Properties

Label 7935.2.a.bv.1.9
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,11,25,31,-25,11,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.404849 q^{2} +1.00000 q^{3} -1.83610 q^{4} -1.00000 q^{5} -0.404849 q^{6} -1.25801 q^{7} +1.55304 q^{8} +1.00000 q^{9} +0.404849 q^{10} +6.20063 q^{11} -1.83610 q^{12} +1.55628 q^{13} +0.509303 q^{14} -1.00000 q^{15} +3.04345 q^{16} +6.17082 q^{17} -0.404849 q^{18} +1.68250 q^{19} +1.83610 q^{20} -1.25801 q^{21} -2.51032 q^{22} +1.55304 q^{24} +1.00000 q^{25} -0.630056 q^{26} +1.00000 q^{27} +2.30982 q^{28} +3.06021 q^{29} +0.404849 q^{30} +4.23529 q^{31} -4.33822 q^{32} +6.20063 q^{33} -2.49825 q^{34} +1.25801 q^{35} -1.83610 q^{36} +11.6860 q^{37} -0.681158 q^{38} +1.55628 q^{39} -1.55304 q^{40} +1.76233 q^{41} +0.509303 q^{42} +1.68894 q^{43} -11.3850 q^{44} -1.00000 q^{45} -0.384512 q^{47} +3.04345 q^{48} -5.41742 q^{49} -0.404849 q^{50} +6.17082 q^{51} -2.85747 q^{52} -12.5823 q^{53} -0.404849 q^{54} -6.20063 q^{55} -1.95374 q^{56} +1.68250 q^{57} -1.23892 q^{58} +11.6263 q^{59} +1.83610 q^{60} -10.1814 q^{61} -1.71465 q^{62} -1.25801 q^{63} -4.33058 q^{64} -1.55628 q^{65} -2.51032 q^{66} +0.978510 q^{67} -11.3302 q^{68} -0.509303 q^{70} -2.85381 q^{71} +1.55304 q^{72} +4.48175 q^{73} -4.73105 q^{74} +1.00000 q^{75} -3.08923 q^{76} -7.80044 q^{77} -0.630056 q^{78} +13.5753 q^{79} -3.04345 q^{80} +1.00000 q^{81} -0.713476 q^{82} -12.8951 q^{83} +2.30982 q^{84} -6.17082 q^{85} -0.683764 q^{86} +3.06021 q^{87} +9.62982 q^{88} -16.3408 q^{89} +0.404849 q^{90} -1.95781 q^{91} +4.23529 q^{93} +0.155669 q^{94} -1.68250 q^{95} -4.33822 q^{96} +2.59885 q^{97} +2.19323 q^{98} +6.20063 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 11 q^{2} + 25 q^{3} + 31 q^{4} - 25 q^{5} + 11 q^{6} - 7 q^{7} + 33 q^{8} + 25 q^{9} - 11 q^{10} - 9 q^{11} + 31 q^{12} + 18 q^{13} - 11 q^{14} - 25 q^{15} + 39 q^{16} + 8 q^{17} + 11 q^{18} - 11 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.404849 −0.286271 −0.143136 0.989703i \(-0.545719\pi\)
−0.143136 + 0.989703i \(0.545719\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.83610 −0.918049
\(5\) −1.00000 −0.447214
\(6\) −0.404849 −0.165279
\(7\) −1.25801 −0.475482 −0.237741 0.971329i \(-0.576407\pi\)
−0.237741 + 0.971329i \(0.576407\pi\)
\(8\) 1.55304 0.549082
\(9\) 1.00000 0.333333
\(10\) 0.404849 0.128024
\(11\) 6.20063 1.86956 0.934780 0.355227i \(-0.115597\pi\)
0.934780 + 0.355227i \(0.115597\pi\)
\(12\) −1.83610 −0.530036
\(13\) 1.55628 0.431633 0.215817 0.976434i \(-0.430759\pi\)
0.215817 + 0.976434i \(0.430759\pi\)
\(14\) 0.509303 0.136117
\(15\) −1.00000 −0.258199
\(16\) 3.04345 0.760862
\(17\) 6.17082 1.49664 0.748322 0.663335i \(-0.230860\pi\)
0.748322 + 0.663335i \(0.230860\pi\)
\(18\) −0.404849 −0.0954238
\(19\) 1.68250 0.385992 0.192996 0.981200i \(-0.438180\pi\)
0.192996 + 0.981200i \(0.438180\pi\)
\(20\) 1.83610 0.410564
\(21\) −1.25801 −0.274520
\(22\) −2.51032 −0.535201
\(23\) 0 0
\(24\) 1.55304 0.317013
\(25\) 1.00000 0.200000
\(26\) −0.630056 −0.123564
\(27\) 1.00000 0.192450
\(28\) 2.30982 0.436516
\(29\) 3.06021 0.568267 0.284134 0.958785i \(-0.408294\pi\)
0.284134 + 0.958785i \(0.408294\pi\)
\(30\) 0.404849 0.0739149
\(31\) 4.23529 0.760680 0.380340 0.924847i \(-0.375807\pi\)
0.380340 + 0.924847i \(0.375807\pi\)
\(32\) −4.33822 −0.766895
\(33\) 6.20063 1.07939
\(34\) −2.49825 −0.428446
\(35\) 1.25801 0.212642
\(36\) −1.83610 −0.306016
\(37\) 11.6860 1.92116 0.960580 0.278005i \(-0.0896731\pi\)
0.960580 + 0.278005i \(0.0896731\pi\)
\(38\) −0.681158 −0.110498
\(39\) 1.55628 0.249204
\(40\) −1.55304 −0.245557
\(41\) 1.76233 0.275229 0.137615 0.990486i \(-0.456056\pi\)
0.137615 + 0.990486i \(0.456056\pi\)
\(42\) 0.509303 0.0785871
\(43\) 1.68894 0.257561 0.128780 0.991673i \(-0.458894\pi\)
0.128780 + 0.991673i \(0.458894\pi\)
\(44\) −11.3850 −1.71635
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −0.384512 −0.0560869 −0.0280435 0.999607i \(-0.508928\pi\)
−0.0280435 + 0.999607i \(0.508928\pi\)
\(48\) 3.04345 0.439284
\(49\) −5.41742 −0.773917
\(50\) −0.404849 −0.0572543
\(51\) 6.17082 0.864088
\(52\) −2.85747 −0.396260
\(53\) −12.5823 −1.72831 −0.864155 0.503226i \(-0.832146\pi\)
−0.864155 + 0.503226i \(0.832146\pi\)
\(54\) −0.404849 −0.0550929
\(55\) −6.20063 −0.836093
\(56\) −1.95374 −0.261079
\(57\) 1.68250 0.222853
\(58\) −1.23892 −0.162679
\(59\) 11.6263 1.51361 0.756807 0.653639i \(-0.226758\pi\)
0.756807 + 0.653639i \(0.226758\pi\)
\(60\) 1.83610 0.237039
\(61\) −10.1814 −1.30360 −0.651800 0.758391i \(-0.725986\pi\)
−0.651800 + 0.758391i \(0.725986\pi\)
\(62\) −1.71465 −0.217761
\(63\) −1.25801 −0.158494
\(64\) −4.33058 −0.541322
\(65\) −1.55628 −0.193032
\(66\) −2.51032 −0.308999
\(67\) 0.978510 0.119544 0.0597720 0.998212i \(-0.480963\pi\)
0.0597720 + 0.998212i \(0.480963\pi\)
\(68\) −11.3302 −1.37399
\(69\) 0 0
\(70\) −0.509303 −0.0608733
\(71\) −2.85381 −0.338685 −0.169343 0.985557i \(-0.554164\pi\)
−0.169343 + 0.985557i \(0.554164\pi\)
\(72\) 1.55304 0.183027
\(73\) 4.48175 0.524549 0.262275 0.964993i \(-0.415527\pi\)
0.262275 + 0.964993i \(0.415527\pi\)
\(74\) −4.73105 −0.549973
\(75\) 1.00000 0.115470
\(76\) −3.08923 −0.354359
\(77\) −7.80044 −0.888942
\(78\) −0.630056 −0.0713398
\(79\) 13.5753 1.52734 0.763672 0.645605i \(-0.223395\pi\)
0.763672 + 0.645605i \(0.223395\pi\)
\(80\) −3.04345 −0.340268
\(81\) 1.00000 0.111111
\(82\) −0.713476 −0.0787902
\(83\) −12.8951 −1.41542 −0.707711 0.706503i \(-0.750272\pi\)
−0.707711 + 0.706503i \(0.750272\pi\)
\(84\) 2.30982 0.252023
\(85\) −6.17082 −0.669320
\(86\) −0.683764 −0.0737322
\(87\) 3.06021 0.328089
\(88\) 9.62982 1.02654
\(89\) −16.3408 −1.73212 −0.866061 0.499938i \(-0.833356\pi\)
−0.866061 + 0.499938i \(0.833356\pi\)
\(90\) 0.404849 0.0426748
\(91\) −1.95781 −0.205234
\(92\) 0 0
\(93\) 4.23529 0.439179
\(94\) 0.155669 0.0160561
\(95\) −1.68250 −0.172621
\(96\) −4.33822 −0.442767
\(97\) 2.59885 0.263873 0.131937 0.991258i \(-0.457880\pi\)
0.131937 + 0.991258i \(0.457880\pi\)
\(98\) 2.19323 0.221550
\(99\) 6.20063 0.623187
\(100\) −1.83610 −0.183610
\(101\) 6.22931 0.619840 0.309920 0.950763i \(-0.399698\pi\)
0.309920 + 0.950763i \(0.399698\pi\)
\(102\) −2.49825 −0.247364
\(103\) 9.23285 0.909740 0.454870 0.890558i \(-0.349686\pi\)
0.454870 + 0.890558i \(0.349686\pi\)
\(104\) 2.41696 0.237002
\(105\) 1.25801 0.122769
\(106\) 5.09392 0.494765
\(107\) −2.98090 −0.288174 −0.144087 0.989565i \(-0.546025\pi\)
−0.144087 + 0.989565i \(0.546025\pi\)
\(108\) −1.83610 −0.176679
\(109\) −15.3168 −1.46708 −0.733540 0.679646i \(-0.762133\pi\)
−0.733540 + 0.679646i \(0.762133\pi\)
\(110\) 2.51032 0.239349
\(111\) 11.6860 1.10918
\(112\) −3.82868 −0.361776
\(113\) 5.69752 0.535977 0.267989 0.963422i \(-0.413641\pi\)
0.267989 + 0.963422i \(0.413641\pi\)
\(114\) −0.681158 −0.0637963
\(115\) 0 0
\(116\) −5.61885 −0.521697
\(117\) 1.55628 0.143878
\(118\) −4.70689 −0.433304
\(119\) −7.76294 −0.711628
\(120\) −1.55304 −0.141772
\(121\) 27.4478 2.49525
\(122\) 4.12194 0.373183
\(123\) 1.76233 0.158904
\(124\) −7.77640 −0.698341
\(125\) −1.00000 −0.0894427
\(126\) 0.509303 0.0453723
\(127\) 17.9861 1.59601 0.798005 0.602651i \(-0.205889\pi\)
0.798005 + 0.602651i \(0.205889\pi\)
\(128\) 10.4297 0.921860
\(129\) 1.68894 0.148703
\(130\) 0.630056 0.0552596
\(131\) 6.80202 0.594295 0.297148 0.954832i \(-0.403965\pi\)
0.297148 + 0.954832i \(0.403965\pi\)
\(132\) −11.3850 −0.990933
\(133\) −2.11660 −0.183532
\(134\) −0.396149 −0.0342220
\(135\) −1.00000 −0.0860663
\(136\) 9.58353 0.821781
\(137\) −8.48431 −0.724864 −0.362432 0.932010i \(-0.618053\pi\)
−0.362432 + 0.932010i \(0.618053\pi\)
\(138\) 0 0
\(139\) −22.3368 −1.89459 −0.947293 0.320368i \(-0.896194\pi\)
−0.947293 + 0.320368i \(0.896194\pi\)
\(140\) −2.30982 −0.195216
\(141\) −0.384512 −0.0323818
\(142\) 1.15536 0.0969559
\(143\) 9.64989 0.806964
\(144\) 3.04345 0.253621
\(145\) −3.06021 −0.254137
\(146\) −1.81443 −0.150163
\(147\) −5.41742 −0.446821
\(148\) −21.4566 −1.76372
\(149\) 5.60316 0.459029 0.229514 0.973305i \(-0.426286\pi\)
0.229514 + 0.973305i \(0.426286\pi\)
\(150\) −0.404849 −0.0330558
\(151\) −4.21632 −0.343119 −0.171560 0.985174i \(-0.554881\pi\)
−0.171560 + 0.985174i \(0.554881\pi\)
\(152\) 2.61299 0.211941
\(153\) 6.17082 0.498881
\(154\) 3.15800 0.254479
\(155\) −4.23529 −0.340186
\(156\) −2.85747 −0.228781
\(157\) −4.37560 −0.349211 −0.174606 0.984638i \(-0.555865\pi\)
−0.174606 + 0.984638i \(0.555865\pi\)
\(158\) −5.49596 −0.437235
\(159\) −12.5823 −0.997840
\(160\) 4.33822 0.342966
\(161\) 0 0
\(162\) −0.404849 −0.0318079
\(163\) −0.235266 −0.0184275 −0.00921374 0.999958i \(-0.502933\pi\)
−0.00921374 + 0.999958i \(0.502933\pi\)
\(164\) −3.23580 −0.252674
\(165\) −6.20063 −0.482718
\(166\) 5.22057 0.405194
\(167\) 14.1799 1.09727 0.548635 0.836062i \(-0.315147\pi\)
0.548635 + 0.836062i \(0.315147\pi\)
\(168\) −1.95374 −0.150734
\(169\) −10.5780 −0.813693
\(170\) 2.49825 0.191607
\(171\) 1.68250 0.128664
\(172\) −3.10105 −0.236453
\(173\) −3.26962 −0.248584 −0.124292 0.992246i \(-0.539666\pi\)
−0.124292 + 0.992246i \(0.539666\pi\)
\(174\) −1.23892 −0.0939226
\(175\) −1.25801 −0.0950964
\(176\) 18.8713 1.42248
\(177\) 11.6263 0.873885
\(178\) 6.61556 0.495857
\(179\) 9.64101 0.720603 0.360302 0.932836i \(-0.382674\pi\)
0.360302 + 0.932836i \(0.382674\pi\)
\(180\) 1.83610 0.136855
\(181\) 2.38167 0.177028 0.0885142 0.996075i \(-0.471788\pi\)
0.0885142 + 0.996075i \(0.471788\pi\)
\(182\) 0.792616 0.0587526
\(183\) −10.1814 −0.752634
\(184\) 0 0
\(185\) −11.6860 −0.859169
\(186\) −1.71465 −0.125724
\(187\) 38.2630 2.79807
\(188\) 0.706002 0.0514905
\(189\) −1.25801 −0.0915066
\(190\) 0.681158 0.0494164
\(191\) −20.0297 −1.44930 −0.724648 0.689119i \(-0.757998\pi\)
−0.724648 + 0.689119i \(0.757998\pi\)
\(192\) −4.33058 −0.312532
\(193\) 0.879190 0.0632855 0.0316427 0.999499i \(-0.489926\pi\)
0.0316427 + 0.999499i \(0.489926\pi\)
\(194\) −1.05214 −0.0755394
\(195\) −1.55628 −0.111447
\(196\) 9.94691 0.710493
\(197\) −3.25186 −0.231686 −0.115843 0.993268i \(-0.536957\pi\)
−0.115843 + 0.993268i \(0.536957\pi\)
\(198\) −2.51032 −0.178400
\(199\) −15.7748 −1.11825 −0.559123 0.829085i \(-0.688862\pi\)
−0.559123 + 0.829085i \(0.688862\pi\)
\(200\) 1.55304 0.109816
\(201\) 0.978510 0.0690188
\(202\) −2.52193 −0.177442
\(203\) −3.84977 −0.270201
\(204\) −11.3302 −0.793275
\(205\) −1.76233 −0.123086
\(206\) −3.73791 −0.260432
\(207\) 0 0
\(208\) 4.73644 0.328413
\(209\) 10.4326 0.721635
\(210\) −0.509303 −0.0351452
\(211\) −2.13121 −0.146718 −0.0733591 0.997306i \(-0.523372\pi\)
−0.0733591 + 0.997306i \(0.523372\pi\)
\(212\) 23.1023 1.58667
\(213\) −2.85381 −0.195540
\(214\) 1.20681 0.0824960
\(215\) −1.68894 −0.115185
\(216\) 1.55304 0.105671
\(217\) −5.32802 −0.361690
\(218\) 6.20097 0.419983
\(219\) 4.48175 0.302849
\(220\) 11.3850 0.767574
\(221\) 9.60350 0.646001
\(222\) −4.73105 −0.317527
\(223\) 17.1539 1.14871 0.574357 0.818605i \(-0.305252\pi\)
0.574357 + 0.818605i \(0.305252\pi\)
\(224\) 5.45751 0.364645
\(225\) 1.00000 0.0666667
\(226\) −2.30663 −0.153435
\(227\) −0.754485 −0.0500769 −0.0250385 0.999686i \(-0.507971\pi\)
−0.0250385 + 0.999686i \(0.507971\pi\)
\(228\) −3.08923 −0.204589
\(229\) −8.06603 −0.533019 −0.266509 0.963832i \(-0.585870\pi\)
−0.266509 + 0.963832i \(0.585870\pi\)
\(230\) 0 0
\(231\) −7.80044 −0.513231
\(232\) 4.75263 0.312026
\(233\) 3.67716 0.240899 0.120449 0.992719i \(-0.461566\pi\)
0.120449 + 0.992719i \(0.461566\pi\)
\(234\) −0.630056 −0.0411881
\(235\) 0.384512 0.0250828
\(236\) −21.3470 −1.38957
\(237\) 13.5753 0.881812
\(238\) 3.14282 0.203719
\(239\) −20.0397 −1.29626 −0.648131 0.761529i \(-0.724449\pi\)
−0.648131 + 0.761529i \(0.724449\pi\)
\(240\) −3.04345 −0.196454
\(241\) 25.1865 1.62241 0.811204 0.584763i \(-0.198813\pi\)
0.811204 + 0.584763i \(0.198813\pi\)
\(242\) −11.1122 −0.714320
\(243\) 1.00000 0.0641500
\(244\) 18.6941 1.19677
\(245\) 5.41742 0.346106
\(246\) −0.713476 −0.0454895
\(247\) 2.61843 0.166607
\(248\) 6.57757 0.417676
\(249\) −12.8951 −0.817194
\(250\) 0.404849 0.0256049
\(251\) 15.0920 0.952602 0.476301 0.879282i \(-0.341977\pi\)
0.476301 + 0.879282i \(0.341977\pi\)
\(252\) 2.30982 0.145505
\(253\) 0 0
\(254\) −7.28166 −0.456892
\(255\) −6.17082 −0.386432
\(256\) 4.43872 0.277420
\(257\) 4.43381 0.276573 0.138287 0.990392i \(-0.455840\pi\)
0.138287 + 0.990392i \(0.455840\pi\)
\(258\) −0.683764 −0.0425693
\(259\) −14.7010 −0.913477
\(260\) 2.85747 0.177213
\(261\) 3.06021 0.189422
\(262\) −2.75379 −0.170130
\(263\) −11.7411 −0.723986 −0.361993 0.932181i \(-0.617904\pi\)
−0.361993 + 0.932181i \(0.617904\pi\)
\(264\) 9.62982 0.592675
\(265\) 12.5823 0.772923
\(266\) 0.856902 0.0525400
\(267\) −16.3408 −1.00004
\(268\) −1.79664 −0.109747
\(269\) 11.9300 0.727387 0.363693 0.931519i \(-0.381516\pi\)
0.363693 + 0.931519i \(0.381516\pi\)
\(270\) 0.404849 0.0246383
\(271\) 1.59814 0.0970802 0.0485401 0.998821i \(-0.484543\pi\)
0.0485401 + 0.998821i \(0.484543\pi\)
\(272\) 18.7806 1.13874
\(273\) −1.95781 −0.118492
\(274\) 3.43486 0.207508
\(275\) 6.20063 0.373912
\(276\) 0 0
\(277\) 0.510864 0.0306948 0.0153474 0.999882i \(-0.495115\pi\)
0.0153474 + 0.999882i \(0.495115\pi\)
\(278\) 9.04305 0.542366
\(279\) 4.23529 0.253560
\(280\) 1.95374 0.116758
\(281\) 6.74118 0.402145 0.201073 0.979576i \(-0.435557\pi\)
0.201073 + 0.979576i \(0.435557\pi\)
\(282\) 0.155669 0.00926998
\(283\) −17.5453 −1.04296 −0.521481 0.853263i \(-0.674620\pi\)
−0.521481 + 0.853263i \(0.674620\pi\)
\(284\) 5.23988 0.310930
\(285\) −1.68250 −0.0996627
\(286\) −3.90675 −0.231011
\(287\) −2.21702 −0.130867
\(288\) −4.33822 −0.255632
\(289\) 21.0791 1.23994
\(290\) 1.23892 0.0727521
\(291\) 2.59885 0.152347
\(292\) −8.22893 −0.481562
\(293\) −10.9886 −0.641962 −0.320981 0.947086i \(-0.604013\pi\)
−0.320981 + 0.947086i \(0.604013\pi\)
\(294\) 2.19323 0.127912
\(295\) −11.6263 −0.676909
\(296\) 18.1488 1.05487
\(297\) 6.20063 0.359797
\(298\) −2.26843 −0.131407
\(299\) 0 0
\(300\) −1.83610 −0.106007
\(301\) −2.12470 −0.122465
\(302\) 1.70697 0.0982252
\(303\) 6.22931 0.357865
\(304\) 5.12060 0.293687
\(305\) 10.1814 0.582988
\(306\) −2.49825 −0.142815
\(307\) −10.0070 −0.571129 −0.285565 0.958359i \(-0.592181\pi\)
−0.285565 + 0.958359i \(0.592181\pi\)
\(308\) 14.3224 0.816092
\(309\) 9.23285 0.525238
\(310\) 1.71465 0.0973856
\(311\) −0.331383 −0.0187910 −0.00939551 0.999956i \(-0.502991\pi\)
−0.00939551 + 0.999956i \(0.502991\pi\)
\(312\) 2.41696 0.136833
\(313\) 26.0095 1.47014 0.735072 0.677989i \(-0.237148\pi\)
0.735072 + 0.677989i \(0.237148\pi\)
\(314\) 1.77146 0.0999691
\(315\) 1.25801 0.0708807
\(316\) −24.9256 −1.40218
\(317\) 28.5506 1.60356 0.801780 0.597620i \(-0.203887\pi\)
0.801780 + 0.597620i \(0.203887\pi\)
\(318\) 5.09392 0.285653
\(319\) 18.9752 1.06241
\(320\) 4.33058 0.242087
\(321\) −2.98090 −0.166377
\(322\) 0 0
\(323\) 10.3824 0.577693
\(324\) −1.83610 −0.102005
\(325\) 1.55628 0.0863266
\(326\) 0.0952473 0.00527526
\(327\) −15.3168 −0.847019
\(328\) 2.73696 0.151123
\(329\) 0.483720 0.0266683
\(330\) 2.51032 0.138188
\(331\) −13.4175 −0.737490 −0.368745 0.929531i \(-0.620212\pi\)
−0.368745 + 0.929531i \(0.620212\pi\)
\(332\) 23.6767 1.29943
\(333\) 11.6860 0.640386
\(334\) −5.74070 −0.314117
\(335\) −0.978510 −0.0534617
\(336\) −3.82868 −0.208872
\(337\) 31.4815 1.71491 0.857453 0.514563i \(-0.172046\pi\)
0.857453 + 0.514563i \(0.172046\pi\)
\(338\) 4.28249 0.232937
\(339\) 5.69752 0.309447
\(340\) 11.3302 0.614468
\(341\) 26.2614 1.42214
\(342\) −0.681158 −0.0368328
\(343\) 15.6212 0.843466
\(344\) 2.62299 0.141422
\(345\) 0 0
\(346\) 1.32370 0.0711626
\(347\) 11.4206 0.613088 0.306544 0.951857i \(-0.400827\pi\)
0.306544 + 0.951857i \(0.400827\pi\)
\(348\) −5.61885 −0.301202
\(349\) 25.0655 1.34172 0.670862 0.741583i \(-0.265924\pi\)
0.670862 + 0.741583i \(0.265924\pi\)
\(350\) 0.509303 0.0272234
\(351\) 1.55628 0.0830678
\(352\) −26.8997 −1.43376
\(353\) −6.12737 −0.326127 −0.163063 0.986616i \(-0.552138\pi\)
−0.163063 + 0.986616i \(0.552138\pi\)
\(354\) −4.70689 −0.250168
\(355\) 2.85381 0.151465
\(356\) 30.0033 1.59017
\(357\) −7.76294 −0.410858
\(358\) −3.90315 −0.206288
\(359\) 9.90608 0.522823 0.261411 0.965227i \(-0.415812\pi\)
0.261411 + 0.965227i \(0.415812\pi\)
\(360\) −1.55304 −0.0818524
\(361\) −16.1692 −0.851010
\(362\) −0.964218 −0.0506782
\(363\) 27.4478 1.44064
\(364\) 3.59472 0.188415
\(365\) −4.48175 −0.234586
\(366\) 4.12194 0.215458
\(367\) −5.45507 −0.284752 −0.142376 0.989813i \(-0.545474\pi\)
−0.142376 + 0.989813i \(0.545474\pi\)
\(368\) 0 0
\(369\) 1.76233 0.0917430
\(370\) 4.73105 0.245955
\(371\) 15.8286 0.821780
\(372\) −7.77640 −0.403188
\(373\) −31.3914 −1.62538 −0.812692 0.582693i \(-0.801999\pi\)
−0.812692 + 0.582693i \(0.801999\pi\)
\(374\) −15.4907 −0.801006
\(375\) −1.00000 −0.0516398
\(376\) −0.597163 −0.0307963
\(377\) 4.76254 0.245283
\(378\) 0.509303 0.0261957
\(379\) −30.6164 −1.57266 −0.786330 0.617807i \(-0.788021\pi\)
−0.786330 + 0.617807i \(0.788021\pi\)
\(380\) 3.08923 0.158474
\(381\) 17.9861 0.921457
\(382\) 8.10899 0.414892
\(383\) 23.4443 1.19795 0.598973 0.800769i \(-0.295576\pi\)
0.598973 + 0.800769i \(0.295576\pi\)
\(384\) 10.4297 0.532236
\(385\) 7.80044 0.397547
\(386\) −0.355939 −0.0181168
\(387\) 1.68894 0.0858535
\(388\) −4.77174 −0.242249
\(389\) −28.1376 −1.42663 −0.713316 0.700843i \(-0.752808\pi\)
−0.713316 + 0.700843i \(0.752808\pi\)
\(390\) 0.630056 0.0319041
\(391\) 0 0
\(392\) −8.41346 −0.424944
\(393\) 6.80202 0.343117
\(394\) 1.31651 0.0663250
\(395\) −13.5753 −0.683049
\(396\) −11.3850 −0.572116
\(397\) −34.8555 −1.74935 −0.874673 0.484714i \(-0.838924\pi\)
−0.874673 + 0.484714i \(0.838924\pi\)
\(398\) 6.38641 0.320122
\(399\) −2.11660 −0.105962
\(400\) 3.04345 0.152172
\(401\) 31.4740 1.57173 0.785867 0.618395i \(-0.212217\pi\)
0.785867 + 0.618395i \(0.212217\pi\)
\(402\) −0.396149 −0.0197581
\(403\) 6.59127 0.328335
\(404\) −11.4376 −0.569043
\(405\) −1.00000 −0.0496904
\(406\) 1.55858 0.0773508
\(407\) 72.4603 3.59172
\(408\) 9.58353 0.474456
\(409\) 20.5970 1.01846 0.509228 0.860632i \(-0.329931\pi\)
0.509228 + 0.860632i \(0.329931\pi\)
\(410\) 0.713476 0.0352360
\(411\) −8.48431 −0.418500
\(412\) −16.9524 −0.835185
\(413\) −14.6260 −0.719696
\(414\) 0 0
\(415\) 12.8951 0.632996
\(416\) −6.75146 −0.331018
\(417\) −22.3368 −1.09384
\(418\) −4.22361 −0.206583
\(419\) 16.5329 0.807686 0.403843 0.914828i \(-0.367674\pi\)
0.403843 + 0.914828i \(0.367674\pi\)
\(420\) −2.30982 −0.112708
\(421\) 11.4014 0.555671 0.277835 0.960629i \(-0.410383\pi\)
0.277835 + 0.960629i \(0.410383\pi\)
\(422\) 0.862816 0.0420012
\(423\) −0.384512 −0.0186956
\(424\) −19.5408 −0.948984
\(425\) 6.17082 0.299329
\(426\) 1.15536 0.0559775
\(427\) 12.8083 0.619839
\(428\) 5.47321 0.264558
\(429\) 9.64989 0.465901
\(430\) 0.683764 0.0329740
\(431\) −13.3572 −0.643393 −0.321697 0.946843i \(-0.604253\pi\)
−0.321697 + 0.946843i \(0.604253\pi\)
\(432\) 3.04345 0.146428
\(433\) −31.4711 −1.51240 −0.756202 0.654339i \(-0.772947\pi\)
−0.756202 + 0.654339i \(0.772947\pi\)
\(434\) 2.15704 0.103541
\(435\) −3.06021 −0.146726
\(436\) 28.1231 1.34685
\(437\) 0 0
\(438\) −1.81443 −0.0866969
\(439\) −27.0996 −1.29339 −0.646697 0.762747i \(-0.723850\pi\)
−0.646697 + 0.762747i \(0.723850\pi\)
\(440\) −9.62982 −0.459084
\(441\) −5.41742 −0.257972
\(442\) −3.88797 −0.184932
\(443\) 12.0908 0.574452 0.287226 0.957863i \(-0.407267\pi\)
0.287226 + 0.957863i \(0.407267\pi\)
\(444\) −21.4566 −1.01828
\(445\) 16.3408 0.774629
\(446\) −6.94475 −0.328844
\(447\) 5.60316 0.265020
\(448\) 5.44790 0.257389
\(449\) 7.91531 0.373547 0.186773 0.982403i \(-0.440197\pi\)
0.186773 + 0.982403i \(0.440197\pi\)
\(450\) −0.404849 −0.0190848
\(451\) 10.9275 0.514557
\(452\) −10.4612 −0.492053
\(453\) −4.21632 −0.198100
\(454\) 0.305452 0.0143356
\(455\) 1.95781 0.0917834
\(456\) 2.61299 0.122364
\(457\) −25.9180 −1.21239 −0.606197 0.795315i \(-0.707306\pi\)
−0.606197 + 0.795315i \(0.707306\pi\)
\(458\) 3.26552 0.152588
\(459\) 6.17082 0.288029
\(460\) 0 0
\(461\) 15.7472 0.733419 0.366709 0.930336i \(-0.380484\pi\)
0.366709 + 0.930336i \(0.380484\pi\)
\(462\) 3.15800 0.146923
\(463\) 10.6271 0.493882 0.246941 0.969031i \(-0.420575\pi\)
0.246941 + 0.969031i \(0.420575\pi\)
\(464\) 9.31360 0.432373
\(465\) −4.23529 −0.196407
\(466\) −1.48869 −0.0689624
\(467\) 31.9120 1.47671 0.738356 0.674411i \(-0.235602\pi\)
0.738356 + 0.674411i \(0.235602\pi\)
\(468\) −2.85747 −0.132087
\(469\) −1.23097 −0.0568411
\(470\) −0.155669 −0.00718049
\(471\) −4.37560 −0.201617
\(472\) 18.0561 0.831099
\(473\) 10.4725 0.481525
\(474\) −5.49596 −0.252438
\(475\) 1.68250 0.0771984
\(476\) 14.2535 0.653309
\(477\) −12.5823 −0.576103
\(478\) 8.11306 0.371083
\(479\) −28.4982 −1.30211 −0.651057 0.759028i \(-0.725674\pi\)
−0.651057 + 0.759028i \(0.725674\pi\)
\(480\) 4.33822 0.198012
\(481\) 18.1866 0.829236
\(482\) −10.1967 −0.464449
\(483\) 0 0
\(484\) −50.3968 −2.29076
\(485\) −2.59885 −0.118008
\(486\) −0.404849 −0.0183643
\(487\) −6.86340 −0.311010 −0.155505 0.987835i \(-0.549701\pi\)
−0.155505 + 0.987835i \(0.549701\pi\)
\(488\) −15.8122 −0.715784
\(489\) −0.235266 −0.0106391
\(490\) −2.19323 −0.0990803
\(491\) 43.0510 1.94286 0.971432 0.237316i \(-0.0762677\pi\)
0.971432 + 0.237316i \(0.0762677\pi\)
\(492\) −3.23580 −0.145881
\(493\) 18.8840 0.850494
\(494\) −1.06007 −0.0476948
\(495\) −6.20063 −0.278698
\(496\) 12.8899 0.578773
\(497\) 3.59012 0.161039
\(498\) 5.22057 0.233939
\(499\) 20.8436 0.933087 0.466543 0.884498i \(-0.345499\pi\)
0.466543 + 0.884498i \(0.345499\pi\)
\(500\) 1.83610 0.0821128
\(501\) 14.1799 0.633510
\(502\) −6.11000 −0.272703
\(503\) −24.4968 −1.09226 −0.546129 0.837701i \(-0.683899\pi\)
−0.546129 + 0.837701i \(0.683899\pi\)
\(504\) −1.95374 −0.0870263
\(505\) −6.22931 −0.277201
\(506\) 0 0
\(507\) −10.5780 −0.469786
\(508\) −33.0243 −1.46521
\(509\) 28.7448 1.27409 0.637045 0.770827i \(-0.280157\pi\)
0.637045 + 0.770827i \(0.280157\pi\)
\(510\) 2.49825 0.110624
\(511\) −5.63808 −0.249414
\(512\) −22.6563 −1.00128
\(513\) 1.68250 0.0742842
\(514\) −1.79502 −0.0791750
\(515\) −9.23285 −0.406848
\(516\) −3.10105 −0.136516
\(517\) −2.38422 −0.104858
\(518\) 5.95169 0.261502
\(519\) −3.26962 −0.143520
\(520\) −2.41696 −0.105991
\(521\) −15.7839 −0.691507 −0.345754 0.938325i \(-0.612377\pi\)
−0.345754 + 0.938325i \(0.612377\pi\)
\(522\) −1.23892 −0.0542262
\(523\) −23.8069 −1.04100 −0.520501 0.853861i \(-0.674255\pi\)
−0.520501 + 0.853861i \(0.674255\pi\)
\(524\) −12.4892 −0.545592
\(525\) −1.25801 −0.0549040
\(526\) 4.75336 0.207257
\(527\) 26.1352 1.13847
\(528\) 18.8713 0.821268
\(529\) 0 0
\(530\) −5.09392 −0.221266
\(531\) 11.6263 0.504538
\(532\) 3.88628 0.168492
\(533\) 2.74266 0.118798
\(534\) 6.61556 0.286283
\(535\) 2.98090 0.128875
\(536\) 1.51967 0.0656395
\(537\) 9.64101 0.416040
\(538\) −4.82986 −0.208230
\(539\) −33.5914 −1.44688
\(540\) 1.83610 0.0790131
\(541\) −8.71420 −0.374653 −0.187326 0.982298i \(-0.559982\pi\)
−0.187326 + 0.982298i \(0.559982\pi\)
\(542\) −0.647006 −0.0277913
\(543\) 2.38167 0.102207
\(544\) −26.7704 −1.14777
\(545\) 15.3168 0.656098
\(546\) 0.792616 0.0339208
\(547\) −10.3075 −0.440717 −0.220359 0.975419i \(-0.570723\pi\)
−0.220359 + 0.975419i \(0.570723\pi\)
\(548\) 15.5780 0.665460
\(549\) −10.1814 −0.434533
\(550\) −2.51032 −0.107040
\(551\) 5.14881 0.219347
\(552\) 0 0
\(553\) −17.0779 −0.726225
\(554\) −0.206822 −0.00878705
\(555\) −11.6860 −0.496041
\(556\) 41.0126 1.73932
\(557\) −40.5257 −1.71713 −0.858565 0.512705i \(-0.828644\pi\)
−0.858565 + 0.512705i \(0.828644\pi\)
\(558\) −1.71465 −0.0725870
\(559\) 2.62845 0.111172
\(560\) 3.82868 0.161791
\(561\) 38.2630 1.61546
\(562\) −2.72916 −0.115123
\(563\) 23.1422 0.975329 0.487664 0.873031i \(-0.337849\pi\)
0.487664 + 0.873031i \(0.337849\pi\)
\(564\) 0.706002 0.0297281
\(565\) −5.69752 −0.239696
\(566\) 7.10321 0.298570
\(567\) −1.25801 −0.0528314
\(568\) −4.43209 −0.185966
\(569\) −35.1537 −1.47372 −0.736860 0.676045i \(-0.763692\pi\)
−0.736860 + 0.676045i \(0.763692\pi\)
\(570\) 0.681158 0.0285306
\(571\) 12.3446 0.516607 0.258303 0.966064i \(-0.416837\pi\)
0.258303 + 0.966064i \(0.416837\pi\)
\(572\) −17.7181 −0.740832
\(573\) −20.0297 −0.836752
\(574\) 0.897558 0.0374633
\(575\) 0 0
\(576\) −4.33058 −0.180441
\(577\) 22.0999 0.920032 0.460016 0.887911i \(-0.347844\pi\)
0.460016 + 0.887911i \(0.347844\pi\)
\(578\) −8.53383 −0.354961
\(579\) 0.879190 0.0365379
\(580\) 5.61885 0.233310
\(581\) 16.2221 0.673007
\(582\) −1.05214 −0.0436127
\(583\) −78.0180 −3.23118
\(584\) 6.96034 0.288021
\(585\) −1.55628 −0.0643441
\(586\) 4.44873 0.183775
\(587\) −24.6098 −1.01575 −0.507877 0.861430i \(-0.669569\pi\)
−0.507877 + 0.861430i \(0.669569\pi\)
\(588\) 9.94691 0.410203
\(589\) 7.12587 0.293616
\(590\) 4.70689 0.193780
\(591\) −3.25186 −0.133764
\(592\) 35.5656 1.46174
\(593\) −31.9753 −1.31307 −0.656533 0.754297i \(-0.727978\pi\)
−0.656533 + 0.754297i \(0.727978\pi\)
\(594\) −2.51032 −0.103000
\(595\) 7.76294 0.318250
\(596\) −10.2879 −0.421411
\(597\) −15.7748 −0.645619
\(598\) 0 0
\(599\) 9.89067 0.404122 0.202061 0.979373i \(-0.435236\pi\)
0.202061 + 0.979373i \(0.435236\pi\)
\(600\) 1.55304 0.0634026
\(601\) 28.9710 1.18175 0.590875 0.806763i \(-0.298783\pi\)
0.590875 + 0.806763i \(0.298783\pi\)
\(602\) 0.860181 0.0350583
\(603\) 0.978510 0.0398480
\(604\) 7.74157 0.315000
\(605\) −27.4478 −1.11591
\(606\) −2.52193 −0.102446
\(607\) 0.907479 0.0368334 0.0184167 0.999830i \(-0.494137\pi\)
0.0184167 + 0.999830i \(0.494137\pi\)
\(608\) −7.29905 −0.296015
\(609\) −3.84977 −0.156001
\(610\) −4.12194 −0.166893
\(611\) −0.598407 −0.0242090
\(612\) −11.3302 −0.457997
\(613\) 5.20925 0.210400 0.105200 0.994451i \(-0.466452\pi\)
0.105200 + 0.994451i \(0.466452\pi\)
\(614\) 4.05132 0.163498
\(615\) −1.76233 −0.0710638
\(616\) −12.1144 −0.488103
\(617\) 11.0161 0.443492 0.221746 0.975104i \(-0.428824\pi\)
0.221746 + 0.975104i \(0.428824\pi\)
\(618\) −3.73791 −0.150361
\(619\) 34.6911 1.39435 0.697176 0.716900i \(-0.254440\pi\)
0.697176 + 0.716900i \(0.254440\pi\)
\(620\) 7.77640 0.312308
\(621\) 0 0
\(622\) 0.134160 0.00537933
\(623\) 20.5569 0.823593
\(624\) 4.73644 0.189610
\(625\) 1.00000 0.0400000
\(626\) −10.5299 −0.420860
\(627\) 10.4326 0.416636
\(628\) 8.03403 0.320593
\(629\) 72.1120 2.87529
\(630\) −0.509303 −0.0202911
\(631\) −21.0390 −0.837550 −0.418775 0.908090i \(-0.637540\pi\)
−0.418775 + 0.908090i \(0.637540\pi\)
\(632\) 21.0830 0.838638
\(633\) −2.13121 −0.0847078
\(634\) −11.5587 −0.459053
\(635\) −17.9861 −0.713757
\(636\) 23.1023 0.916066
\(637\) −8.43099 −0.334048
\(638\) −7.68211 −0.304138
\(639\) −2.85381 −0.112895
\(640\) −10.4297 −0.412269
\(641\) −4.46867 −0.176502 −0.0882508 0.996098i \(-0.528128\pi\)
−0.0882508 + 0.996098i \(0.528128\pi\)
\(642\) 1.20681 0.0476291
\(643\) −1.97280 −0.0777995 −0.0388998 0.999243i \(-0.512385\pi\)
−0.0388998 + 0.999243i \(0.512385\pi\)
\(644\) 0 0
\(645\) −1.68894 −0.0665018
\(646\) −4.20331 −0.165377
\(647\) 16.8790 0.663584 0.331792 0.943353i \(-0.392347\pi\)
0.331792 + 0.943353i \(0.392347\pi\)
\(648\) 1.55304 0.0610092
\(649\) 72.0903 2.82979
\(650\) −0.630056 −0.0247128
\(651\) −5.32802 −0.208822
\(652\) 0.431972 0.0169173
\(653\) 41.7866 1.63524 0.817618 0.575760i \(-0.195294\pi\)
0.817618 + 0.575760i \(0.195294\pi\)
\(654\) 6.20097 0.242477
\(655\) −6.80202 −0.265777
\(656\) 5.36355 0.209411
\(657\) 4.48175 0.174850
\(658\) −0.195833 −0.00763438
\(659\) 21.7254 0.846301 0.423151 0.906059i \(-0.360924\pi\)
0.423151 + 0.906059i \(0.360924\pi\)
\(660\) 11.3850 0.443159
\(661\) −22.1373 −0.861041 −0.430521 0.902581i \(-0.641670\pi\)
−0.430521 + 0.902581i \(0.641670\pi\)
\(662\) 5.43204 0.211122
\(663\) 9.60350 0.372969
\(664\) −20.0266 −0.777183
\(665\) 2.11660 0.0820781
\(666\) −4.73105 −0.183324
\(667\) 0 0
\(668\) −26.0356 −1.00735
\(669\) 17.1539 0.663210
\(670\) 0.396149 0.0153046
\(671\) −63.1313 −2.43716
\(672\) 5.45751 0.210528
\(673\) 26.4168 1.01829 0.509146 0.860680i \(-0.329961\pi\)
0.509146 + 0.860680i \(0.329961\pi\)
\(674\) −12.7452 −0.490928
\(675\) 1.00000 0.0384900
\(676\) 19.4223 0.747010
\(677\) 1.84707 0.0709885 0.0354943 0.999370i \(-0.488699\pi\)
0.0354943 + 0.999370i \(0.488699\pi\)
\(678\) −2.30663 −0.0885857
\(679\) −3.26937 −0.125467
\(680\) −9.58353 −0.367512
\(681\) −0.754485 −0.0289119
\(682\) −10.6319 −0.407117
\(683\) −33.8516 −1.29530 −0.647648 0.761940i \(-0.724247\pi\)
−0.647648 + 0.761940i \(0.724247\pi\)
\(684\) −3.08923 −0.118120
\(685\) 8.48431 0.324169
\(686\) −6.32423 −0.241460
\(687\) −8.06603 −0.307738
\(688\) 5.14019 0.195968
\(689\) −19.5815 −0.745996
\(690\) 0 0
\(691\) −15.9102 −0.605253 −0.302627 0.953109i \(-0.597863\pi\)
−0.302627 + 0.953109i \(0.597863\pi\)
\(692\) 6.00333 0.228213
\(693\) −7.80044 −0.296314
\(694\) −4.62360 −0.175510
\(695\) 22.3368 0.847285
\(696\) 4.75263 0.180148
\(697\) 10.8750 0.411920
\(698\) −10.1477 −0.384097
\(699\) 3.67716 0.139083
\(700\) 2.30982 0.0873032
\(701\) 10.7430 0.405756 0.202878 0.979204i \(-0.434971\pi\)
0.202878 + 0.979204i \(0.434971\pi\)
\(702\) −0.630056 −0.0237799
\(703\) 19.6616 0.741552
\(704\) −26.8523 −1.01203
\(705\) 0.384512 0.0144816
\(706\) 2.48066 0.0933608
\(707\) −7.83652 −0.294723
\(708\) −21.3470 −0.802269
\(709\) −47.6647 −1.79009 −0.895043 0.445980i \(-0.852855\pi\)
−0.895043 + 0.445980i \(0.852855\pi\)
\(710\) −1.15536 −0.0433600
\(711\) 13.5753 0.509115
\(712\) −25.3779 −0.951078
\(713\) 0 0
\(714\) 3.14282 0.117617
\(715\) −9.64989 −0.360885
\(716\) −17.7018 −0.661549
\(717\) −20.0397 −0.748397
\(718\) −4.01046 −0.149669
\(719\) −7.67207 −0.286120 −0.143060 0.989714i \(-0.545694\pi\)
−0.143060 + 0.989714i \(0.545694\pi\)
\(720\) −3.04345 −0.113423
\(721\) −11.6150 −0.432565
\(722\) 6.54608 0.243620
\(723\) 25.1865 0.936698
\(724\) −4.37299 −0.162521
\(725\) 3.06021 0.113653
\(726\) −11.1122 −0.412413
\(727\) −0.575517 −0.0213448 −0.0106724 0.999943i \(-0.503397\pi\)
−0.0106724 + 0.999943i \(0.503397\pi\)
\(728\) −3.04055 −0.112690
\(729\) 1.00000 0.0370370
\(730\) 1.81443 0.0671551
\(731\) 10.4221 0.385477
\(732\) 18.6941 0.690955
\(733\) 25.3573 0.936593 0.468296 0.883571i \(-0.344868\pi\)
0.468296 + 0.883571i \(0.344868\pi\)
\(734\) 2.20848 0.0815165
\(735\) 5.41742 0.199824
\(736\) 0 0
\(737\) 6.06738 0.223495
\(738\) −0.713476 −0.0262634
\(739\) −13.9292 −0.512394 −0.256197 0.966625i \(-0.582470\pi\)
−0.256197 + 0.966625i \(0.582470\pi\)
\(740\) 21.4566 0.788759
\(741\) 2.61843 0.0961906
\(742\) −6.40819 −0.235252
\(743\) 0.0934609 0.00342875 0.00171437 0.999999i \(-0.499454\pi\)
0.00171437 + 0.999999i \(0.499454\pi\)
\(744\) 6.57757 0.241145
\(745\) −5.60316 −0.205284
\(746\) 12.7088 0.465301
\(747\) −12.8951 −0.471807
\(748\) −70.2546 −2.56876
\(749\) 3.74999 0.137022
\(750\) 0.404849 0.0147830
\(751\) −3.88058 −0.141604 −0.0708022 0.997490i \(-0.522556\pi\)
−0.0708022 + 0.997490i \(0.522556\pi\)
\(752\) −1.17024 −0.0426744
\(753\) 15.0920 0.549985
\(754\) −1.92811 −0.0702175
\(755\) 4.21632 0.153448
\(756\) 2.30982 0.0840075
\(757\) 9.48006 0.344559 0.172279 0.985048i \(-0.444887\pi\)
0.172279 + 0.985048i \(0.444887\pi\)
\(758\) 12.3950 0.450207
\(759\) 0 0
\(760\) −2.61299 −0.0947831
\(761\) −4.05543 −0.147009 −0.0735046 0.997295i \(-0.523418\pi\)
−0.0735046 + 0.997295i \(0.523418\pi\)
\(762\) −7.28166 −0.263787
\(763\) 19.2686 0.697570
\(764\) 36.7764 1.33052
\(765\) −6.17082 −0.223107
\(766\) −9.49138 −0.342938
\(767\) 18.0937 0.653326
\(768\) 4.43872 0.160168
\(769\) −31.1032 −1.12161 −0.560805 0.827948i \(-0.689508\pi\)
−0.560805 + 0.827948i \(0.689508\pi\)
\(770\) −3.15800 −0.113806
\(771\) 4.43381 0.159680
\(772\) −1.61428 −0.0580992
\(773\) −45.5010 −1.63656 −0.818279 0.574821i \(-0.805072\pi\)
−0.818279 + 0.574821i \(0.805072\pi\)
\(774\) −0.683764 −0.0245774
\(775\) 4.23529 0.152136
\(776\) 4.03612 0.144888
\(777\) −14.7010 −0.527396
\(778\) 11.3915 0.408404
\(779\) 2.96511 0.106236
\(780\) 2.85747 0.102314
\(781\) −17.6954 −0.633193
\(782\) 0 0
\(783\) 3.06021 0.109363
\(784\) −16.4876 −0.588844
\(785\) 4.37560 0.156172
\(786\) −2.75379 −0.0982245
\(787\) 32.9901 1.17597 0.587985 0.808872i \(-0.299921\pi\)
0.587985 + 0.808872i \(0.299921\pi\)
\(788\) 5.97074 0.212699
\(789\) −11.7411 −0.417994
\(790\) 5.49596 0.195537
\(791\) −7.16752 −0.254848
\(792\) 9.62982 0.342181
\(793\) −15.8451 −0.562677
\(794\) 14.1112 0.500787
\(795\) 12.5823 0.446248
\(796\) 28.9641 1.02660
\(797\) −22.8611 −0.809781 −0.404890 0.914365i \(-0.632690\pi\)
−0.404890 + 0.914365i \(0.632690\pi\)
\(798\) 0.856902 0.0303340
\(799\) −2.37276 −0.0839421
\(800\) −4.33822 −0.153379
\(801\) −16.3408 −0.577374
\(802\) −12.7422 −0.449943
\(803\) 27.7897 0.980676
\(804\) −1.79664 −0.0633626
\(805\) 0 0
\(806\) −2.66847 −0.0939928
\(807\) 11.9300 0.419957
\(808\) 9.67437 0.340343
\(809\) 23.5468 0.827862 0.413931 0.910308i \(-0.364155\pi\)
0.413931 + 0.910308i \(0.364155\pi\)
\(810\) 0.404849 0.0142249
\(811\) −7.74805 −0.272071 −0.136035 0.990704i \(-0.543436\pi\)
−0.136035 + 0.990704i \(0.543436\pi\)
\(812\) 7.06856 0.248058
\(813\) 1.59814 0.0560493
\(814\) −29.3355 −1.02821
\(815\) 0.235266 0.00824102
\(816\) 18.7806 0.657452
\(817\) 2.84164 0.0994163
\(818\) −8.33867 −0.291555
\(819\) −1.95781 −0.0684113
\(820\) 3.23580 0.112999
\(821\) −48.1540 −1.68059 −0.840293 0.542133i \(-0.817617\pi\)
−0.840293 + 0.542133i \(0.817617\pi\)
\(822\) 3.43486 0.119805
\(823\) 6.23259 0.217255 0.108627 0.994083i \(-0.465355\pi\)
0.108627 + 0.994083i \(0.465355\pi\)
\(824\) 14.3390 0.499522
\(825\) 6.20063 0.215878
\(826\) 5.92130 0.206028
\(827\) 44.8732 1.56039 0.780197 0.625534i \(-0.215119\pi\)
0.780197 + 0.625534i \(0.215119\pi\)
\(828\) 0 0
\(829\) −1.84316 −0.0640156 −0.0320078 0.999488i \(-0.510190\pi\)
−0.0320078 + 0.999488i \(0.510190\pi\)
\(830\) −5.22057 −0.181208
\(831\) 0.510864 0.0177217
\(832\) −6.73957 −0.233653
\(833\) −33.4299 −1.15828
\(834\) 9.04305 0.313135
\(835\) −14.1799 −0.490714
\(836\) −19.1552 −0.662496
\(837\) 4.23529 0.146393
\(838\) −6.69333 −0.231217
\(839\) −33.4504 −1.15484 −0.577418 0.816449i \(-0.695940\pi\)
−0.577418 + 0.816449i \(0.695940\pi\)
\(840\) 1.95374 0.0674103
\(841\) −19.6351 −0.677072
\(842\) −4.61585 −0.159073
\(843\) 6.74118 0.232179
\(844\) 3.91310 0.134694
\(845\) 10.5780 0.363894
\(846\) 0.155669 0.00535202
\(847\) −34.5295 −1.18645
\(848\) −38.2935 −1.31501
\(849\) −17.5453 −0.602154
\(850\) −2.49825 −0.0856893
\(851\) 0 0
\(852\) 5.23988 0.179515
\(853\) 10.7669 0.368650 0.184325 0.982865i \(-0.440990\pi\)
0.184325 + 0.982865i \(0.440990\pi\)
\(854\) −5.18544 −0.177442
\(855\) −1.68250 −0.0575403
\(856\) −4.62945 −0.158231
\(857\) 10.7293 0.366506 0.183253 0.983066i \(-0.441337\pi\)
0.183253 + 0.983066i \(0.441337\pi\)
\(858\) −3.90675 −0.133374
\(859\) 33.7750 1.15239 0.576194 0.817313i \(-0.304537\pi\)
0.576194 + 0.817313i \(0.304537\pi\)
\(860\) 3.10105 0.105745
\(861\) −2.21702 −0.0755558
\(862\) 5.40764 0.184185
\(863\) 5.82528 0.198295 0.0991475 0.995073i \(-0.468388\pi\)
0.0991475 + 0.995073i \(0.468388\pi\)
\(864\) −4.33822 −0.147589
\(865\) 3.26962 0.111170
\(866\) 12.7410 0.432958
\(867\) 21.0791 0.715882
\(868\) 9.78277 0.332049
\(869\) 84.1756 2.85546
\(870\) 1.23892 0.0420035
\(871\) 1.52283 0.0515992
\(872\) −23.7875 −0.805548
\(873\) 2.59885 0.0879578
\(874\) 0 0
\(875\) 1.25801 0.0425284
\(876\) −8.22893 −0.278030
\(877\) 27.2559 0.920365 0.460182 0.887824i \(-0.347784\pi\)
0.460182 + 0.887824i \(0.347784\pi\)
\(878\) 10.9712 0.370262
\(879\) −10.9886 −0.370637
\(880\) −18.8713 −0.636151
\(881\) 11.0578 0.372546 0.186273 0.982498i \(-0.440359\pi\)
0.186273 + 0.982498i \(0.440359\pi\)
\(882\) 2.19323 0.0738501
\(883\) −20.4221 −0.687258 −0.343629 0.939105i \(-0.611656\pi\)
−0.343629 + 0.939105i \(0.611656\pi\)
\(884\) −17.6330 −0.593061
\(885\) −11.6263 −0.390813
\(886\) −4.89495 −0.164449
\(887\) 5.03758 0.169145 0.0845727 0.996417i \(-0.473047\pi\)
0.0845727 + 0.996417i \(0.473047\pi\)
\(888\) 18.1488 0.609032
\(889\) −22.6267 −0.758874
\(890\) −6.61556 −0.221754
\(891\) 6.20063 0.207729
\(892\) −31.4963 −1.05457
\(893\) −0.646942 −0.0216491
\(894\) −2.26843 −0.0758677
\(895\) −9.64101 −0.322264
\(896\) −13.1206 −0.438328
\(897\) 0 0
\(898\) −3.20451 −0.106936
\(899\) 12.9609 0.432270
\(900\) −1.83610 −0.0612032
\(901\) −77.6430 −2.58666
\(902\) −4.42400 −0.147303
\(903\) −2.12470 −0.0707055
\(904\) 8.84847 0.294296
\(905\) −2.38167 −0.0791695
\(906\) 1.70697 0.0567104
\(907\) −20.7839 −0.690117 −0.345058 0.938581i \(-0.612141\pi\)
−0.345058 + 0.938581i \(0.612141\pi\)
\(908\) 1.38531 0.0459731
\(909\) 6.22931 0.206613
\(910\) −0.792616 −0.0262750
\(911\) 30.3596 1.00586 0.502929 0.864328i \(-0.332256\pi\)
0.502929 + 0.864328i \(0.332256\pi\)
\(912\) 5.12060 0.169560
\(913\) −79.9577 −2.64621
\(914\) 10.4929 0.347073
\(915\) 10.1814 0.336588
\(916\) 14.8100 0.489337
\(917\) −8.55700 −0.282577
\(918\) −2.49825 −0.0824545
\(919\) −43.7684 −1.44379 −0.721893 0.692004i \(-0.756728\pi\)
−0.721893 + 0.692004i \(0.756728\pi\)
\(920\) 0 0
\(921\) −10.0070 −0.329742
\(922\) −6.37522 −0.209957
\(923\) −4.44132 −0.146188
\(924\) 14.3224 0.471171
\(925\) 11.6860 0.384232
\(926\) −4.30236 −0.141384
\(927\) 9.23285 0.303247
\(928\) −13.2759 −0.435802
\(929\) −34.4775 −1.13117 −0.565585 0.824690i \(-0.691350\pi\)
−0.565585 + 0.824690i \(0.691350\pi\)
\(930\) 1.71465 0.0562256
\(931\) −9.11480 −0.298726
\(932\) −6.75162 −0.221157
\(933\) −0.331383 −0.0108490
\(934\) −12.9195 −0.422740
\(935\) −38.2630 −1.25133
\(936\) 2.41696 0.0790007
\(937\) −26.7699 −0.874536 −0.437268 0.899331i \(-0.644054\pi\)
−0.437268 + 0.899331i \(0.644054\pi\)
\(938\) 0.498358 0.0162720
\(939\) 26.0095 0.848788
\(940\) −0.706002 −0.0230273
\(941\) −39.4986 −1.28762 −0.643808 0.765187i \(-0.722647\pi\)
−0.643808 + 0.765187i \(0.722647\pi\)
\(942\) 1.77146 0.0577172
\(943\) 0 0
\(944\) 35.3840 1.15165
\(945\) 1.25801 0.0409230
\(946\) −4.23977 −0.137847
\(947\) 41.8722 1.36066 0.680331 0.732905i \(-0.261836\pi\)
0.680331 + 0.732905i \(0.261836\pi\)
\(948\) −24.9256 −0.809547
\(949\) 6.97484 0.226413
\(950\) −0.681158 −0.0220997
\(951\) 28.5506 0.925815
\(952\) −12.0562 −0.390742
\(953\) 36.0123 1.16655 0.583277 0.812273i \(-0.301770\pi\)
0.583277 + 0.812273i \(0.301770\pi\)
\(954\) 5.09392 0.164922
\(955\) 20.0297 0.648145
\(956\) 36.7949 1.19003
\(957\) 18.9752 0.613383
\(958\) 11.5375 0.372758
\(959\) 10.6733 0.344660
\(960\) 4.33058 0.139769
\(961\) −13.0623 −0.421366
\(962\) −7.36281 −0.237387
\(963\) −2.98090 −0.0960580
\(964\) −46.2450 −1.48945
\(965\) −0.879190 −0.0283021
\(966\) 0 0
\(967\) 36.7830 1.18286 0.591431 0.806356i \(-0.298563\pi\)
0.591431 + 0.806356i \(0.298563\pi\)
\(968\) 42.6275 1.37010
\(969\) 10.3824 0.333531
\(970\) 1.05214 0.0337822
\(971\) −20.8225 −0.668225 −0.334112 0.942533i \(-0.608437\pi\)
−0.334112 + 0.942533i \(0.608437\pi\)
\(972\) −1.83610 −0.0588929
\(973\) 28.0999 0.900842
\(974\) 2.77864 0.0890334
\(975\) 1.55628 0.0498407
\(976\) −30.9867 −0.991860
\(977\) −20.6447 −0.660482 −0.330241 0.943897i \(-0.607130\pi\)
−0.330241 + 0.943897i \(0.607130\pi\)
\(978\) 0.0952473 0.00304567
\(979\) −101.323 −3.23831
\(980\) −9.94691 −0.317742
\(981\) −15.3168 −0.489027
\(982\) −17.4292 −0.556187
\(983\) 37.5745 1.19844 0.599219 0.800585i \(-0.295478\pi\)
0.599219 + 0.800585i \(0.295478\pi\)
\(984\) 2.73696 0.0872511
\(985\) 3.25186 0.103613
\(986\) −7.64518 −0.243472
\(987\) 0.483720 0.0153970
\(988\) −4.80770 −0.152953
\(989\) 0 0
\(990\) 2.51032 0.0797831
\(991\) −46.3137 −1.47120 −0.735601 0.677415i \(-0.763100\pi\)
−0.735601 + 0.677415i \(0.763100\pi\)
\(992\) −18.3736 −0.583362
\(993\) −13.4175 −0.425790
\(994\) −1.45346 −0.0461008
\(995\) 15.7748 0.500094
\(996\) 23.6767 0.750224
\(997\) −58.8241 −1.86298 −0.931489 0.363770i \(-0.881489\pi\)
−0.931489 + 0.363770i \(0.881489\pi\)
\(998\) −8.43850 −0.267116
\(999\) 11.6860 0.369727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bv.1.9 25
23.2 even 11 345.2.m.c.211.2 yes 50
23.12 even 11 345.2.m.c.121.2 50
23.22 odd 2 7935.2.a.bw.1.9 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.c.121.2 50 23.12 even 11
345.2.m.c.211.2 yes 50 23.2 even 11
7935.2.a.bv.1.9 25 1.1 even 1 trivial
7935.2.a.bw.1.9 25 23.22 odd 2