Properties

Label 7935.2.a.bv.1.10
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,11,25,31,-25,11,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.358480 q^{2} +1.00000 q^{3} -1.87149 q^{4} -1.00000 q^{5} -0.358480 q^{6} +2.43554 q^{7} +1.38785 q^{8} +1.00000 q^{9} +0.358480 q^{10} +4.36825 q^{11} -1.87149 q^{12} -5.75501 q^{13} -0.873093 q^{14} -1.00000 q^{15} +3.24547 q^{16} +0.243632 q^{17} -0.358480 q^{18} +3.07550 q^{19} +1.87149 q^{20} +2.43554 q^{21} -1.56593 q^{22} +1.38785 q^{24} +1.00000 q^{25} +2.06306 q^{26} +1.00000 q^{27} -4.55809 q^{28} +2.57379 q^{29} +0.358480 q^{30} +3.73126 q^{31} -3.93914 q^{32} +4.36825 q^{33} -0.0873372 q^{34} -2.43554 q^{35} -1.87149 q^{36} -4.66392 q^{37} -1.10250 q^{38} -5.75501 q^{39} -1.38785 q^{40} +4.81188 q^{41} -0.873093 q^{42} +9.78199 q^{43} -8.17514 q^{44} -1.00000 q^{45} -5.51766 q^{47} +3.24547 q^{48} -1.06814 q^{49} -0.358480 q^{50} +0.243632 q^{51} +10.7705 q^{52} +4.31404 q^{53} -0.358480 q^{54} -4.36825 q^{55} +3.38017 q^{56} +3.07550 q^{57} -0.922653 q^{58} -5.19738 q^{59} +1.87149 q^{60} +9.38738 q^{61} -1.33758 q^{62} +2.43554 q^{63} -5.07883 q^{64} +5.75501 q^{65} -1.56593 q^{66} +1.67416 q^{67} -0.455955 q^{68} +0.873093 q^{70} -11.2396 q^{71} +1.38785 q^{72} +6.99643 q^{73} +1.67192 q^{74} +1.00000 q^{75} -5.75577 q^{76} +10.6390 q^{77} +2.06306 q^{78} -6.05110 q^{79} -3.24547 q^{80} +1.00000 q^{81} -1.72496 q^{82} +12.6294 q^{83} -4.55809 q^{84} -0.243632 q^{85} -3.50665 q^{86} +2.57379 q^{87} +6.06249 q^{88} -12.7019 q^{89} +0.358480 q^{90} -14.0166 q^{91} +3.73126 q^{93} +1.97797 q^{94} -3.07550 q^{95} -3.93914 q^{96} +14.5901 q^{97} +0.382908 q^{98} +4.36825 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 11 q^{2} + 25 q^{3} + 31 q^{4} - 25 q^{5} + 11 q^{6} - 7 q^{7} + 33 q^{8} + 25 q^{9} - 11 q^{10} - 9 q^{11} + 31 q^{12} + 18 q^{13} - 11 q^{14} - 25 q^{15} + 39 q^{16} + 8 q^{17} + 11 q^{18} - 11 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.358480 −0.253484 −0.126742 0.991936i \(-0.540452\pi\)
−0.126742 + 0.991936i \(0.540452\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.87149 −0.935746
\(5\) −1.00000 −0.447214
\(6\) −0.358480 −0.146349
\(7\) 2.43554 0.920548 0.460274 0.887777i \(-0.347751\pi\)
0.460274 + 0.887777i \(0.347751\pi\)
\(8\) 1.38785 0.490680
\(9\) 1.00000 0.333333
\(10\) 0.358480 0.113361
\(11\) 4.36825 1.31708 0.658538 0.752547i \(-0.271175\pi\)
0.658538 + 0.752547i \(0.271175\pi\)
\(12\) −1.87149 −0.540253
\(13\) −5.75501 −1.59615 −0.798077 0.602556i \(-0.794149\pi\)
−0.798077 + 0.602556i \(0.794149\pi\)
\(14\) −0.873093 −0.233344
\(15\) −1.00000 −0.258199
\(16\) 3.24547 0.811367
\(17\) 0.243632 0.0590894 0.0295447 0.999563i \(-0.490594\pi\)
0.0295447 + 0.999563i \(0.490594\pi\)
\(18\) −0.358480 −0.0844946
\(19\) 3.07550 0.705567 0.352784 0.935705i \(-0.385235\pi\)
0.352784 + 0.935705i \(0.385235\pi\)
\(20\) 1.87149 0.418478
\(21\) 2.43554 0.531478
\(22\) −1.56593 −0.333857
\(23\) 0 0
\(24\) 1.38785 0.283294
\(25\) 1.00000 0.200000
\(26\) 2.06306 0.404599
\(27\) 1.00000 0.192450
\(28\) −4.55809 −0.861399
\(29\) 2.57379 0.477941 0.238971 0.971027i \(-0.423190\pi\)
0.238971 + 0.971027i \(0.423190\pi\)
\(30\) 0.358480 0.0654492
\(31\) 3.73126 0.670155 0.335077 0.942191i \(-0.391238\pi\)
0.335077 + 0.942191i \(0.391238\pi\)
\(32\) −3.93914 −0.696348
\(33\) 4.36825 0.760414
\(34\) −0.0873372 −0.0149782
\(35\) −2.43554 −0.411681
\(36\) −1.87149 −0.311915
\(37\) −4.66392 −0.766744 −0.383372 0.923594i \(-0.625237\pi\)
−0.383372 + 0.923594i \(0.625237\pi\)
\(38\) −1.10250 −0.178850
\(39\) −5.75501 −0.921540
\(40\) −1.38785 −0.219439
\(41\) 4.81188 0.751490 0.375745 0.926723i \(-0.377387\pi\)
0.375745 + 0.926723i \(0.377387\pi\)
\(42\) −0.873093 −0.134721
\(43\) 9.78199 1.49174 0.745869 0.666092i \(-0.232034\pi\)
0.745869 + 0.666092i \(0.232034\pi\)
\(44\) −8.17514 −1.23245
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −5.51766 −0.804833 −0.402416 0.915457i \(-0.631830\pi\)
−0.402416 + 0.915457i \(0.631830\pi\)
\(48\) 3.24547 0.468443
\(49\) −1.06814 −0.152592
\(50\) −0.358480 −0.0506967
\(51\) 0.243632 0.0341153
\(52\) 10.7705 1.49359
\(53\) 4.31404 0.592579 0.296289 0.955098i \(-0.404251\pi\)
0.296289 + 0.955098i \(0.404251\pi\)
\(54\) −0.358480 −0.0487830
\(55\) −4.36825 −0.589014
\(56\) 3.38017 0.451694
\(57\) 3.07550 0.407360
\(58\) −0.922653 −0.121150
\(59\) −5.19738 −0.676641 −0.338321 0.941031i \(-0.609859\pi\)
−0.338321 + 0.941031i \(0.609859\pi\)
\(60\) 1.87149 0.241609
\(61\) 9.38738 1.20193 0.600965 0.799275i \(-0.294783\pi\)
0.600965 + 0.799275i \(0.294783\pi\)
\(62\) −1.33758 −0.169873
\(63\) 2.43554 0.306849
\(64\) −5.07883 −0.634854
\(65\) 5.75501 0.713821
\(66\) −1.56593 −0.192753
\(67\) 1.67416 0.204531 0.102266 0.994757i \(-0.467391\pi\)
0.102266 + 0.994757i \(0.467391\pi\)
\(68\) −0.455955 −0.0552927
\(69\) 0 0
\(70\) 0.873093 0.104355
\(71\) −11.2396 −1.33390 −0.666950 0.745103i \(-0.732401\pi\)
−0.666950 + 0.745103i \(0.732401\pi\)
\(72\) 1.38785 0.163560
\(73\) 6.99643 0.818870 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(74\) 1.67192 0.194357
\(75\) 1.00000 0.115470
\(76\) −5.75577 −0.660232
\(77\) 10.6390 1.21243
\(78\) 2.06306 0.233595
\(79\) −6.05110 −0.680802 −0.340401 0.940280i \(-0.610563\pi\)
−0.340401 + 0.940280i \(0.610563\pi\)
\(80\) −3.24547 −0.362854
\(81\) 1.00000 0.111111
\(82\) −1.72496 −0.190490
\(83\) 12.6294 1.38626 0.693129 0.720813i \(-0.256232\pi\)
0.693129 + 0.720813i \(0.256232\pi\)
\(84\) −4.55809 −0.497329
\(85\) −0.243632 −0.0264256
\(86\) −3.50665 −0.378131
\(87\) 2.57379 0.275940
\(88\) 6.06249 0.646263
\(89\) −12.7019 −1.34640 −0.673198 0.739463i \(-0.735080\pi\)
−0.673198 + 0.739463i \(0.735080\pi\)
\(90\) 0.358480 0.0377871
\(91\) −14.0166 −1.46934
\(92\) 0 0
\(93\) 3.73126 0.386914
\(94\) 1.97797 0.204012
\(95\) −3.07550 −0.315539
\(96\) −3.93914 −0.402037
\(97\) 14.5901 1.48140 0.740700 0.671836i \(-0.234494\pi\)
0.740700 + 0.671836i \(0.234494\pi\)
\(98\) 0.382908 0.0386796
\(99\) 4.36825 0.439025
\(100\) −1.87149 −0.187149
\(101\) 12.6691 1.26062 0.630309 0.776344i \(-0.282928\pi\)
0.630309 + 0.776344i \(0.282928\pi\)
\(102\) −0.0873372 −0.00864767
\(103\) −15.3298 −1.51049 −0.755244 0.655444i \(-0.772482\pi\)
−0.755244 + 0.655444i \(0.772482\pi\)
\(104\) −7.98711 −0.783201
\(105\) −2.43554 −0.237684
\(106\) −1.54650 −0.150209
\(107\) −0.156053 −0.0150862 −0.00754312 0.999972i \(-0.502401\pi\)
−0.00754312 + 0.999972i \(0.502401\pi\)
\(108\) −1.87149 −0.180084
\(109\) −14.7059 −1.40857 −0.704284 0.709918i \(-0.748732\pi\)
−0.704284 + 0.709918i \(0.748732\pi\)
\(110\) 1.56593 0.149306
\(111\) −4.66392 −0.442680
\(112\) 7.90446 0.746902
\(113\) −1.92458 −0.181049 −0.0905247 0.995894i \(-0.528854\pi\)
−0.0905247 + 0.995894i \(0.528854\pi\)
\(114\) −1.10250 −0.103259
\(115\) 0 0
\(116\) −4.81683 −0.447232
\(117\) −5.75501 −0.532051
\(118\) 1.86316 0.171517
\(119\) 0.593375 0.0543946
\(120\) −1.38785 −0.126693
\(121\) 8.08159 0.734690
\(122\) −3.36519 −0.304670
\(123\) 4.81188 0.433873
\(124\) −6.98303 −0.627094
\(125\) −1.00000 −0.0894427
\(126\) −0.873093 −0.0777813
\(127\) 10.2076 0.905775 0.452888 0.891568i \(-0.350394\pi\)
0.452888 + 0.891568i \(0.350394\pi\)
\(128\) 9.69894 0.857273
\(129\) 9.78199 0.861256
\(130\) −2.06306 −0.180942
\(131\) −5.87457 −0.513264 −0.256632 0.966509i \(-0.582613\pi\)
−0.256632 + 0.966509i \(0.582613\pi\)
\(132\) −8.17514 −0.711555
\(133\) 7.49050 0.649509
\(134\) −0.600153 −0.0518453
\(135\) −1.00000 −0.0860663
\(136\) 0.338125 0.0289940
\(137\) 10.2776 0.878074 0.439037 0.898469i \(-0.355320\pi\)
0.439037 + 0.898469i \(0.355320\pi\)
\(138\) 0 0
\(139\) 19.8111 1.68036 0.840180 0.542308i \(-0.182450\pi\)
0.840180 + 0.542308i \(0.182450\pi\)
\(140\) 4.55809 0.385229
\(141\) −5.51766 −0.464671
\(142\) 4.02919 0.338122
\(143\) −25.1393 −2.10226
\(144\) 3.24547 0.270456
\(145\) −2.57379 −0.213742
\(146\) −2.50808 −0.207570
\(147\) −1.06814 −0.0880990
\(148\) 8.72850 0.717478
\(149\) −22.3546 −1.83136 −0.915679 0.401910i \(-0.868347\pi\)
−0.915679 + 0.401910i \(0.868347\pi\)
\(150\) −0.358480 −0.0292698
\(151\) −4.80658 −0.391154 −0.195577 0.980688i \(-0.562658\pi\)
−0.195577 + 0.980688i \(0.562658\pi\)
\(152\) 4.26834 0.346208
\(153\) 0.243632 0.0196965
\(154\) −3.81389 −0.307332
\(155\) −3.73126 −0.299702
\(156\) 10.7705 0.862327
\(157\) −11.3949 −0.909409 −0.454705 0.890642i \(-0.650255\pi\)
−0.454705 + 0.890642i \(0.650255\pi\)
\(158\) 2.16920 0.172572
\(159\) 4.31404 0.342126
\(160\) 3.93914 0.311416
\(161\) 0 0
\(162\) −0.358480 −0.0281649
\(163\) 20.1351 1.57710 0.788551 0.614969i \(-0.210832\pi\)
0.788551 + 0.614969i \(0.210832\pi\)
\(164\) −9.00540 −0.703204
\(165\) −4.36825 −0.340068
\(166\) −4.52739 −0.351394
\(167\) 1.00297 0.0776122 0.0388061 0.999247i \(-0.487645\pi\)
0.0388061 + 0.999247i \(0.487645\pi\)
\(168\) 3.38017 0.260786
\(169\) 20.1202 1.54771
\(170\) 0.0873372 0.00669846
\(171\) 3.07550 0.235189
\(172\) −18.3069 −1.39589
\(173\) 19.4713 1.48038 0.740188 0.672400i \(-0.234736\pi\)
0.740188 + 0.672400i \(0.234736\pi\)
\(174\) −0.922653 −0.0699462
\(175\) 2.43554 0.184110
\(176\) 14.1770 1.06863
\(177\) −5.19738 −0.390659
\(178\) 4.55337 0.341289
\(179\) 0.452652 0.0338328 0.0169164 0.999857i \(-0.494615\pi\)
0.0169164 + 0.999857i \(0.494615\pi\)
\(180\) 1.87149 0.139493
\(181\) −6.77197 −0.503357 −0.251678 0.967811i \(-0.580983\pi\)
−0.251678 + 0.967811i \(0.580983\pi\)
\(182\) 5.02466 0.372453
\(183\) 9.38738 0.693935
\(184\) 0 0
\(185\) 4.66392 0.342899
\(186\) −1.33758 −0.0980764
\(187\) 1.06424 0.0778253
\(188\) 10.3263 0.753119
\(189\) 2.43554 0.177159
\(190\) 1.10250 0.0799841
\(191\) 10.9469 0.792086 0.396043 0.918232i \(-0.370383\pi\)
0.396043 + 0.918232i \(0.370383\pi\)
\(192\) −5.07883 −0.366533
\(193\) 1.12334 0.0808598 0.0404299 0.999182i \(-0.487127\pi\)
0.0404299 + 0.999182i \(0.487127\pi\)
\(194\) −5.23026 −0.375511
\(195\) 5.75501 0.412125
\(196\) 1.99902 0.142787
\(197\) −18.3172 −1.30505 −0.652524 0.757768i \(-0.726290\pi\)
−0.652524 + 0.757768i \(0.726290\pi\)
\(198\) −1.56593 −0.111286
\(199\) 16.9093 1.19867 0.599336 0.800498i \(-0.295431\pi\)
0.599336 + 0.800498i \(0.295431\pi\)
\(200\) 1.38785 0.0981360
\(201\) 1.67416 0.118086
\(202\) −4.54160 −0.319546
\(203\) 6.26858 0.439968
\(204\) −0.455955 −0.0319232
\(205\) −4.81188 −0.336076
\(206\) 5.49542 0.382884
\(207\) 0 0
\(208\) −18.6777 −1.29507
\(209\) 13.4345 0.929286
\(210\) 0.873093 0.0602491
\(211\) −17.2386 −1.18675 −0.593377 0.804925i \(-0.702206\pi\)
−0.593377 + 0.804925i \(0.702206\pi\)
\(212\) −8.07369 −0.554503
\(213\) −11.2396 −0.770127
\(214\) 0.0559420 0.00382411
\(215\) −9.78199 −0.667126
\(216\) 1.38785 0.0944314
\(217\) 9.08764 0.616909
\(218\) 5.27177 0.357049
\(219\) 6.99643 0.472775
\(220\) 8.17514 0.551168
\(221\) −1.40210 −0.0943158
\(222\) 1.67192 0.112212
\(223\) −5.28009 −0.353581 −0.176790 0.984249i \(-0.556572\pi\)
−0.176790 + 0.984249i \(0.556572\pi\)
\(224\) −9.59393 −0.641022
\(225\) 1.00000 0.0666667
\(226\) 0.689924 0.0458931
\(227\) 23.0024 1.52672 0.763361 0.645973i \(-0.223548\pi\)
0.763361 + 0.645973i \(0.223548\pi\)
\(228\) −5.75577 −0.381185
\(229\) −3.87336 −0.255959 −0.127979 0.991777i \(-0.540849\pi\)
−0.127979 + 0.991777i \(0.540849\pi\)
\(230\) 0 0
\(231\) 10.6390 0.699998
\(232\) 3.57205 0.234516
\(233\) 17.1361 1.12262 0.561310 0.827605i \(-0.310297\pi\)
0.561310 + 0.827605i \(0.310297\pi\)
\(234\) 2.06306 0.134866
\(235\) 5.51766 0.359932
\(236\) 9.72685 0.633164
\(237\) −6.05110 −0.393061
\(238\) −0.212713 −0.0137881
\(239\) 29.2812 1.89405 0.947023 0.321165i \(-0.104074\pi\)
0.947023 + 0.321165i \(0.104074\pi\)
\(240\) −3.24547 −0.209494
\(241\) −28.4319 −1.83146 −0.915729 0.401797i \(-0.868386\pi\)
−0.915729 + 0.401797i \(0.868386\pi\)
\(242\) −2.89709 −0.186232
\(243\) 1.00000 0.0641500
\(244\) −17.5684 −1.12470
\(245\) 1.06814 0.0682412
\(246\) −1.72496 −0.109980
\(247\) −17.6995 −1.12619
\(248\) 5.17844 0.328831
\(249\) 12.6294 0.800357
\(250\) 0.358480 0.0226723
\(251\) 25.0551 1.58147 0.790733 0.612162i \(-0.209700\pi\)
0.790733 + 0.612162i \(0.209700\pi\)
\(252\) −4.55809 −0.287133
\(253\) 0 0
\(254\) −3.65921 −0.229599
\(255\) −0.243632 −0.0152568
\(256\) 6.68078 0.417549
\(257\) −7.07424 −0.441279 −0.220639 0.975355i \(-0.570814\pi\)
−0.220639 + 0.975355i \(0.570814\pi\)
\(258\) −3.50665 −0.218314
\(259\) −11.3592 −0.705825
\(260\) −10.7705 −0.667956
\(261\) 2.57379 0.159314
\(262\) 2.10592 0.130104
\(263\) −3.35421 −0.206830 −0.103415 0.994638i \(-0.532977\pi\)
−0.103415 + 0.994638i \(0.532977\pi\)
\(264\) 6.06249 0.373120
\(265\) −4.31404 −0.265009
\(266\) −2.68519 −0.164640
\(267\) −12.7019 −0.777342
\(268\) −3.13318 −0.191389
\(269\) −4.33125 −0.264081 −0.132040 0.991244i \(-0.542153\pi\)
−0.132040 + 0.991244i \(0.542153\pi\)
\(270\) 0.358480 0.0218164
\(271\) 19.1737 1.16472 0.582359 0.812932i \(-0.302130\pi\)
0.582359 + 0.812932i \(0.302130\pi\)
\(272\) 0.790699 0.0479432
\(273\) −14.0166 −0.848321
\(274\) −3.68431 −0.222578
\(275\) 4.36825 0.263415
\(276\) 0 0
\(277\) −24.8789 −1.49483 −0.747413 0.664360i \(-0.768704\pi\)
−0.747413 + 0.664360i \(0.768704\pi\)
\(278\) −7.10190 −0.425944
\(279\) 3.73126 0.223385
\(280\) −3.38017 −0.202004
\(281\) −10.2163 −0.609452 −0.304726 0.952440i \(-0.598565\pi\)
−0.304726 + 0.952440i \(0.598565\pi\)
\(282\) 1.97797 0.117786
\(283\) −9.24893 −0.549792 −0.274896 0.961474i \(-0.588643\pi\)
−0.274896 + 0.961474i \(0.588643\pi\)
\(284\) 21.0349 1.24819
\(285\) −3.07550 −0.182177
\(286\) 9.01195 0.532888
\(287\) 11.7195 0.691782
\(288\) −3.93914 −0.232116
\(289\) −16.9406 −0.996508
\(290\) 0.922653 0.0541801
\(291\) 14.5901 0.855286
\(292\) −13.0938 −0.766254
\(293\) 6.50885 0.380251 0.190125 0.981760i \(-0.439111\pi\)
0.190125 + 0.981760i \(0.439111\pi\)
\(294\) 0.382908 0.0223317
\(295\) 5.19738 0.302603
\(296\) −6.47284 −0.376226
\(297\) 4.36825 0.253471
\(298\) 8.01367 0.464219
\(299\) 0 0
\(300\) −1.87149 −0.108051
\(301\) 23.8244 1.37322
\(302\) 1.72306 0.0991511
\(303\) 12.6691 0.727818
\(304\) 9.98142 0.572474
\(305\) −9.38738 −0.537520
\(306\) −0.0873372 −0.00499273
\(307\) 22.5740 1.28836 0.644182 0.764872i \(-0.277198\pi\)
0.644182 + 0.764872i \(0.277198\pi\)
\(308\) −19.9109 −1.13453
\(309\) −15.3298 −0.872080
\(310\) 1.33758 0.0759696
\(311\) −7.54997 −0.428119 −0.214060 0.976821i \(-0.568669\pi\)
−0.214060 + 0.976821i \(0.568669\pi\)
\(312\) −7.98711 −0.452181
\(313\) −13.9365 −0.787736 −0.393868 0.919167i \(-0.628863\pi\)
−0.393868 + 0.919167i \(0.628863\pi\)
\(314\) 4.08483 0.230520
\(315\) −2.43554 −0.137227
\(316\) 11.3246 0.637058
\(317\) 23.0604 1.29520 0.647600 0.761980i \(-0.275773\pi\)
0.647600 + 0.761980i \(0.275773\pi\)
\(318\) −1.54650 −0.0867232
\(319\) 11.2430 0.629485
\(320\) 5.07883 0.283915
\(321\) −0.156053 −0.00871004
\(322\) 0 0
\(323\) 0.749289 0.0416916
\(324\) −1.87149 −0.103972
\(325\) −5.75501 −0.319231
\(326\) −7.21803 −0.399770
\(327\) −14.7059 −0.813237
\(328\) 6.67818 0.368741
\(329\) −13.4385 −0.740887
\(330\) 1.56593 0.0862016
\(331\) 21.8562 1.20133 0.600664 0.799502i \(-0.294903\pi\)
0.600664 + 0.799502i \(0.294903\pi\)
\(332\) −23.6359 −1.29719
\(333\) −4.66392 −0.255581
\(334\) −0.359545 −0.0196734
\(335\) −1.67416 −0.0914691
\(336\) 7.90446 0.431224
\(337\) −1.92572 −0.104901 −0.0524504 0.998624i \(-0.516703\pi\)
−0.0524504 + 0.998624i \(0.516703\pi\)
\(338\) −7.21268 −0.392318
\(339\) −1.92458 −0.104529
\(340\) 0.455955 0.0247276
\(341\) 16.2991 0.882645
\(342\) −1.10250 −0.0596166
\(343\) −19.6503 −1.06102
\(344\) 13.5760 0.731966
\(345\) 0 0
\(346\) −6.98007 −0.375251
\(347\) 15.5633 0.835481 0.417740 0.908566i \(-0.362822\pi\)
0.417740 + 0.908566i \(0.362822\pi\)
\(348\) −4.81683 −0.258209
\(349\) −23.4235 −1.25383 −0.626914 0.779088i \(-0.715682\pi\)
−0.626914 + 0.779088i \(0.715682\pi\)
\(350\) −0.873093 −0.0466688
\(351\) −5.75501 −0.307180
\(352\) −17.2071 −0.917144
\(353\) 16.0649 0.855050 0.427525 0.904004i \(-0.359386\pi\)
0.427525 + 0.904004i \(0.359386\pi\)
\(354\) 1.86316 0.0990257
\(355\) 11.2396 0.596538
\(356\) 23.7714 1.25988
\(357\) 0.593375 0.0314048
\(358\) −0.162267 −0.00857605
\(359\) −3.69663 −0.195101 −0.0975503 0.995231i \(-0.531101\pi\)
−0.0975503 + 0.995231i \(0.531101\pi\)
\(360\) −1.38785 −0.0731463
\(361\) −9.54132 −0.502175
\(362\) 2.42762 0.127593
\(363\) 8.08159 0.424174
\(364\) 26.2319 1.37492
\(365\) −6.99643 −0.366210
\(366\) −3.36519 −0.175901
\(367\) 27.3442 1.42736 0.713678 0.700474i \(-0.247028\pi\)
0.713678 + 0.700474i \(0.247028\pi\)
\(368\) 0 0
\(369\) 4.81188 0.250497
\(370\) −1.67192 −0.0869192
\(371\) 10.5070 0.545497
\(372\) −6.98303 −0.362053
\(373\) −1.97252 −0.102133 −0.0510667 0.998695i \(-0.516262\pi\)
−0.0510667 + 0.998695i \(0.516262\pi\)
\(374\) −0.381510 −0.0197274
\(375\) −1.00000 −0.0516398
\(376\) −7.65769 −0.394915
\(377\) −14.8122 −0.762868
\(378\) −0.873093 −0.0449070
\(379\) 16.2454 0.834471 0.417235 0.908798i \(-0.362999\pi\)
0.417235 + 0.908798i \(0.362999\pi\)
\(380\) 5.75577 0.295265
\(381\) 10.2076 0.522950
\(382\) −3.92423 −0.200781
\(383\) 22.4939 1.14938 0.574692 0.818370i \(-0.305122\pi\)
0.574692 + 0.818370i \(0.305122\pi\)
\(384\) 9.69894 0.494947
\(385\) −10.6390 −0.542216
\(386\) −0.402695 −0.0204966
\(387\) 9.78199 0.497246
\(388\) −27.3052 −1.38621
\(389\) −4.37282 −0.221711 −0.110855 0.993837i \(-0.535359\pi\)
−0.110855 + 0.993837i \(0.535359\pi\)
\(390\) −2.06306 −0.104467
\(391\) 0 0
\(392\) −1.48243 −0.0748738
\(393\) −5.87457 −0.296333
\(394\) 6.56635 0.330808
\(395\) 6.05110 0.304464
\(396\) −8.17514 −0.410816
\(397\) 17.7483 0.890763 0.445381 0.895341i \(-0.353068\pi\)
0.445381 + 0.895341i \(0.353068\pi\)
\(398\) −6.06166 −0.303844
\(399\) 7.49050 0.374994
\(400\) 3.24547 0.162273
\(401\) 38.1675 1.90599 0.952996 0.302983i \(-0.0979824\pi\)
0.952996 + 0.302983i \(0.0979824\pi\)
\(402\) −0.600153 −0.0299329
\(403\) −21.4735 −1.06967
\(404\) −23.7100 −1.17962
\(405\) −1.00000 −0.0496904
\(406\) −2.24716 −0.111525
\(407\) −20.3732 −1.00986
\(408\) 0.338125 0.0167397
\(409\) −38.1341 −1.88561 −0.942805 0.333345i \(-0.891823\pi\)
−0.942805 + 0.333345i \(0.891823\pi\)
\(410\) 1.72496 0.0851899
\(411\) 10.2776 0.506956
\(412\) 28.6896 1.41343
\(413\) −12.6584 −0.622880
\(414\) 0 0
\(415\) −12.6294 −0.619954
\(416\) 22.6698 1.11148
\(417\) 19.8111 0.970156
\(418\) −4.81601 −0.235559
\(419\) −33.0734 −1.61574 −0.807871 0.589359i \(-0.799380\pi\)
−0.807871 + 0.589359i \(0.799380\pi\)
\(420\) 4.55809 0.222412
\(421\) 1.53236 0.0746827 0.0373414 0.999303i \(-0.488111\pi\)
0.0373414 + 0.999303i \(0.488111\pi\)
\(422\) 6.17969 0.300823
\(423\) −5.51766 −0.268278
\(424\) 5.98725 0.290767
\(425\) 0.243632 0.0118179
\(426\) 4.02919 0.195215
\(427\) 22.8633 1.10643
\(428\) 0.292052 0.0141169
\(429\) −25.1393 −1.21374
\(430\) 3.50665 0.169106
\(431\) 8.17481 0.393767 0.196883 0.980427i \(-0.436918\pi\)
0.196883 + 0.980427i \(0.436918\pi\)
\(432\) 3.24547 0.156148
\(433\) 25.4801 1.22450 0.612248 0.790666i \(-0.290266\pi\)
0.612248 + 0.790666i \(0.290266\pi\)
\(434\) −3.25774 −0.156376
\(435\) −2.57379 −0.123404
\(436\) 27.5220 1.31806
\(437\) 0 0
\(438\) −2.50808 −0.119841
\(439\) 30.3631 1.44915 0.724575 0.689196i \(-0.242036\pi\)
0.724575 + 0.689196i \(0.242036\pi\)
\(440\) −6.06249 −0.289018
\(441\) −1.06814 −0.0508640
\(442\) 0.502627 0.0239075
\(443\) 37.5097 1.78214 0.891071 0.453865i \(-0.149955\pi\)
0.891071 + 0.453865i \(0.149955\pi\)
\(444\) 8.72850 0.414236
\(445\) 12.7019 0.602126
\(446\) 1.89281 0.0896270
\(447\) −22.3546 −1.05734
\(448\) −12.3697 −0.584413
\(449\) 38.4137 1.81286 0.906428 0.422361i \(-0.138799\pi\)
0.906428 + 0.422361i \(0.138799\pi\)
\(450\) −0.358480 −0.0168989
\(451\) 21.0195 0.989770
\(452\) 3.60184 0.169416
\(453\) −4.80658 −0.225833
\(454\) −8.24589 −0.386999
\(455\) 14.0166 0.657107
\(456\) 4.26834 0.199883
\(457\) −9.82748 −0.459710 −0.229855 0.973225i \(-0.573825\pi\)
−0.229855 + 0.973225i \(0.573825\pi\)
\(458\) 1.38852 0.0648813
\(459\) 0.243632 0.0113718
\(460\) 0 0
\(461\) 26.3896 1.22909 0.614543 0.788883i \(-0.289340\pi\)
0.614543 + 0.788883i \(0.289340\pi\)
\(462\) −3.81389 −0.177438
\(463\) 34.7839 1.61654 0.808272 0.588809i \(-0.200403\pi\)
0.808272 + 0.588809i \(0.200403\pi\)
\(464\) 8.35316 0.387786
\(465\) −3.73126 −0.173033
\(466\) −6.14294 −0.284566
\(467\) 31.0681 1.43766 0.718831 0.695185i \(-0.244677\pi\)
0.718831 + 0.695185i \(0.244677\pi\)
\(468\) 10.7705 0.497865
\(469\) 4.07748 0.188281
\(470\) −1.97797 −0.0912369
\(471\) −11.3949 −0.525048
\(472\) −7.21320 −0.332014
\(473\) 42.7301 1.96473
\(474\) 2.16920 0.0996346
\(475\) 3.07550 0.141113
\(476\) −1.11050 −0.0508996
\(477\) 4.31404 0.197526
\(478\) −10.4967 −0.480110
\(479\) −18.0284 −0.823737 −0.411869 0.911243i \(-0.635124\pi\)
−0.411869 + 0.911243i \(0.635124\pi\)
\(480\) 3.93914 0.179796
\(481\) 26.8409 1.22384
\(482\) 10.1923 0.464244
\(483\) 0 0
\(484\) −15.1246 −0.687484
\(485\) −14.5901 −0.662502
\(486\) −0.358480 −0.0162610
\(487\) 11.8058 0.534974 0.267487 0.963562i \(-0.413807\pi\)
0.267487 + 0.963562i \(0.413807\pi\)
\(488\) 13.0283 0.589763
\(489\) 20.1351 0.910540
\(490\) −0.382908 −0.0172980
\(491\) 27.9703 1.26228 0.631142 0.775668i \(-0.282587\pi\)
0.631142 + 0.775668i \(0.282587\pi\)
\(492\) −9.00540 −0.405995
\(493\) 0.627058 0.0282413
\(494\) 6.34493 0.285472
\(495\) −4.36825 −0.196338
\(496\) 12.1097 0.543741
\(497\) −27.3746 −1.22792
\(498\) −4.52739 −0.202877
\(499\) 24.7991 1.11016 0.555080 0.831797i \(-0.312688\pi\)
0.555080 + 0.831797i \(0.312688\pi\)
\(500\) 1.87149 0.0836957
\(501\) 1.00297 0.0448094
\(502\) −8.98176 −0.400876
\(503\) 2.20613 0.0983665 0.0491832 0.998790i \(-0.484338\pi\)
0.0491832 + 0.998790i \(0.484338\pi\)
\(504\) 3.38017 0.150565
\(505\) −12.6691 −0.563766
\(506\) 0 0
\(507\) 20.1202 0.893568
\(508\) −19.1034 −0.847576
\(509\) −12.9144 −0.572421 −0.286210 0.958167i \(-0.592396\pi\)
−0.286210 + 0.958167i \(0.592396\pi\)
\(510\) 0.0873372 0.00386736
\(511\) 17.0401 0.753809
\(512\) −21.7928 −0.963115
\(513\) 3.07550 0.135787
\(514\) 2.53597 0.111857
\(515\) 15.3298 0.675511
\(516\) −18.3069 −0.805917
\(517\) −24.1025 −1.06003
\(518\) 4.07204 0.178915
\(519\) 19.4713 0.854696
\(520\) 7.98711 0.350258
\(521\) −33.9986 −1.48951 −0.744753 0.667341i \(-0.767432\pi\)
−0.744753 + 0.667341i \(0.767432\pi\)
\(522\) −0.922653 −0.0403834
\(523\) 4.59708 0.201016 0.100508 0.994936i \(-0.467953\pi\)
0.100508 + 0.994936i \(0.467953\pi\)
\(524\) 10.9942 0.480285
\(525\) 2.43554 0.106296
\(526\) 1.20242 0.0524280
\(527\) 0.909055 0.0395990
\(528\) 14.1770 0.616975
\(529\) 0 0
\(530\) 1.54650 0.0671755
\(531\) −5.19738 −0.225547
\(532\) −14.0184 −0.607775
\(533\) −27.6924 −1.19949
\(534\) 4.55337 0.197043
\(535\) 0.156053 0.00674677
\(536\) 2.32349 0.100359
\(537\) 0.452652 0.0195334
\(538\) 1.55267 0.0669402
\(539\) −4.66592 −0.200975
\(540\) 1.87149 0.0805362
\(541\) −1.35711 −0.0583467 −0.0291734 0.999574i \(-0.509287\pi\)
−0.0291734 + 0.999574i \(0.509287\pi\)
\(542\) −6.87338 −0.295237
\(543\) −6.77197 −0.290613
\(544\) −0.959700 −0.0411468
\(545\) 14.7059 0.629931
\(546\) 5.02466 0.215036
\(547\) −18.3707 −0.785474 −0.392737 0.919651i \(-0.628472\pi\)
−0.392737 + 0.919651i \(0.628472\pi\)
\(548\) −19.2344 −0.821655
\(549\) 9.38738 0.400644
\(550\) −1.56593 −0.0667715
\(551\) 7.91569 0.337220
\(552\) 0 0
\(553\) −14.7377 −0.626711
\(554\) 8.91857 0.378914
\(555\) 4.66392 0.197973
\(556\) −37.0764 −1.57239
\(557\) 20.2332 0.857307 0.428654 0.903469i \(-0.358988\pi\)
0.428654 + 0.903469i \(0.358988\pi\)
\(558\) −1.33758 −0.0566244
\(559\) −56.2955 −2.38104
\(560\) −7.90446 −0.334025
\(561\) 1.06424 0.0449324
\(562\) 3.66233 0.154486
\(563\) −25.3512 −1.06843 −0.534214 0.845349i \(-0.679392\pi\)
−0.534214 + 0.845349i \(0.679392\pi\)
\(564\) 10.3263 0.434814
\(565\) 1.92458 0.0809678
\(566\) 3.31556 0.139363
\(567\) 2.43554 0.102283
\(568\) −15.5990 −0.654518
\(569\) −25.0578 −1.05048 −0.525238 0.850955i \(-0.676024\pi\)
−0.525238 + 0.850955i \(0.676024\pi\)
\(570\) 1.10250 0.0461788
\(571\) 21.0971 0.882885 0.441443 0.897290i \(-0.354467\pi\)
0.441443 + 0.897290i \(0.354467\pi\)
\(572\) 47.0480 1.96718
\(573\) 10.9469 0.457311
\(574\) −4.20122 −0.175355
\(575\) 0 0
\(576\) −5.07883 −0.211618
\(577\) 39.6939 1.65248 0.826239 0.563320i \(-0.190476\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(578\) 6.07288 0.252599
\(579\) 1.12334 0.0466844
\(580\) 4.81683 0.200008
\(581\) 30.7595 1.27612
\(582\) −5.23026 −0.216801
\(583\) 18.8448 0.780472
\(584\) 9.71001 0.401803
\(585\) 5.75501 0.237940
\(586\) −2.33329 −0.0963874
\(587\) 40.2992 1.66333 0.831663 0.555280i \(-0.187389\pi\)
0.831663 + 0.555280i \(0.187389\pi\)
\(588\) 1.99902 0.0824383
\(589\) 11.4755 0.472839
\(590\) −1.86316 −0.0767049
\(591\) −18.3172 −0.753469
\(592\) −15.1366 −0.622111
\(593\) −3.30776 −0.135833 −0.0679167 0.997691i \(-0.521635\pi\)
−0.0679167 + 0.997691i \(0.521635\pi\)
\(594\) −1.56593 −0.0642509
\(595\) −0.593375 −0.0243260
\(596\) 41.8364 1.71369
\(597\) 16.9093 0.692053
\(598\) 0 0
\(599\) 18.6014 0.760034 0.380017 0.924979i \(-0.375918\pi\)
0.380017 + 0.924979i \(0.375918\pi\)
\(600\) 1.38785 0.0566588
\(601\) −30.4199 −1.24085 −0.620427 0.784264i \(-0.713041\pi\)
−0.620427 + 0.784264i \(0.713041\pi\)
\(602\) −8.54058 −0.348088
\(603\) 1.67416 0.0681771
\(604\) 8.99547 0.366020
\(605\) −8.08159 −0.328564
\(606\) −4.54160 −0.184490
\(607\) −5.04798 −0.204891 −0.102446 0.994739i \(-0.532667\pi\)
−0.102446 + 0.994739i \(0.532667\pi\)
\(608\) −12.1148 −0.491321
\(609\) 6.26858 0.254016
\(610\) 3.36519 0.136253
\(611\) 31.7542 1.28464
\(612\) −0.455955 −0.0184309
\(613\) 22.2103 0.897067 0.448534 0.893766i \(-0.351946\pi\)
0.448534 + 0.893766i \(0.351946\pi\)
\(614\) −8.09232 −0.326579
\(615\) −4.81188 −0.194034
\(616\) 14.7654 0.594916
\(617\) 25.8134 1.03921 0.519605 0.854406i \(-0.326079\pi\)
0.519605 + 0.854406i \(0.326079\pi\)
\(618\) 5.49542 0.221058
\(619\) 1.09155 0.0438730 0.0219365 0.999759i \(-0.493017\pi\)
0.0219365 + 0.999759i \(0.493017\pi\)
\(620\) 6.98303 0.280445
\(621\) 0 0
\(622\) 2.70651 0.108521
\(623\) −30.9359 −1.23942
\(624\) −18.6777 −0.747706
\(625\) 1.00000 0.0400000
\(626\) 4.99595 0.199678
\(627\) 13.4345 0.536524
\(628\) 21.3254 0.850976
\(629\) −1.13628 −0.0453065
\(630\) 0.873093 0.0347848
\(631\) 41.4198 1.64890 0.824448 0.565938i \(-0.191486\pi\)
0.824448 + 0.565938i \(0.191486\pi\)
\(632\) −8.39804 −0.334056
\(633\) −17.2386 −0.685173
\(634\) −8.26669 −0.328312
\(635\) −10.2076 −0.405075
\(636\) −8.07369 −0.320143
\(637\) 6.14718 0.243560
\(638\) −4.03038 −0.159564
\(639\) −11.2396 −0.444633
\(640\) −9.69894 −0.383384
\(641\) −22.8918 −0.904171 −0.452085 0.891975i \(-0.649320\pi\)
−0.452085 + 0.891975i \(0.649320\pi\)
\(642\) 0.0559420 0.00220785
\(643\) −14.1854 −0.559417 −0.279708 0.960085i \(-0.590238\pi\)
−0.279708 + 0.960085i \(0.590238\pi\)
\(644\) 0 0
\(645\) −9.78199 −0.385165
\(646\) −0.268605 −0.0105681
\(647\) 3.90531 0.153534 0.0767669 0.997049i \(-0.475540\pi\)
0.0767669 + 0.997049i \(0.475540\pi\)
\(648\) 1.38785 0.0545200
\(649\) −22.7034 −0.891188
\(650\) 2.06306 0.0809198
\(651\) 9.08764 0.356173
\(652\) −37.6827 −1.47577
\(653\) 1.55233 0.0607475 0.0303737 0.999539i \(-0.490330\pi\)
0.0303737 + 0.999539i \(0.490330\pi\)
\(654\) 5.27177 0.206142
\(655\) 5.87457 0.229539
\(656\) 15.6168 0.609734
\(657\) 6.99643 0.272957
\(658\) 4.81742 0.187803
\(659\) −11.0466 −0.430313 −0.215156 0.976580i \(-0.569026\pi\)
−0.215156 + 0.976580i \(0.569026\pi\)
\(660\) 8.17514 0.318217
\(661\) −8.91816 −0.346876 −0.173438 0.984845i \(-0.555488\pi\)
−0.173438 + 0.984845i \(0.555488\pi\)
\(662\) −7.83502 −0.304517
\(663\) −1.40210 −0.0544532
\(664\) 17.5278 0.680209
\(665\) −7.49050 −0.290469
\(666\) 1.67192 0.0647857
\(667\) 0 0
\(668\) −1.87705 −0.0726253
\(669\) −5.28009 −0.204140
\(670\) 0.600153 0.0231859
\(671\) 41.0064 1.58303
\(672\) −9.59393 −0.370094
\(673\) −13.3250 −0.513642 −0.256821 0.966459i \(-0.582675\pi\)
−0.256821 + 0.966459i \(0.582675\pi\)
\(674\) 0.690333 0.0265906
\(675\) 1.00000 0.0384900
\(676\) −37.6547 −1.44826
\(677\) 9.56405 0.367576 0.183788 0.982966i \(-0.441164\pi\)
0.183788 + 0.982966i \(0.441164\pi\)
\(678\) 0.689924 0.0264964
\(679\) 35.5348 1.36370
\(680\) −0.338125 −0.0129665
\(681\) 23.0024 0.881453
\(682\) −5.84290 −0.223736
\(683\) −37.2215 −1.42424 −0.712120 0.702058i \(-0.752265\pi\)
−0.712120 + 0.702058i \(0.752265\pi\)
\(684\) −5.75577 −0.220077
\(685\) −10.2776 −0.392687
\(686\) 7.04424 0.268950
\(687\) −3.87336 −0.147778
\(688\) 31.7471 1.21035
\(689\) −24.8273 −0.945847
\(690\) 0 0
\(691\) 5.50408 0.209385 0.104693 0.994505i \(-0.466614\pi\)
0.104693 + 0.994505i \(0.466614\pi\)
\(692\) −36.4404 −1.38526
\(693\) 10.6390 0.404144
\(694\) −5.57913 −0.211781
\(695\) −19.8111 −0.751479
\(696\) 3.57205 0.135398
\(697\) 1.17233 0.0444051
\(698\) 8.39684 0.317825
\(699\) 17.1361 0.648145
\(700\) −4.55809 −0.172280
\(701\) 27.2799 1.03035 0.515174 0.857085i \(-0.327727\pi\)
0.515174 + 0.857085i \(0.327727\pi\)
\(702\) 2.06306 0.0778651
\(703\) −14.3439 −0.540990
\(704\) −22.1856 −0.836151
\(705\) 5.51766 0.207807
\(706\) −5.75895 −0.216741
\(707\) 30.8560 1.16046
\(708\) 9.72685 0.365558
\(709\) 20.0339 0.752389 0.376195 0.926541i \(-0.377232\pi\)
0.376195 + 0.926541i \(0.377232\pi\)
\(710\) −4.02919 −0.151213
\(711\) −6.05110 −0.226934
\(712\) −17.6283 −0.660649
\(713\) 0 0
\(714\) −0.212713 −0.00796059
\(715\) 25.1393 0.940157
\(716\) −0.847134 −0.0316589
\(717\) 29.2812 1.09353
\(718\) 1.32517 0.0494548
\(719\) −18.8220 −0.701941 −0.350971 0.936387i \(-0.614148\pi\)
−0.350971 + 0.936387i \(0.614148\pi\)
\(720\) −3.24547 −0.120951
\(721\) −37.3363 −1.39048
\(722\) 3.42037 0.127293
\(723\) −28.4319 −1.05739
\(724\) 12.6737 0.471014
\(725\) 2.57379 0.0955883
\(726\) −2.89709 −0.107521
\(727\) 9.15600 0.339577 0.169789 0.985481i \(-0.445692\pi\)
0.169789 + 0.985481i \(0.445692\pi\)
\(728\) −19.4529 −0.720973
\(729\) 1.00000 0.0370370
\(730\) 2.50808 0.0928282
\(731\) 2.38320 0.0881460
\(732\) −17.5684 −0.649347
\(733\) −44.6965 −1.65090 −0.825451 0.564474i \(-0.809079\pi\)
−0.825451 + 0.564474i \(0.809079\pi\)
\(734\) −9.80235 −0.361811
\(735\) 1.06814 0.0393991
\(736\) 0 0
\(737\) 7.31315 0.269383
\(738\) −1.72496 −0.0634968
\(739\) −1.40814 −0.0517991 −0.0258996 0.999665i \(-0.508245\pi\)
−0.0258996 + 0.999665i \(0.508245\pi\)
\(740\) −8.72850 −0.320866
\(741\) −17.6995 −0.650208
\(742\) −3.76656 −0.138275
\(743\) −40.1457 −1.47280 −0.736402 0.676544i \(-0.763477\pi\)
−0.736402 + 0.676544i \(0.763477\pi\)
\(744\) 5.17844 0.189851
\(745\) 22.3546 0.819008
\(746\) 0.707110 0.0258891
\(747\) 12.6294 0.462086
\(748\) −1.99173 −0.0728247
\(749\) −0.380074 −0.0138876
\(750\) 0.358480 0.0130898
\(751\) 34.6691 1.26509 0.632546 0.774522i \(-0.282010\pi\)
0.632546 + 0.774522i \(0.282010\pi\)
\(752\) −17.9074 −0.653015
\(753\) 25.0551 0.913059
\(754\) 5.30988 0.193375
\(755\) 4.80658 0.174929
\(756\) −4.55809 −0.165776
\(757\) −18.8333 −0.684509 −0.342254 0.939607i \(-0.611190\pi\)
−0.342254 + 0.939607i \(0.611190\pi\)
\(758\) −5.82366 −0.211525
\(759\) 0 0
\(760\) −4.26834 −0.154829
\(761\) −6.69122 −0.242556 −0.121278 0.992619i \(-0.538699\pi\)
−0.121278 + 0.992619i \(0.538699\pi\)
\(762\) −3.65921 −0.132559
\(763\) −35.8168 −1.29665
\(764\) −20.4869 −0.741192
\(765\) −0.243632 −0.00880853
\(766\) −8.06361 −0.291350
\(767\) 29.9110 1.08002
\(768\) 6.68078 0.241072
\(769\) −17.2361 −0.621551 −0.310776 0.950483i \(-0.600589\pi\)
−0.310776 + 0.950483i \(0.600589\pi\)
\(770\) 3.81389 0.137443
\(771\) −7.07424 −0.254773
\(772\) −2.10232 −0.0756643
\(773\) 38.9240 1.40000 0.699999 0.714144i \(-0.253184\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(774\) −3.50665 −0.126044
\(775\) 3.73126 0.134031
\(776\) 20.2489 0.726893
\(777\) −11.3592 −0.407508
\(778\) 1.56757 0.0562001
\(779\) 14.7989 0.530227
\(780\) −10.7705 −0.385644
\(781\) −49.0975 −1.75685
\(782\) 0 0
\(783\) 2.57379 0.0919799
\(784\) −3.46662 −0.123808
\(785\) 11.3949 0.406700
\(786\) 2.10592 0.0751156
\(787\) 2.63419 0.0938986 0.0469493 0.998897i \(-0.485050\pi\)
0.0469493 + 0.998897i \(0.485050\pi\)
\(788\) 34.2805 1.22119
\(789\) −3.35421 −0.119413
\(790\) −2.16920 −0.0771767
\(791\) −4.68740 −0.166665
\(792\) 6.06249 0.215421
\(793\) −54.0245 −1.91847
\(794\) −6.36242 −0.225794
\(795\) −4.31404 −0.153003
\(796\) −31.6457 −1.12165
\(797\) −1.51945 −0.0538216 −0.0269108 0.999638i \(-0.508567\pi\)
−0.0269108 + 0.999638i \(0.508567\pi\)
\(798\) −2.68519 −0.0950548
\(799\) −1.34428 −0.0475571
\(800\) −3.93914 −0.139270
\(801\) −12.7019 −0.448798
\(802\) −13.6823 −0.483138
\(803\) 30.5621 1.07851
\(804\) −3.13318 −0.110499
\(805\) 0 0
\(806\) 7.69781 0.271144
\(807\) −4.33125 −0.152467
\(808\) 17.5828 0.618560
\(809\) 43.9687 1.54586 0.772928 0.634494i \(-0.218791\pi\)
0.772928 + 0.634494i \(0.218791\pi\)
\(810\) 0.358480 0.0125957
\(811\) −33.7672 −1.18573 −0.592864 0.805303i \(-0.702003\pi\)
−0.592864 + 0.805303i \(0.702003\pi\)
\(812\) −11.7316 −0.411698
\(813\) 19.1737 0.672450
\(814\) 7.30338 0.255983
\(815\) −20.1351 −0.705301
\(816\) 0.790699 0.0276800
\(817\) 30.0845 1.05252
\(818\) 13.6703 0.477971
\(819\) −14.0166 −0.489778
\(820\) 9.00540 0.314482
\(821\) 10.3581 0.361499 0.180749 0.983529i \(-0.442148\pi\)
0.180749 + 0.983529i \(0.442148\pi\)
\(822\) −3.68431 −0.128505
\(823\) −0.443035 −0.0154432 −0.00772161 0.999970i \(-0.502458\pi\)
−0.00772161 + 0.999970i \(0.502458\pi\)
\(824\) −21.2755 −0.741166
\(825\) 4.36825 0.152083
\(826\) 4.53779 0.157890
\(827\) −2.81514 −0.0978922 −0.0489461 0.998801i \(-0.515586\pi\)
−0.0489461 + 0.998801i \(0.515586\pi\)
\(828\) 0 0
\(829\) −31.9240 −1.10877 −0.554384 0.832261i \(-0.687046\pi\)
−0.554384 + 0.832261i \(0.687046\pi\)
\(830\) 4.52739 0.157148
\(831\) −24.8789 −0.863038
\(832\) 29.2287 1.01332
\(833\) −0.260234 −0.00901657
\(834\) −7.10190 −0.245919
\(835\) −1.00297 −0.0347092
\(836\) −25.1426 −0.869576
\(837\) 3.73126 0.128971
\(838\) 11.8562 0.409564
\(839\) 42.2531 1.45874 0.729369 0.684120i \(-0.239814\pi\)
0.729369 + 0.684120i \(0.239814\pi\)
\(840\) −3.38017 −0.116627
\(841\) −22.3756 −0.771572
\(842\) −0.549321 −0.0189308
\(843\) −10.2163 −0.351867
\(844\) 32.2619 1.11050
\(845\) −20.1202 −0.692155
\(846\) 1.97797 0.0680040
\(847\) 19.6830 0.676318
\(848\) 14.0011 0.480799
\(849\) −9.24893 −0.317422
\(850\) −0.0873372 −0.00299564
\(851\) 0 0
\(852\) 21.0349 0.720644
\(853\) −43.8133 −1.50014 −0.750069 0.661359i \(-0.769980\pi\)
−0.750069 + 0.661359i \(0.769980\pi\)
\(854\) −8.19605 −0.280463
\(855\) −3.07550 −0.105180
\(856\) −0.216579 −0.00740251
\(857\) 6.15482 0.210245 0.105122 0.994459i \(-0.466477\pi\)
0.105122 + 0.994459i \(0.466477\pi\)
\(858\) 9.01195 0.307663
\(859\) −34.4506 −1.17544 −0.587719 0.809065i \(-0.699974\pi\)
−0.587719 + 0.809065i \(0.699974\pi\)
\(860\) 18.3069 0.624260
\(861\) 11.7195 0.399401
\(862\) −2.93050 −0.0998134
\(863\) −44.5246 −1.51563 −0.757817 0.652467i \(-0.773734\pi\)
−0.757817 + 0.652467i \(0.773734\pi\)
\(864\) −3.93914 −0.134012
\(865\) −19.4713 −0.662044
\(866\) −9.13411 −0.310390
\(867\) −16.9406 −0.575334
\(868\) −17.0074 −0.577270
\(869\) −26.4327 −0.896669
\(870\) 0.922653 0.0312809
\(871\) −9.63481 −0.326463
\(872\) −20.4096 −0.691156
\(873\) 14.5901 0.493800
\(874\) 0 0
\(875\) −2.43554 −0.0823363
\(876\) −13.0938 −0.442397
\(877\) 8.73143 0.294839 0.147420 0.989074i \(-0.452903\pi\)
0.147420 + 0.989074i \(0.452903\pi\)
\(878\) −10.8846 −0.367336
\(879\) 6.50885 0.219538
\(880\) −14.1770 −0.477907
\(881\) 35.8407 1.20751 0.603753 0.797172i \(-0.293671\pi\)
0.603753 + 0.797172i \(0.293671\pi\)
\(882\) 0.382908 0.0128932
\(883\) −41.0695 −1.38210 −0.691049 0.722808i \(-0.742851\pi\)
−0.691049 + 0.722808i \(0.742851\pi\)
\(884\) 2.62403 0.0882556
\(885\) 5.19738 0.174708
\(886\) −13.4465 −0.451744
\(887\) −30.9390 −1.03883 −0.519415 0.854522i \(-0.673850\pi\)
−0.519415 + 0.854522i \(0.673850\pi\)
\(888\) −6.47284 −0.217214
\(889\) 24.8609 0.833809
\(890\) −4.55337 −0.152629
\(891\) 4.36825 0.146342
\(892\) 9.88165 0.330862
\(893\) −16.9695 −0.567864
\(894\) 8.01367 0.268017
\(895\) −0.452652 −0.0151305
\(896\) 23.6222 0.789161
\(897\) 0 0
\(898\) −13.7705 −0.459529
\(899\) 9.60350 0.320295
\(900\) −1.87149 −0.0623831
\(901\) 1.05104 0.0350151
\(902\) −7.53507 −0.250890
\(903\) 23.8244 0.792827
\(904\) −2.67104 −0.0888373
\(905\) 6.77197 0.225108
\(906\) 1.72306 0.0572449
\(907\) 17.3031 0.574540 0.287270 0.957850i \(-0.407252\pi\)
0.287270 + 0.957850i \(0.407252\pi\)
\(908\) −43.0488 −1.42862
\(909\) 12.6691 0.420206
\(910\) −5.02466 −0.166566
\(911\) −28.1741 −0.933449 −0.466724 0.884403i \(-0.654566\pi\)
−0.466724 + 0.884403i \(0.654566\pi\)
\(912\) 9.98142 0.330518
\(913\) 55.1684 1.82581
\(914\) 3.52296 0.116529
\(915\) −9.38738 −0.310337
\(916\) 7.24895 0.239512
\(917\) −14.3078 −0.472484
\(918\) −0.0873372 −0.00288256
\(919\) −31.0178 −1.02318 −0.511591 0.859229i \(-0.670944\pi\)
−0.511591 + 0.859229i \(0.670944\pi\)
\(920\) 0 0
\(921\) 22.5740 0.743838
\(922\) −9.46015 −0.311553
\(923\) 64.6843 2.12911
\(924\) −19.9109 −0.655020
\(925\) −4.66392 −0.153349
\(926\) −12.4693 −0.409768
\(927\) −15.3298 −0.503496
\(928\) −10.1385 −0.332814
\(929\) −13.1852 −0.432594 −0.216297 0.976328i \(-0.569398\pi\)
−0.216297 + 0.976328i \(0.569398\pi\)
\(930\) 1.33758 0.0438611
\(931\) −3.28507 −0.107664
\(932\) −32.0700 −1.05049
\(933\) −7.54997 −0.247175
\(934\) −11.1373 −0.364424
\(935\) −1.06424 −0.0348045
\(936\) −7.98711 −0.261067
\(937\) −42.2092 −1.37891 −0.689457 0.724327i \(-0.742151\pi\)
−0.689457 + 0.724327i \(0.742151\pi\)
\(938\) −1.46170 −0.0477261
\(939\) −13.9365 −0.454799
\(940\) −10.3263 −0.336805
\(941\) −45.6332 −1.48760 −0.743800 0.668402i \(-0.766979\pi\)
−0.743800 + 0.668402i \(0.766979\pi\)
\(942\) 4.08483 0.133091
\(943\) 0 0
\(944\) −16.8679 −0.549004
\(945\) −2.43554 −0.0792281
\(946\) −15.3179 −0.498028
\(947\) −17.8510 −0.580079 −0.290040 0.957015i \(-0.593668\pi\)
−0.290040 + 0.957015i \(0.593668\pi\)
\(948\) 11.3246 0.367806
\(949\) −40.2645 −1.30704
\(950\) −1.10250 −0.0357700
\(951\) 23.0604 0.747785
\(952\) 0.823518 0.0266904
\(953\) −5.36993 −0.173949 −0.0869746 0.996211i \(-0.527720\pi\)
−0.0869746 + 0.996211i \(0.527720\pi\)
\(954\) −1.54650 −0.0500697
\(955\) −10.9469 −0.354232
\(956\) −54.7996 −1.77235
\(957\) 11.2430 0.363434
\(958\) 6.46281 0.208804
\(959\) 25.0315 0.808309
\(960\) 5.07883 0.163919
\(961\) −17.0777 −0.550893
\(962\) −9.62194 −0.310224
\(963\) −0.156053 −0.00502874
\(964\) 53.2100 1.71378
\(965\) −1.12334 −0.0361616
\(966\) 0 0
\(967\) −7.96373 −0.256096 −0.128048 0.991768i \(-0.540871\pi\)
−0.128048 + 0.991768i \(0.540871\pi\)
\(968\) 11.2161 0.360498
\(969\) 0.749289 0.0240706
\(970\) 5.23026 0.167933
\(971\) 3.02181 0.0969745 0.0484873 0.998824i \(-0.484560\pi\)
0.0484873 + 0.998824i \(0.484560\pi\)
\(972\) −1.87149 −0.0600281
\(973\) 48.2508 1.54685
\(974\) −4.23216 −0.135607
\(975\) −5.75501 −0.184308
\(976\) 30.4664 0.975207
\(977\) −29.7411 −0.951502 −0.475751 0.879580i \(-0.657824\pi\)
−0.475751 + 0.879580i \(0.657824\pi\)
\(978\) −7.21803 −0.230807
\(979\) −55.4849 −1.77331
\(980\) −1.99902 −0.0638564
\(981\) −14.7059 −0.469523
\(982\) −10.0268 −0.319968
\(983\) 16.7234 0.533393 0.266697 0.963781i \(-0.414068\pi\)
0.266697 + 0.963781i \(0.414068\pi\)
\(984\) 6.67818 0.212893
\(985\) 18.3172 0.583635
\(986\) −0.224788 −0.00715870
\(987\) −13.4385 −0.427751
\(988\) 33.1245 1.05383
\(989\) 0 0
\(990\) 1.56593 0.0497685
\(991\) −12.9342 −0.410868 −0.205434 0.978671i \(-0.565861\pi\)
−0.205434 + 0.978671i \(0.565861\pi\)
\(992\) −14.6980 −0.466661
\(993\) 21.8562 0.693587
\(994\) 9.81325 0.311257
\(995\) −16.9093 −0.536062
\(996\) −23.6359 −0.748931
\(997\) −8.85083 −0.280309 −0.140154 0.990130i \(-0.544760\pi\)
−0.140154 + 0.990130i \(0.544760\pi\)
\(998\) −8.88998 −0.281407
\(999\) −4.66392 −0.147560
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bv.1.10 25
23.13 even 11 345.2.m.c.31.4 50
23.16 even 11 345.2.m.c.256.4 yes 50
23.22 odd 2 7935.2.a.bw.1.10 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.c.31.4 50 23.13 even 11
345.2.m.c.256.4 yes 50 23.16 even 11
7935.2.a.bv.1.10 25 1.1 even 1 trivial
7935.2.a.bw.1.10 25 23.22 odd 2