00471319
\(811\) −19.6910 −0.691445 −0.345722 0.938337i \(-0.612366\pi\)
−0.345722 + 0.938337i \(0.612366\pi\)
\(812\) −0.396150 −0.0139022
\(813\) −0.852912 −0.0299129
\(814\) −0.191896 −0.00672595
\(815\) −0.692478 −0.0242565
\(816\) 3.35472 0.117439
\(817\) 2.07671 0.0726551
\(818\) 2.84398 0.0994376
\(819\) 4.75915 0.166298
\(820\) 11.8995 0.415549
\(821\) 42.8422 1.49520 0.747601 0.664148i \(-0.231205\pi\)
0.747601 + 0.664148i \(0.231205\pi\)
\(822\) −1.79236 −0.0625157
\(823\) −30.7325 −1.07127 −0.535634 0.844451i \(-0.679927\pi\)
−0.535634 + 0.844451i \(0.679927\pi\)
\(824\) −0.859233 −0.0299328
\(825\) −1.28753 −0.0448262
\(826\) −0.486135 −0.0169148
\(827\) −9.86962 −0.343200 −0.171600 0.985167i \(-0.554894\pi\)
−0.171600 + 0.985167i \(0.554894\pi\)
\(828\) 0 0
\(829\) 23.7648 0.825387 0.412693 0.910870i \(-0.364588\pi\)
0.412693 + 0.910870i \(0.364588\pi\)
\(830\) 1.17677 0.0408463
\(831\) 25.8752 0.897601
\(832\) −25.5862 −0.887043
\(833\) −4.32372 −0.149808
\(834\) 2.84101 0.0983762
\(835\) 10.1707 0.351970
\(836\) 11.5716 0.400214
\(837\) 2.54119 0.0878365
\(838\) −1.55744 −0.0538010
\(839\) 20.4028 0.704384 0.352192 0.935928i \(-0.385436\pi\)
0.352192 + 0.935928i \(0.385436\pi\)
\(840\) −0.752242 −0.0259548
\(841\) −28.9799 −0.999305
\(842\) −4.24540 −0.146306
\(843\) −13.8201 −0.475989
\(844\) 19.6313 0.675737
\(845\) −1.58013 −0.0543580
\(846\) 1.31382 0.0451700
\(847\) −13.1568 −0.452073
\(848\) 26.7353 0.918095
\(849\) −24.8397 −0.852498
\(850\) 0.115611 0.00396543
\(851\) 0 0
\(852\) −23.2859 −0.797763
\(853\) −11.0469 −0.378240 −0.189120 0.981954i \(-0.560563\pi\)
−0.189120 + 0.981954i \(0.560563\pi\)
\(854\) −2.38714 −0.0816861
\(855\) 4.53452 0.155077
\(856\) 6.11911 0.209147
\(857\) 20.3681 0.695761 0.347881 0.937539i \(-0.386901\pi\)
0.347881 + 0.937539i \(0.386901\pi\)
\(858\) −0.583642 −0.0199252
\(859\) −45.2088 −1.54251 −0.771253 0.636529i \(-0.780369\pi\)
−0.771253 + 0.636529i \(0.780369\pi\)
\(860\) −0.907717 −0.0309529
\(861\) −8.45518 −0.288152
\(862\) −5.25143 −0.178864
\(863\) 24.0949 0.820200 0.410100 0.912040i \(-0.365494\pi\)
0.410100 + 0.912040i \(0.365494\pi\)
\(864\) 1.59041 0.0541068
\(865\) −4.95681 −0.168537
\(866\) 2.33763 0.0794358
\(867\) −16.2572 −0.552123
\(868\) −7.09319 −0.240759
\(869\) −11.6250 −0.394350
\(870\) 0.0190377 0.000645437 0
\(871\) 6.56038 0.222290
\(872\) 7.13035 0.241464
\(873\) −9.81329 −0.332129
\(874\) 0 0
\(875\) 1.40831 0.0476096
\(876\) 25.9674 0.877356
\(877\) −19.1614 −0.647035 −0.323518 0.946222i \(-0.604866\pi\)
−0.323518 + 0.946222i \(0.604866\pi\)
\(878\) −2.54120 −0.0857612
\(879\) 29.1869 0.984448
\(880\) −5.01155 −0.168939
\(881\) 17.7454 0.597857 0.298928 0.954276i \(-0.403371\pi\)
0.298928 + 0.954276i \(0.403371\pi\)
\(882\) −0.672933 −0.0226588
\(883\) −45.7868 −1.54085 −0.770424 0.637532i \(-0.779955\pi\)
−0.770424 + 0.637532i \(0.779955\pi\)
\(884\) −5.77269 −0.194157
\(885\) −2.57337 −0.0865027
\(886\) 5.09804 0.171272
\(887\) 39.6672 1.33189 0.665947 0.745999i \(-0.268028\pi\)
0.665947 + 0.745999i \(0.268028\pi\)
\(888\) −0.593484 −0.0199160
\(889\) 16.5968 0.556640
\(890\) 0.559856 0.0187664
\(891\) −1.28753 −0.0431340
\(892\) −32.1708 −1.07716
\(893\) 44.4129 1.48622
\(894\) 2.52195 0.0843467
\(895\) 3.66827 0.122617
\(896\) −5.90990 −0.197436
\(897\) 0 0
\(898\) 1.67592 0.0559262
\(899\) 0.360657 0.0120286
\(900\) −1.98201 −0.0660669
\(901\) 5.91990 0.197221
\(902\) 1.03691 0.0345253
\(903\) 0.644977 0.0214635
\(904\) −0.367919 −0.0122368
\(905\) −11.2547 −0.374118
\(906\) 1.13547 0.0377235
\(907\) −10.0618 −0.334098 −0.167049 0.985949i \(-0.553424\pi\)
−0.167049 + 0.985949i \(0.553424\pi\)
\(908\) 8.25984 0.274112
\(909\) 11.7058 0.388257
\(910\) 0.638391 0.0211624
\(911\) −35.4259 −1.17371 −0.586856 0.809691i \(-0.699635\pi\)
−0.586856 + 0.809691i \(0.699635\pi\)
\(912\) 17.6500 0.584450
\(913\) −11.2952 −0.373816
\(914\) −1.51570 −0.0501350
\(915\) −12.6363 −0.417744
\(916\) −33.3429 −1.10168
\(917\) −4.24564 −0.140203
\(918\) 0.115611 0.00381574
\(919\) 44.2150 1.45852 0.729259 0.684238i \(-0.239865\pi\)
0.729259 + 0.684238i \(0.239865\pi\)
\(920\) 0 0
\(921\) −6.60542 −0.217656
\(922\) −3.87526 −0.127625
\(923\) 39.7026 1.30683
\(924\) 3.59387 0.118230
\(925\) 1.11109 0.0365325
\(926\) −5.42981 −0.178435
\(927\) 1.60861 0.0528338
\(928\) 0.225718 0.00740954
\(929\) −11.1729 −0.366569 −0.183285 0.983060i \(-0.558673\pi\)
−0.183285 + 0.983060i \(0.558673\pi\)
\(930\) 0.340875 0.0111777
\(931\) −22.7481 −0.745540
\(932\) −29.9417 −0.980775
\(933\) 10.4145 0.340955
\(934\) 3.42923 0.112208
\(935\) −1.10969 −0.0362907
\(936\) −1.80505 −0.0590000
\(937\) 20.0999 0.656635 0.328318 0.944567i \(-0.393518\pi\)
0.328318 + 0.944567i \(0.393518\pi\)
\(938\) 0.366736 0.0119744
\(939\) −11.7947 −0.384904
\(940\) −19.4126 −0.633169
\(941\) −24.9926 −0.814737 −0.407368 0.913264i \(-0.633553\pi\)
−0.407368 + 0.913264i \(0.633553\pi\)
\(942\) 1.46685 0.0477924
\(943\) 0 0
\(944\) −10.0165 −0.326008
\(945\) 1.40831 0.0458124
\(946\) −0.0790973 −0.00257167
\(947\) −20.1426 −0.654547 −0.327273 0.944930i \(-0.606130\pi\)
−0.327273 + 0.944930i \(0.606130\pi\)
\(948\) −17.8953 −0.581212
\(949\) −44.2745 −1.43721
\(950\) 0.608259 0.0197345
\(951\) 6.78166 0.219911
\(952\) −0.648336 −0.0210127
\(953\) −41.4384 −1.34232 −0.671161 0.741312i \(-0.734204\pi\)
−0.671161 + 0.741312i \(0.734204\pi\)
\(954\) 0.921359 0.0298301
\(955\) −14.6343 −0.473555
\(956\) −24.4387 −0.790404
\(957\) −0.182732 −0.00590689
\(958\) −0.454289 −0.0146774
\(959\) −18.8177 −0.607656
\(960\) −7.57139 −0.244366
\(961\) −24.5423 −0.791688
\(962\) 0.503660 0.0162387
\(963\) −11.4559 −0.369161
\(964\) 25.7025 0.827821
\(965\) 16.6634 0.536412
\(966\) 0 0
\(967\) −5.04617 −0.162274 −0.0811370 0.996703i \(-0.525855\pi\)
−0.0811370 + 0.996703i \(0.525855\pi\)
\(968\) 4.99012 0.160388
\(969\) 3.90817 0.125549
\(970\) −1.31635 −0.0422655
\(971\) −52.5547 −1.68656 −0.843280 0.537475i \(-0.819378\pi\)
−0.843280 + 0.537475i \(0.819378\pi\)
\(972\) −1.98201 −0.0635729
\(973\) 29.8273 0.956221
\(974\) −2.12357 −0.0680437
\(975\) 3.37933 0.108225
\(976\) −49.1852 −1.57438
\(977\) 45.0569 1.44150 0.720749 0.693196i \(-0.243798\pi\)
0.720749 + 0.693196i \(0.243798\pi\)
\(978\) −0.0928888 −0.00297026
\(979\) −5.37375 −0.171746
\(980\) 9.94305 0.317619
\(981\) −13.3491 −0.426204
\(982\) −5.76363 −0.183925
\(983\) 22.7903 0.726897 0.363449 0.931614i \(-0.381599\pi\)
0.363449 + 0.931614i \(0.381599\pi\)
\(984\) 3.20689 0.102232
\(985\) −0.330824 −0.0105409
\(986\) 0.0164080 0.000522538 0
\(987\) 13.7936 0.439054
\(988\) −30.3716 −0.966248
\(989\) 0 0
\(990\) −0.172709 −0.00548906
\(991\) 4.96243 0.157637 0.0788183 0.996889i \(-0.474885\pi\)
0.0788183 + 0.996889i \(0.474885\pi\)
\(992\) 4.04154 0.128319
\(993\) −2.93591 −0.0931683
\(994\) 2.21945 0.0703965
\(995\) −0.859901 −0.0272607
\(996\) −17.3876 −0.550947
\(997\) 5.19258 0.164451 0.0822253 0.996614i \(-0.473797\pi\)
0.0822253 + 0.996614i \(0.473797\pi\)
\(998\) 0.908049 0.0287438
\(999\) 1.11109 0.0351534
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bw.1.12 25
23.5 odd 22 345.2.m.c.301.3 yes 50
23.14 odd 22 345.2.m.c.196.3 50
23.22 odd 2 7935.2.a.bv.1.12 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.c.196.3 50 23.14 odd 22
345.2.m.c.301.3 yes 50 23.5 odd 22
7935.2.a.bv.1.12 25 23.22 odd 2
7935.2.a.bw.1.12 25 1.1 even 1 trivial