Properties

Label 7935.2.a.bu.1.4
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,1,-25,31,25,-1,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18378 q^{2} -1.00000 q^{3} +2.76889 q^{4} +1.00000 q^{5} +2.18378 q^{6} -0.993609 q^{7} -1.67909 q^{8} +1.00000 q^{9} -2.18378 q^{10} -5.93300 q^{11} -2.76889 q^{12} -4.13097 q^{13} +2.16982 q^{14} -1.00000 q^{15} -1.87102 q^{16} -7.29277 q^{17} -2.18378 q^{18} +2.31191 q^{19} +2.76889 q^{20} +0.993609 q^{21} +12.9564 q^{22} +1.67909 q^{24} +1.00000 q^{25} +9.02113 q^{26} -1.00000 q^{27} -2.75120 q^{28} -5.22808 q^{29} +2.18378 q^{30} +9.31419 q^{31} +7.44408 q^{32} +5.93300 q^{33} +15.9258 q^{34} -0.993609 q^{35} +2.76889 q^{36} -10.5373 q^{37} -5.04870 q^{38} +4.13097 q^{39} -1.67909 q^{40} -8.24707 q^{41} -2.16982 q^{42} -5.82517 q^{43} -16.4278 q^{44} +1.00000 q^{45} +0.519567 q^{47} +1.87102 q^{48} -6.01274 q^{49} -2.18378 q^{50} +7.29277 q^{51} -11.4382 q^{52} -1.97446 q^{53} +2.18378 q^{54} -5.93300 q^{55} +1.66836 q^{56} -2.31191 q^{57} +11.4170 q^{58} -10.0495 q^{59} -2.76889 q^{60} -4.81217 q^{61} -20.3401 q^{62} -0.993609 q^{63} -12.5142 q^{64} -4.13097 q^{65} -12.9564 q^{66} -7.46264 q^{67} -20.1929 q^{68} +2.16982 q^{70} +0.553134 q^{71} -1.67909 q^{72} +8.22053 q^{73} +23.0112 q^{74} -1.00000 q^{75} +6.40143 q^{76} +5.89508 q^{77} -9.02113 q^{78} -3.22794 q^{79} -1.87102 q^{80} +1.00000 q^{81} +18.0098 q^{82} -17.6316 q^{83} +2.75120 q^{84} -7.29277 q^{85} +12.7209 q^{86} +5.22808 q^{87} +9.96203 q^{88} +2.14296 q^{89} -2.18378 q^{90} +4.10457 q^{91} -9.31419 q^{93} -1.13462 q^{94} +2.31191 q^{95} -7.44408 q^{96} -5.04476 q^{97} +13.1305 q^{98} -5.93300 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + q^{2} - 25 q^{3} + 31 q^{4} + 25 q^{5} - q^{6} - 15 q^{7} + 3 q^{8} + 25 q^{9} + q^{10} + 15 q^{11} - 31 q^{12} + 24 q^{13} + 5 q^{14} - 25 q^{15} + 39 q^{16} - 6 q^{17} + q^{18} + 13 q^{19}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18378 −1.54417 −0.772083 0.635522i \(-0.780785\pi\)
−0.772083 + 0.635522i \(0.780785\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.76889 1.38445
\(5\) 1.00000 0.447214
\(6\) 2.18378 0.891524
\(7\) −0.993609 −0.375549 −0.187775 0.982212i \(-0.560127\pi\)
−0.187775 + 0.982212i \(0.560127\pi\)
\(8\) −1.67909 −0.593648
\(9\) 1.00000 0.333333
\(10\) −2.18378 −0.690572
\(11\) −5.93300 −1.78887 −0.894433 0.447202i \(-0.852420\pi\)
−0.894433 + 0.447202i \(0.852420\pi\)
\(12\) −2.76889 −0.799310
\(13\) −4.13097 −1.14572 −0.572862 0.819652i \(-0.694167\pi\)
−0.572862 + 0.819652i \(0.694167\pi\)
\(14\) 2.16982 0.579910
\(15\) −1.00000 −0.258199
\(16\) −1.87102 −0.467756
\(17\) −7.29277 −1.76876 −0.884378 0.466771i \(-0.845417\pi\)
−0.884378 + 0.466771i \(0.845417\pi\)
\(18\) −2.18378 −0.514722
\(19\) 2.31191 0.530388 0.265194 0.964195i \(-0.414564\pi\)
0.265194 + 0.964195i \(0.414564\pi\)
\(20\) 2.76889 0.619143
\(21\) 0.993609 0.216823
\(22\) 12.9564 2.76230
\(23\) 0 0
\(24\) 1.67909 0.342743
\(25\) 1.00000 0.200000
\(26\) 9.02113 1.76919
\(27\) −1.00000 −0.192450
\(28\) −2.75120 −0.519927
\(29\) −5.22808 −0.970831 −0.485415 0.874284i \(-0.661332\pi\)
−0.485415 + 0.874284i \(0.661332\pi\)
\(30\) 2.18378 0.398702
\(31\) 9.31419 1.67288 0.836439 0.548061i \(-0.184634\pi\)
0.836439 + 0.548061i \(0.184634\pi\)
\(32\) 7.44408 1.31594
\(33\) 5.93300 1.03280
\(34\) 15.9258 2.73125
\(35\) −0.993609 −0.167951
\(36\) 2.76889 0.461482
\(37\) −10.5373 −1.73233 −0.866164 0.499759i \(-0.833422\pi\)
−0.866164 + 0.499759i \(0.833422\pi\)
\(38\) −5.04870 −0.819007
\(39\) 4.13097 0.661485
\(40\) −1.67909 −0.265487
\(41\) −8.24707 −1.28798 −0.643988 0.765036i \(-0.722721\pi\)
−0.643988 + 0.765036i \(0.722721\pi\)
\(42\) −2.16982 −0.334811
\(43\) −5.82517 −0.888330 −0.444165 0.895945i \(-0.646500\pi\)
−0.444165 + 0.895945i \(0.646500\pi\)
\(44\) −16.4278 −2.47659
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 0.519567 0.0757866 0.0378933 0.999282i \(-0.487935\pi\)
0.0378933 + 0.999282i \(0.487935\pi\)
\(48\) 1.87102 0.270059
\(49\) −6.01274 −0.858963
\(50\) −2.18378 −0.308833
\(51\) 7.29277 1.02119
\(52\) −11.4382 −1.58619
\(53\) −1.97446 −0.271213 −0.135606 0.990763i \(-0.543298\pi\)
−0.135606 + 0.990763i \(0.543298\pi\)
\(54\) 2.18378 0.297175
\(55\) −5.93300 −0.800005
\(56\) 1.66836 0.222944
\(57\) −2.31191 −0.306220
\(58\) 11.4170 1.49912
\(59\) −10.0495 −1.30833 −0.654167 0.756350i \(-0.726981\pi\)
−0.654167 + 0.756350i \(0.726981\pi\)
\(60\) −2.76889 −0.357462
\(61\) −4.81217 −0.616135 −0.308067 0.951365i \(-0.599682\pi\)
−0.308067 + 0.951365i \(0.599682\pi\)
\(62\) −20.3401 −2.58320
\(63\) −0.993609 −0.125183
\(64\) −12.5142 −1.56427
\(65\) −4.13097 −0.512384
\(66\) −12.9564 −1.59482
\(67\) −7.46264 −0.911706 −0.455853 0.890055i \(-0.650666\pi\)
−0.455853 + 0.890055i \(0.650666\pi\)
\(68\) −20.1929 −2.44875
\(69\) 0 0
\(70\) 2.16982 0.259344
\(71\) 0.553134 0.0656449 0.0328224 0.999461i \(-0.489550\pi\)
0.0328224 + 0.999461i \(0.489550\pi\)
\(72\) −1.67909 −0.197883
\(73\) 8.22053 0.962140 0.481070 0.876682i \(-0.340248\pi\)
0.481070 + 0.876682i \(0.340248\pi\)
\(74\) 23.0112 2.67500
\(75\) −1.00000 −0.115470
\(76\) 6.40143 0.734294
\(77\) 5.89508 0.671807
\(78\) −9.02113 −1.02144
\(79\) −3.22794 −0.363172 −0.181586 0.983375i \(-0.558123\pi\)
−0.181586 + 0.983375i \(0.558123\pi\)
\(80\) −1.87102 −0.209187
\(81\) 1.00000 0.111111
\(82\) 18.0098 1.98885
\(83\) −17.6316 −1.93532 −0.967659 0.252260i \(-0.918826\pi\)
−0.967659 + 0.252260i \(0.918826\pi\)
\(84\) 2.75120 0.300180
\(85\) −7.29277 −0.791012
\(86\) 12.7209 1.37173
\(87\) 5.22808 0.560509
\(88\) 9.96203 1.06196
\(89\) 2.14296 0.227153 0.113576 0.993529i \(-0.463769\pi\)
0.113576 + 0.993529i \(0.463769\pi\)
\(90\) −2.18378 −0.230191
\(91\) 4.10457 0.430276
\(92\) 0 0
\(93\) −9.31419 −0.965836
\(94\) −1.13462 −0.117027
\(95\) 2.31191 0.237197
\(96\) −7.44408 −0.759758
\(97\) −5.04476 −0.512218 −0.256109 0.966648i \(-0.582441\pi\)
−0.256109 + 0.966648i \(0.582441\pi\)
\(98\) 13.1305 1.32638
\(99\) −5.93300 −0.596289
\(100\) 2.76889 0.276889
\(101\) 5.57461 0.554695 0.277347 0.960770i \(-0.410545\pi\)
0.277347 + 0.960770i \(0.410545\pi\)
\(102\) −15.9258 −1.57689
\(103\) −13.6494 −1.34492 −0.672460 0.740134i \(-0.734762\pi\)
−0.672460 + 0.740134i \(0.734762\pi\)
\(104\) 6.93627 0.680157
\(105\) 0.993609 0.0969663
\(106\) 4.31178 0.418797
\(107\) 11.5297 1.11462 0.557308 0.830306i \(-0.311834\pi\)
0.557308 + 0.830306i \(0.311834\pi\)
\(108\) −2.76889 −0.266437
\(109\) 6.08637 0.582969 0.291484 0.956576i \(-0.405851\pi\)
0.291484 + 0.956576i \(0.405851\pi\)
\(110\) 12.9564 1.23534
\(111\) 10.5373 1.00016
\(112\) 1.85907 0.175665
\(113\) −1.20877 −0.113712 −0.0568559 0.998382i \(-0.518108\pi\)
−0.0568559 + 0.998382i \(0.518108\pi\)
\(114\) 5.04870 0.472854
\(115\) 0 0
\(116\) −14.4760 −1.34406
\(117\) −4.13097 −0.381908
\(118\) 21.9459 2.02028
\(119\) 7.24617 0.664255
\(120\) 1.67909 0.153279
\(121\) 24.2004 2.20004
\(122\) 10.5087 0.951414
\(123\) 8.24707 0.743613
\(124\) 25.7900 2.31601
\(125\) 1.00000 0.0894427
\(126\) 2.16982 0.193303
\(127\) −3.46656 −0.307607 −0.153804 0.988101i \(-0.549152\pi\)
−0.153804 + 0.988101i \(0.549152\pi\)
\(128\) 12.4400 1.09956
\(129\) 5.82517 0.512877
\(130\) 9.02113 0.791205
\(131\) 7.85244 0.686071 0.343035 0.939322i \(-0.388545\pi\)
0.343035 + 0.939322i \(0.388545\pi\)
\(132\) 16.4278 1.42986
\(133\) −2.29713 −0.199187
\(134\) 16.2968 1.40783
\(135\) −1.00000 −0.0860663
\(136\) 12.2452 1.05002
\(137\) −8.36805 −0.714931 −0.357466 0.933926i \(-0.616359\pi\)
−0.357466 + 0.933926i \(0.616359\pi\)
\(138\) 0 0
\(139\) 0.538695 0.0456915 0.0228458 0.999739i \(-0.492727\pi\)
0.0228458 + 0.999739i \(0.492727\pi\)
\(140\) −2.75120 −0.232519
\(141\) −0.519567 −0.0437554
\(142\) −1.20792 −0.101367
\(143\) 24.5090 2.04955
\(144\) −1.87102 −0.155919
\(145\) −5.22808 −0.434169
\(146\) −17.9518 −1.48570
\(147\) 6.01274 0.495922
\(148\) −29.1768 −2.39832
\(149\) 1.73900 0.142464 0.0712321 0.997460i \(-0.477307\pi\)
0.0712321 + 0.997460i \(0.477307\pi\)
\(150\) 2.18378 0.178305
\(151\) 6.20037 0.504579 0.252289 0.967652i \(-0.418817\pi\)
0.252289 + 0.967652i \(0.418817\pi\)
\(152\) −3.88190 −0.314864
\(153\) −7.29277 −0.589586
\(154\) −12.8736 −1.03738
\(155\) 9.31419 0.748133
\(156\) 11.4382 0.915789
\(157\) 10.4375 0.833005 0.416503 0.909135i \(-0.363256\pi\)
0.416503 + 0.909135i \(0.363256\pi\)
\(158\) 7.04912 0.560798
\(159\) 1.97446 0.156585
\(160\) 7.44408 0.588506
\(161\) 0 0
\(162\) −2.18378 −0.171574
\(163\) −2.78139 −0.217855 −0.108928 0.994050i \(-0.534742\pi\)
−0.108928 + 0.994050i \(0.534742\pi\)
\(164\) −22.8352 −1.78313
\(165\) 5.93300 0.461883
\(166\) 38.5035 2.98845
\(167\) −16.3886 −1.26819 −0.634095 0.773255i \(-0.718627\pi\)
−0.634095 + 0.773255i \(0.718627\pi\)
\(168\) −1.66836 −0.128717
\(169\) 4.06491 0.312685
\(170\) 15.9258 1.22145
\(171\) 2.31191 0.176796
\(172\) −16.1293 −1.22984
\(173\) 3.27198 0.248764 0.124382 0.992234i \(-0.460305\pi\)
0.124382 + 0.992234i \(0.460305\pi\)
\(174\) −11.4170 −0.865519
\(175\) −0.993609 −0.0751098
\(176\) 11.1008 0.836752
\(177\) 10.0495 0.755367
\(178\) −4.67974 −0.350761
\(179\) −20.4215 −1.52638 −0.763188 0.646177i \(-0.776367\pi\)
−0.763188 + 0.646177i \(0.776367\pi\)
\(180\) 2.76889 0.206381
\(181\) 3.18638 0.236841 0.118421 0.992964i \(-0.462217\pi\)
0.118421 + 0.992964i \(0.462217\pi\)
\(182\) −8.96347 −0.664417
\(183\) 4.81217 0.355725
\(184\) 0 0
\(185\) −10.5373 −0.774721
\(186\) 20.3401 1.49141
\(187\) 43.2680 3.16407
\(188\) 1.43862 0.104922
\(189\) 0.993609 0.0722744
\(190\) −5.04870 −0.366271
\(191\) −11.3085 −0.818255 −0.409128 0.912477i \(-0.634167\pi\)
−0.409128 + 0.912477i \(0.634167\pi\)
\(192\) 12.5142 0.903133
\(193\) −1.31168 −0.0944170 −0.0472085 0.998885i \(-0.515033\pi\)
−0.0472085 + 0.998885i \(0.515033\pi\)
\(194\) 11.0167 0.790949
\(195\) 4.13097 0.295825
\(196\) −16.6486 −1.18919
\(197\) −20.1870 −1.43827 −0.719133 0.694873i \(-0.755461\pi\)
−0.719133 + 0.694873i \(0.755461\pi\)
\(198\) 12.9564 0.920768
\(199\) 7.84740 0.556287 0.278144 0.960539i \(-0.410281\pi\)
0.278144 + 0.960539i \(0.410281\pi\)
\(200\) −1.67909 −0.118730
\(201\) 7.46264 0.526374
\(202\) −12.1737 −0.856540
\(203\) 5.19467 0.364595
\(204\) 20.1929 1.41379
\(205\) −8.24707 −0.576000
\(206\) 29.8074 2.07678
\(207\) 0 0
\(208\) 7.72914 0.535919
\(209\) −13.7165 −0.948794
\(210\) −2.16982 −0.149732
\(211\) 17.8328 1.22766 0.613829 0.789439i \(-0.289629\pi\)
0.613829 + 0.789439i \(0.289629\pi\)
\(212\) −5.46706 −0.375479
\(213\) −0.553134 −0.0379001
\(214\) −25.1783 −1.72115
\(215\) −5.82517 −0.397273
\(216\) 1.67909 0.114248
\(217\) −9.25466 −0.628247
\(218\) −13.2913 −0.900200
\(219\) −8.22053 −0.555492
\(220\) −16.4278 −1.10756
\(221\) 30.1262 2.02651
\(222\) −23.0112 −1.54441
\(223\) −4.82825 −0.323324 −0.161662 0.986846i \(-0.551685\pi\)
−0.161662 + 0.986846i \(0.551685\pi\)
\(224\) −7.39651 −0.494200
\(225\) 1.00000 0.0666667
\(226\) 2.63969 0.175590
\(227\) −23.6484 −1.56960 −0.784801 0.619748i \(-0.787235\pi\)
−0.784801 + 0.619748i \(0.787235\pi\)
\(228\) −6.40143 −0.423945
\(229\) −11.4495 −0.756602 −0.378301 0.925683i \(-0.623492\pi\)
−0.378301 + 0.925683i \(0.623492\pi\)
\(230\) 0 0
\(231\) −5.89508 −0.387868
\(232\) 8.77842 0.576332
\(233\) −12.0436 −0.789004 −0.394502 0.918895i \(-0.629083\pi\)
−0.394502 + 0.918895i \(0.629083\pi\)
\(234\) 9.02113 0.589729
\(235\) 0.519567 0.0338928
\(236\) −27.8260 −1.81132
\(237\) 3.22794 0.209678
\(238\) −15.8240 −1.02572
\(239\) −5.64180 −0.364938 −0.182469 0.983212i \(-0.558409\pi\)
−0.182469 + 0.983212i \(0.558409\pi\)
\(240\) 1.87102 0.120774
\(241\) 13.8293 0.890826 0.445413 0.895325i \(-0.353057\pi\)
0.445413 + 0.895325i \(0.353057\pi\)
\(242\) −52.8484 −3.39723
\(243\) −1.00000 −0.0641500
\(244\) −13.3244 −0.853005
\(245\) −6.01274 −0.384140
\(246\) −18.0098 −1.14826
\(247\) −9.55043 −0.607679
\(248\) −15.6394 −0.993100
\(249\) 17.6316 1.11736
\(250\) −2.18378 −0.138114
\(251\) −26.4002 −1.66636 −0.833182 0.552999i \(-0.813483\pi\)
−0.833182 + 0.552999i \(0.813483\pi\)
\(252\) −2.75120 −0.173309
\(253\) 0 0
\(254\) 7.57020 0.474997
\(255\) 7.29277 0.456691
\(256\) −2.13796 −0.133622
\(257\) −13.9233 −0.868513 −0.434256 0.900789i \(-0.642989\pi\)
−0.434256 + 0.900789i \(0.642989\pi\)
\(258\) −12.7209 −0.791967
\(259\) 10.4700 0.650574
\(260\) −11.4382 −0.709367
\(261\) −5.22808 −0.323610
\(262\) −17.1480 −1.05941
\(263\) −0.298839 −0.0184272 −0.00921359 0.999958i \(-0.502933\pi\)
−0.00921359 + 0.999958i \(0.502933\pi\)
\(264\) −9.96203 −0.613121
\(265\) −1.97446 −0.121290
\(266\) 5.01643 0.307577
\(267\) −2.14296 −0.131147
\(268\) −20.6632 −1.26221
\(269\) −25.5063 −1.55514 −0.777572 0.628794i \(-0.783549\pi\)
−0.777572 + 0.628794i \(0.783549\pi\)
\(270\) 2.18378 0.132901
\(271\) −1.11434 −0.0676914 −0.0338457 0.999427i \(-0.510775\pi\)
−0.0338457 + 0.999427i \(0.510775\pi\)
\(272\) 13.6449 0.827346
\(273\) −4.10457 −0.248420
\(274\) 18.2740 1.10397
\(275\) −5.93300 −0.357773
\(276\) 0 0
\(277\) −2.19727 −0.132021 −0.0660105 0.997819i \(-0.521027\pi\)
−0.0660105 + 0.997819i \(0.521027\pi\)
\(278\) −1.17639 −0.0705552
\(279\) 9.31419 0.557626
\(280\) 1.66836 0.0997035
\(281\) 16.4545 0.981593 0.490797 0.871274i \(-0.336706\pi\)
0.490797 + 0.871274i \(0.336706\pi\)
\(282\) 1.13462 0.0675656
\(283\) −2.53587 −0.150742 −0.0753708 0.997156i \(-0.524014\pi\)
−0.0753708 + 0.997156i \(0.524014\pi\)
\(284\) 1.53157 0.0908818
\(285\) −2.31191 −0.136946
\(286\) −53.5223 −3.16484
\(287\) 8.19436 0.483698
\(288\) 7.44408 0.438647
\(289\) 36.1845 2.12850
\(290\) 11.4170 0.670428
\(291\) 5.04476 0.295729
\(292\) 22.7617 1.33203
\(293\) 29.8353 1.74300 0.871499 0.490398i \(-0.163148\pi\)
0.871499 + 0.490398i \(0.163148\pi\)
\(294\) −13.1305 −0.765786
\(295\) −10.0495 −0.585105
\(296\) 17.6931 1.02839
\(297\) 5.93300 0.344267
\(298\) −3.79758 −0.219988
\(299\) 0 0
\(300\) −2.76889 −0.159862
\(301\) 5.78794 0.333611
\(302\) −13.5402 −0.779153
\(303\) −5.57461 −0.320253
\(304\) −4.32563 −0.248092
\(305\) −4.81217 −0.275544
\(306\) 15.9258 0.910417
\(307\) 10.5077 0.599704 0.299852 0.953986i \(-0.403063\pi\)
0.299852 + 0.953986i \(0.403063\pi\)
\(308\) 16.3228 0.930080
\(309\) 13.6494 0.776490
\(310\) −20.3401 −1.15524
\(311\) 25.4615 1.44379 0.721894 0.692004i \(-0.243272\pi\)
0.721894 + 0.692004i \(0.243272\pi\)
\(312\) −6.93627 −0.392689
\(313\) −14.3344 −0.810227 −0.405114 0.914266i \(-0.632768\pi\)
−0.405114 + 0.914266i \(0.632768\pi\)
\(314\) −22.7933 −1.28630
\(315\) −0.993609 −0.0559835
\(316\) −8.93783 −0.502792
\(317\) −11.7770 −0.661460 −0.330730 0.943725i \(-0.607295\pi\)
−0.330730 + 0.943725i \(0.607295\pi\)
\(318\) −4.31178 −0.241793
\(319\) 31.0182 1.73669
\(320\) −12.5142 −0.699564
\(321\) −11.5297 −0.643524
\(322\) 0 0
\(323\) −16.8602 −0.938128
\(324\) 2.76889 0.153827
\(325\) −4.13097 −0.229145
\(326\) 6.07394 0.336404
\(327\) −6.08637 −0.336577
\(328\) 13.8476 0.764604
\(329\) −0.516246 −0.0284616
\(330\) −12.9564 −0.713224
\(331\) −23.7973 −1.30802 −0.654009 0.756487i \(-0.726914\pi\)
−0.654009 + 0.756487i \(0.726914\pi\)
\(332\) −48.8200 −2.67934
\(333\) −10.5373 −0.577443
\(334\) 35.7891 1.95830
\(335\) −7.46264 −0.407727
\(336\) −1.85907 −0.101420
\(337\) 27.8644 1.51787 0.758936 0.651165i \(-0.225719\pi\)
0.758936 + 0.651165i \(0.225719\pi\)
\(338\) −8.87687 −0.482838
\(339\) 1.20877 0.0656516
\(340\) −20.1929 −1.09511
\(341\) −55.2610 −2.99255
\(342\) −5.04870 −0.273002
\(343\) 12.9296 0.698132
\(344\) 9.78098 0.527355
\(345\) 0 0
\(346\) −7.14529 −0.384133
\(347\) 24.6620 1.32393 0.661963 0.749537i \(-0.269724\pi\)
0.661963 + 0.749537i \(0.269724\pi\)
\(348\) 14.4760 0.775995
\(349\) 25.9763 1.39048 0.695240 0.718777i \(-0.255298\pi\)
0.695240 + 0.718777i \(0.255298\pi\)
\(350\) 2.16982 0.115982
\(351\) 4.13097 0.220495
\(352\) −44.1657 −2.35404
\(353\) 2.16457 0.115209 0.0576043 0.998339i \(-0.481654\pi\)
0.0576043 + 0.998339i \(0.481654\pi\)
\(354\) −21.9459 −1.16641
\(355\) 0.553134 0.0293573
\(356\) 5.93361 0.314481
\(357\) −7.24617 −0.383508
\(358\) 44.5961 2.35698
\(359\) −17.9334 −0.946487 −0.473244 0.880932i \(-0.656917\pi\)
−0.473244 + 0.880932i \(0.656917\pi\)
\(360\) −1.67909 −0.0884958
\(361\) −13.6551 −0.718688
\(362\) −6.95834 −0.365722
\(363\) −24.2004 −1.27019
\(364\) 11.3651 0.595694
\(365\) 8.22053 0.430282
\(366\) −10.5087 −0.549299
\(367\) −12.6785 −0.661811 −0.330906 0.943664i \(-0.607354\pi\)
−0.330906 + 0.943664i \(0.607354\pi\)
\(368\) 0 0
\(369\) −8.24707 −0.429325
\(370\) 23.0112 1.19630
\(371\) 1.96184 0.101854
\(372\) −25.7900 −1.33715
\(373\) −0.574898 −0.0297671 −0.0148836 0.999889i \(-0.504738\pi\)
−0.0148836 + 0.999889i \(0.504738\pi\)
\(374\) −94.4877 −4.88584
\(375\) −1.00000 −0.0516398
\(376\) −0.872399 −0.0449906
\(377\) 21.5971 1.11230
\(378\) −2.16982 −0.111604
\(379\) 12.6878 0.651728 0.325864 0.945417i \(-0.394345\pi\)
0.325864 + 0.945417i \(0.394345\pi\)
\(380\) 6.40143 0.328386
\(381\) 3.46656 0.177597
\(382\) 24.6953 1.26352
\(383\) 26.6855 1.36356 0.681782 0.731555i \(-0.261205\pi\)
0.681782 + 0.731555i \(0.261205\pi\)
\(384\) −12.4400 −0.634829
\(385\) 5.89508 0.300441
\(386\) 2.86442 0.145795
\(387\) −5.82517 −0.296110
\(388\) −13.9684 −0.709138
\(389\) 2.08920 0.105927 0.0529633 0.998596i \(-0.483133\pi\)
0.0529633 + 0.998596i \(0.483133\pi\)
\(390\) −9.02113 −0.456802
\(391\) 0 0
\(392\) 10.0959 0.509921
\(393\) −7.85244 −0.396103
\(394\) 44.0840 2.22092
\(395\) −3.22794 −0.162415
\(396\) −16.4278 −0.825529
\(397\) −21.3991 −1.07399 −0.536995 0.843586i \(-0.680441\pi\)
−0.536995 + 0.843586i \(0.680441\pi\)
\(398\) −17.1370 −0.859000
\(399\) 2.29713 0.115001
\(400\) −1.87102 −0.0935511
\(401\) 4.08016 0.203753 0.101877 0.994797i \(-0.467515\pi\)
0.101877 + 0.994797i \(0.467515\pi\)
\(402\) −16.2968 −0.812808
\(403\) −38.4766 −1.91666
\(404\) 15.4355 0.767945
\(405\) 1.00000 0.0496904
\(406\) −11.3440 −0.562994
\(407\) 62.5180 3.09890
\(408\) −12.2452 −0.606229
\(409\) 15.1625 0.749739 0.374870 0.927078i \(-0.377687\pi\)
0.374870 + 0.927078i \(0.377687\pi\)
\(410\) 18.0098 0.889439
\(411\) 8.36805 0.412766
\(412\) −37.7938 −1.86197
\(413\) 9.98528 0.491344
\(414\) 0 0
\(415\) −17.6316 −0.865501
\(416\) −30.7513 −1.50770
\(417\) −0.538695 −0.0263800
\(418\) 29.9539 1.46509
\(419\) 11.0826 0.541420 0.270710 0.962661i \(-0.412742\pi\)
0.270710 + 0.962661i \(0.412742\pi\)
\(420\) 2.75120 0.134245
\(421\) 12.8358 0.625578 0.312789 0.949823i \(-0.398737\pi\)
0.312789 + 0.949823i \(0.398737\pi\)
\(422\) −38.9428 −1.89571
\(423\) 0.519567 0.0252622
\(424\) 3.31529 0.161005
\(425\) −7.29277 −0.353751
\(426\) 1.20792 0.0585240
\(427\) 4.78141 0.231389
\(428\) 31.9245 1.54313
\(429\) −24.5090 −1.18331
\(430\) 12.7209 0.613455
\(431\) 17.5460 0.845162 0.422581 0.906325i \(-0.361124\pi\)
0.422581 + 0.906325i \(0.361124\pi\)
\(432\) 1.87102 0.0900196
\(433\) −10.0965 −0.485209 −0.242604 0.970125i \(-0.578002\pi\)
−0.242604 + 0.970125i \(0.578002\pi\)
\(434\) 20.2101 0.970118
\(435\) 5.22808 0.250667
\(436\) 16.8525 0.807089
\(437\) 0 0
\(438\) 17.9518 0.857771
\(439\) 5.75514 0.274678 0.137339 0.990524i \(-0.456145\pi\)
0.137339 + 0.990524i \(0.456145\pi\)
\(440\) 9.96203 0.474921
\(441\) −6.01274 −0.286321
\(442\) −65.7890 −3.12926
\(443\) −32.2581 −1.53263 −0.766314 0.642467i \(-0.777911\pi\)
−0.766314 + 0.642467i \(0.777911\pi\)
\(444\) 29.1768 1.38467
\(445\) 2.14296 0.101586
\(446\) 10.5438 0.499265
\(447\) −1.73900 −0.0822517
\(448\) 12.4342 0.587461
\(449\) −18.9929 −0.896330 −0.448165 0.893951i \(-0.647922\pi\)
−0.448165 + 0.893951i \(0.647922\pi\)
\(450\) −2.18378 −0.102944
\(451\) 48.9298 2.30402
\(452\) −3.34696 −0.157428
\(453\) −6.20037 −0.291319
\(454\) 51.6430 2.42372
\(455\) 4.10457 0.192425
\(456\) 3.88190 0.181787
\(457\) −5.67575 −0.265500 −0.132750 0.991150i \(-0.542381\pi\)
−0.132750 + 0.991150i \(0.542381\pi\)
\(458\) 25.0031 1.16832
\(459\) 7.29277 0.340397
\(460\) 0 0
\(461\) −1.81839 −0.0846907 −0.0423453 0.999103i \(-0.513483\pi\)
−0.0423453 + 0.999103i \(0.513483\pi\)
\(462\) 12.8736 0.598932
\(463\) 16.7397 0.777961 0.388981 0.921246i \(-0.372827\pi\)
0.388981 + 0.921246i \(0.372827\pi\)
\(464\) 9.78186 0.454112
\(465\) −9.31419 −0.431935
\(466\) 26.3006 1.21835
\(467\) −19.4592 −0.900466 −0.450233 0.892911i \(-0.648659\pi\)
−0.450233 + 0.892911i \(0.648659\pi\)
\(468\) −11.4382 −0.528731
\(469\) 7.41495 0.342390
\(470\) −1.13462 −0.0523361
\(471\) −10.4375 −0.480936
\(472\) 16.8740 0.776690
\(473\) 34.5607 1.58910
\(474\) −7.04912 −0.323777
\(475\) 2.31191 0.106078
\(476\) 20.0638 0.919625
\(477\) −1.97446 −0.0904043
\(478\) 12.3205 0.563524
\(479\) −9.09672 −0.415640 −0.207820 0.978167i \(-0.566637\pi\)
−0.207820 + 0.978167i \(0.566637\pi\)
\(480\) −7.44408 −0.339774
\(481\) 43.5294 1.98477
\(482\) −30.2002 −1.37558
\(483\) 0 0
\(484\) 67.0084 3.04584
\(485\) −5.04476 −0.229071
\(486\) 2.18378 0.0990582
\(487\) 24.4485 1.10787 0.553934 0.832560i \(-0.313126\pi\)
0.553934 + 0.832560i \(0.313126\pi\)
\(488\) 8.08006 0.365767
\(489\) 2.78139 0.125779
\(490\) 13.1305 0.593175
\(491\) −26.1208 −1.17882 −0.589408 0.807835i \(-0.700639\pi\)
−0.589408 + 0.807835i \(0.700639\pi\)
\(492\) 22.8352 1.02949
\(493\) 38.1272 1.71716
\(494\) 20.8560 0.938357
\(495\) −5.93300 −0.266668
\(496\) −17.4270 −0.782498
\(497\) −0.549599 −0.0246529
\(498\) −38.5035 −1.72538
\(499\) −9.98200 −0.446856 −0.223428 0.974720i \(-0.571725\pi\)
−0.223428 + 0.974720i \(0.571725\pi\)
\(500\) 2.76889 0.123829
\(501\) 16.3886 0.732190
\(502\) 57.6521 2.57314
\(503\) 20.4576 0.912160 0.456080 0.889939i \(-0.349253\pi\)
0.456080 + 0.889939i \(0.349253\pi\)
\(504\) 1.66836 0.0743146
\(505\) 5.57461 0.248067
\(506\) 0 0
\(507\) −4.06491 −0.180529
\(508\) −9.59853 −0.425866
\(509\) 5.69695 0.252513 0.126256 0.991998i \(-0.459704\pi\)
0.126256 + 0.991998i \(0.459704\pi\)
\(510\) −15.9258 −0.705206
\(511\) −8.16799 −0.361331
\(512\) −20.2113 −0.893220
\(513\) −2.31191 −0.102073
\(514\) 30.4054 1.34113
\(515\) −13.6494 −0.601466
\(516\) 16.1293 0.710051
\(517\) −3.08259 −0.135572
\(518\) −22.8642 −1.00459
\(519\) −3.27198 −0.143624
\(520\) 6.93627 0.304175
\(521\) −27.2617 −1.19436 −0.597178 0.802109i \(-0.703711\pi\)
−0.597178 + 0.802109i \(0.703711\pi\)
\(522\) 11.4170 0.499708
\(523\) −31.4682 −1.37601 −0.688003 0.725708i \(-0.741513\pi\)
−0.688003 + 0.725708i \(0.741513\pi\)
\(524\) 21.7426 0.949828
\(525\) 0.993609 0.0433647
\(526\) 0.652597 0.0284546
\(527\) −67.9262 −2.95891
\(528\) −11.1008 −0.483099
\(529\) 0 0
\(530\) 4.31178 0.187292
\(531\) −10.0495 −0.436111
\(532\) −6.36052 −0.275763
\(533\) 34.0684 1.47567
\(534\) 4.67974 0.202512
\(535\) 11.5297 0.498472
\(536\) 12.5304 0.541232
\(537\) 20.4215 0.881253
\(538\) 55.7000 2.40140
\(539\) 35.6736 1.53657
\(540\) −2.76889 −0.119154
\(541\) −8.16607 −0.351087 −0.175543 0.984472i \(-0.556168\pi\)
−0.175543 + 0.984472i \(0.556168\pi\)
\(542\) 2.43348 0.104527
\(543\) −3.18638 −0.136740
\(544\) −54.2880 −2.32758
\(545\) 6.08637 0.260712
\(546\) 8.96347 0.383601
\(547\) 11.0363 0.471878 0.235939 0.971768i \(-0.424183\pi\)
0.235939 + 0.971768i \(0.424183\pi\)
\(548\) −23.1702 −0.989783
\(549\) −4.81217 −0.205378
\(550\) 12.9564 0.552461
\(551\) −12.0869 −0.514917
\(552\) 0 0
\(553\) 3.20732 0.136389
\(554\) 4.79835 0.203862
\(555\) 10.5373 0.447285
\(556\) 1.49159 0.0632574
\(557\) 4.47498 0.189611 0.0948054 0.995496i \(-0.469777\pi\)
0.0948054 + 0.995496i \(0.469777\pi\)
\(558\) −20.3401 −0.861066
\(559\) 24.0636 1.01778
\(560\) 1.85907 0.0785598
\(561\) −43.2680 −1.82678
\(562\) −35.9330 −1.51574
\(563\) −14.1615 −0.596836 −0.298418 0.954435i \(-0.596459\pi\)
−0.298418 + 0.954435i \(0.596459\pi\)
\(564\) −1.43862 −0.0605770
\(565\) −1.20877 −0.0508535
\(566\) 5.53777 0.232770
\(567\) −0.993609 −0.0417277
\(568\) −0.928761 −0.0389699
\(569\) −43.5373 −1.82518 −0.912588 0.408880i \(-0.865920\pi\)
−0.912588 + 0.408880i \(0.865920\pi\)
\(570\) 5.04870 0.211467
\(571\) −3.77915 −0.158152 −0.0790762 0.996869i \(-0.525197\pi\)
−0.0790762 + 0.996869i \(0.525197\pi\)
\(572\) 67.8628 2.83749
\(573\) 11.3085 0.472420
\(574\) −17.8947 −0.746910
\(575\) 0 0
\(576\) −12.5142 −0.521424
\(577\) −7.51831 −0.312991 −0.156496 0.987679i \(-0.550020\pi\)
−0.156496 + 0.987679i \(0.550020\pi\)
\(578\) −79.0190 −3.28676
\(579\) 1.31168 0.0545117
\(580\) −14.4760 −0.601083
\(581\) 17.5189 0.726807
\(582\) −11.0167 −0.456655
\(583\) 11.7145 0.485163
\(584\) −13.8030 −0.571172
\(585\) −4.13097 −0.170795
\(586\) −65.1537 −2.69148
\(587\) −30.0303 −1.23948 −0.619741 0.784806i \(-0.712762\pi\)
−0.619741 + 0.784806i \(0.712762\pi\)
\(588\) 16.6486 0.686578
\(589\) 21.5336 0.887275
\(590\) 21.9459 0.903498
\(591\) 20.1870 0.830383
\(592\) 19.7156 0.810306
\(593\) 36.4535 1.49697 0.748483 0.663154i \(-0.230783\pi\)
0.748483 + 0.663154i \(0.230783\pi\)
\(594\) −12.9564 −0.531606
\(595\) 7.24617 0.297064
\(596\) 4.81509 0.197234
\(597\) −7.84740 −0.321173
\(598\) 0 0
\(599\) 25.0497 1.02350 0.511752 0.859133i \(-0.328997\pi\)
0.511752 + 0.859133i \(0.328997\pi\)
\(600\) 1.67909 0.0685485
\(601\) 8.90866 0.363392 0.181696 0.983355i \(-0.441841\pi\)
0.181696 + 0.983355i \(0.441841\pi\)
\(602\) −12.6396 −0.515151
\(603\) −7.46264 −0.303902
\(604\) 17.1681 0.698562
\(605\) 24.2004 0.983888
\(606\) 12.1737 0.494524
\(607\) 12.2852 0.498642 0.249321 0.968421i \(-0.419793\pi\)
0.249321 + 0.968421i \(0.419793\pi\)
\(608\) 17.2100 0.697959
\(609\) −5.19467 −0.210499
\(610\) 10.5087 0.425485
\(611\) −2.14631 −0.0868306
\(612\) −20.1929 −0.816249
\(613\) −35.7470 −1.44381 −0.721904 0.691994i \(-0.756733\pi\)
−0.721904 + 0.691994i \(0.756733\pi\)
\(614\) −22.9464 −0.926042
\(615\) 8.24707 0.332554
\(616\) −9.89837 −0.398817
\(617\) −31.8097 −1.28061 −0.640304 0.768121i \(-0.721192\pi\)
−0.640304 + 0.768121i \(0.721192\pi\)
\(618\) −29.8074 −1.19903
\(619\) −4.64692 −0.186775 −0.0933877 0.995630i \(-0.529770\pi\)
−0.0933877 + 0.995630i \(0.529770\pi\)
\(620\) 25.7900 1.03575
\(621\) 0 0
\(622\) −55.6023 −2.22945
\(623\) −2.12926 −0.0853070
\(624\) −7.72914 −0.309413
\(625\) 1.00000 0.0400000
\(626\) 31.3031 1.25112
\(627\) 13.7165 0.547786
\(628\) 28.9004 1.15325
\(629\) 76.8464 3.06407
\(630\) 2.16982 0.0864478
\(631\) −9.24710 −0.368121 −0.184061 0.982915i \(-0.558924\pi\)
−0.184061 + 0.982915i \(0.558924\pi\)
\(632\) 5.42001 0.215596
\(633\) −17.8328 −0.708788
\(634\) 25.7183 1.02140
\(635\) −3.46656 −0.137566
\(636\) 5.46706 0.216783
\(637\) 24.8384 0.984135
\(638\) −67.7369 −2.68173
\(639\) 0.553134 0.0218816
\(640\) 12.4400 0.491736
\(641\) −7.77407 −0.307057 −0.153529 0.988144i \(-0.549064\pi\)
−0.153529 + 0.988144i \(0.549064\pi\)
\(642\) 25.1783 0.993708
\(643\) −35.1494 −1.38616 −0.693078 0.720862i \(-0.743746\pi\)
−0.693078 + 0.720862i \(0.743746\pi\)
\(644\) 0 0
\(645\) 5.82517 0.229366
\(646\) 36.8190 1.44862
\(647\) −30.4323 −1.19642 −0.598209 0.801340i \(-0.704121\pi\)
−0.598209 + 0.801340i \(0.704121\pi\)
\(648\) −1.67909 −0.0659609
\(649\) 59.6237 2.34043
\(650\) 9.02113 0.353838
\(651\) 9.25466 0.362719
\(652\) −7.70137 −0.301609
\(653\) 18.7925 0.735409 0.367704 0.929943i \(-0.380144\pi\)
0.367704 + 0.929943i \(0.380144\pi\)
\(654\) 13.2913 0.519731
\(655\) 7.85244 0.306820
\(656\) 15.4304 0.602458
\(657\) 8.22053 0.320713
\(658\) 1.12737 0.0439494
\(659\) 8.83579 0.344194 0.172097 0.985080i \(-0.444946\pi\)
0.172097 + 0.985080i \(0.444946\pi\)
\(660\) 16.4278 0.639452
\(661\) −16.2098 −0.630488 −0.315244 0.949011i \(-0.602086\pi\)
−0.315244 + 0.949011i \(0.602086\pi\)
\(662\) 51.9680 2.01979
\(663\) −30.1262 −1.17001
\(664\) 29.6050 1.14890
\(665\) −2.29713 −0.0890791
\(666\) 23.0112 0.891667
\(667\) 0 0
\(668\) −45.3783 −1.75574
\(669\) 4.82825 0.186671
\(670\) 16.2968 0.629599
\(671\) 28.5506 1.10218
\(672\) 7.39651 0.285326
\(673\) 41.2347 1.58948 0.794741 0.606949i \(-0.207607\pi\)
0.794741 + 0.606949i \(0.207607\pi\)
\(674\) −60.8498 −2.34385
\(675\) −1.00000 −0.0384900
\(676\) 11.2553 0.432896
\(677\) −23.2626 −0.894055 −0.447027 0.894520i \(-0.647517\pi\)
−0.447027 + 0.894520i \(0.647517\pi\)
\(678\) −2.63969 −0.101377
\(679\) 5.01252 0.192363
\(680\) 12.2452 0.469583
\(681\) 23.6484 0.906210
\(682\) 120.678 4.62100
\(683\) −28.3910 −1.08635 −0.543176 0.839619i \(-0.682778\pi\)
−0.543176 + 0.839619i \(0.682778\pi\)
\(684\) 6.40143 0.244765
\(685\) −8.36805 −0.319727
\(686\) −28.2353 −1.07803
\(687\) 11.4495 0.436824
\(688\) 10.8990 0.415521
\(689\) 8.15643 0.310735
\(690\) 0 0
\(691\) −32.0697 −1.21999 −0.609995 0.792406i \(-0.708828\pi\)
−0.609995 + 0.792406i \(0.708828\pi\)
\(692\) 9.05976 0.344400
\(693\) 5.89508 0.223936
\(694\) −53.8564 −2.04436
\(695\) 0.538695 0.0204339
\(696\) −8.77842 −0.332745
\(697\) 60.1440 2.27812
\(698\) −56.7266 −2.14713
\(699\) 12.0436 0.455531
\(700\) −2.75120 −0.103985
\(701\) 47.9070 1.80942 0.904711 0.426027i \(-0.140087\pi\)
0.904711 + 0.426027i \(0.140087\pi\)
\(702\) −9.02113 −0.340480
\(703\) −24.3614 −0.918807
\(704\) 74.2466 2.79827
\(705\) −0.519567 −0.0195680
\(706\) −4.72695 −0.177901
\(707\) −5.53899 −0.208315
\(708\) 27.8260 1.04576
\(709\) 31.7378 1.19194 0.595969 0.803008i \(-0.296768\pi\)
0.595969 + 0.803008i \(0.296768\pi\)
\(710\) −1.20792 −0.0453325
\(711\) −3.22794 −0.121057
\(712\) −3.59821 −0.134849
\(713\) 0 0
\(714\) 15.8240 0.592199
\(715\) 24.5090 0.916586
\(716\) −56.5450 −2.11318
\(717\) 5.64180 0.210697
\(718\) 39.1625 1.46153
\(719\) 47.4294 1.76882 0.884409 0.466712i \(-0.154562\pi\)
0.884409 + 0.466712i \(0.154562\pi\)
\(720\) −1.87102 −0.0697289
\(721\) 13.5622 0.505083
\(722\) 29.8197 1.10977
\(723\) −13.8293 −0.514318
\(724\) 8.82273 0.327894
\(725\) −5.22808 −0.194166
\(726\) 52.8484 1.96139
\(727\) −15.8313 −0.587152 −0.293576 0.955936i \(-0.594845\pi\)
−0.293576 + 0.955936i \(0.594845\pi\)
\(728\) −6.89194 −0.255432
\(729\) 1.00000 0.0370370
\(730\) −17.9518 −0.664427
\(731\) 42.4816 1.57124
\(732\) 13.3244 0.492483
\(733\) −1.79899 −0.0664471 −0.0332236 0.999448i \(-0.510577\pi\)
−0.0332236 + 0.999448i \(0.510577\pi\)
\(734\) 27.6870 1.02195
\(735\) 6.01274 0.221783
\(736\) 0 0
\(737\) 44.2758 1.63092
\(738\) 18.0098 0.662949
\(739\) −29.9310 −1.10103 −0.550515 0.834825i \(-0.685569\pi\)
−0.550515 + 0.834825i \(0.685569\pi\)
\(740\) −29.1768 −1.07256
\(741\) 9.55043 0.350844
\(742\) −4.28423 −0.157279
\(743\) 25.6694 0.941719 0.470860 0.882208i \(-0.343944\pi\)
0.470860 + 0.882208i \(0.343944\pi\)
\(744\) 15.6394 0.573366
\(745\) 1.73900 0.0637119
\(746\) 1.25545 0.0459653
\(747\) −17.6316 −0.645106
\(748\) 119.804 4.38048
\(749\) −11.4560 −0.418593
\(750\) 2.18378 0.0797403
\(751\) −18.0346 −0.658092 −0.329046 0.944314i \(-0.606727\pi\)
−0.329046 + 0.944314i \(0.606727\pi\)
\(752\) −0.972121 −0.0354496
\(753\) 26.4002 0.962076
\(754\) −47.1632 −1.71758
\(755\) 6.20037 0.225654
\(756\) 2.75120 0.100060
\(757\) 21.6790 0.787938 0.393969 0.919124i \(-0.371102\pi\)
0.393969 + 0.919124i \(0.371102\pi\)
\(758\) −27.7073 −1.00638
\(759\) 0 0
\(760\) −3.88190 −0.140811
\(761\) 33.5881 1.21757 0.608783 0.793337i \(-0.291658\pi\)
0.608783 + 0.793337i \(0.291658\pi\)
\(762\) −7.57020 −0.274239
\(763\) −6.04748 −0.218933
\(764\) −31.3120 −1.13283
\(765\) −7.29277 −0.263671
\(766\) −58.2752 −2.10557
\(767\) 41.5142 1.49899
\(768\) 2.13796 0.0771470
\(769\) 40.9159 1.47547 0.737733 0.675093i \(-0.235896\pi\)
0.737733 + 0.675093i \(0.235896\pi\)
\(770\) −12.8736 −0.463931
\(771\) 13.9233 0.501436
\(772\) −3.63191 −0.130715
\(773\) −24.6478 −0.886519 −0.443260 0.896393i \(-0.646178\pi\)
−0.443260 + 0.896393i \(0.646178\pi\)
\(774\) 12.7209 0.457242
\(775\) 9.31419 0.334575
\(776\) 8.47061 0.304077
\(777\) −10.4700 −0.375609
\(778\) −4.56235 −0.163568
\(779\) −19.0665 −0.683127
\(780\) 11.4382 0.409554
\(781\) −3.28174 −0.117430
\(782\) 0 0
\(783\) 5.22808 0.186836
\(784\) 11.2500 0.401785
\(785\) 10.4375 0.372531
\(786\) 17.1480 0.611649
\(787\) −26.4403 −0.942493 −0.471247 0.882001i \(-0.656196\pi\)
−0.471247 + 0.882001i \(0.656196\pi\)
\(788\) −55.8957 −1.99120
\(789\) 0.298839 0.0106389
\(790\) 7.04912 0.250796
\(791\) 1.20105 0.0427044
\(792\) 9.96203 0.353985
\(793\) 19.8789 0.705921
\(794\) 46.7309 1.65842
\(795\) 1.97446 0.0700268
\(796\) 21.7286 0.770150
\(797\) −1.72152 −0.0609793 −0.0304897 0.999535i \(-0.509707\pi\)
−0.0304897 + 0.999535i \(0.509707\pi\)
\(798\) −5.01643 −0.177580
\(799\) −3.78908 −0.134048
\(800\) 7.44408 0.263188
\(801\) 2.14296 0.0757176
\(802\) −8.91017 −0.314629
\(803\) −48.7724 −1.72114
\(804\) 20.6632 0.728736
\(805\) 0 0
\(806\) 84.0244 2.95963
\(807\) 25.5063 0.897863
\(808\) −9.36028 −0.329293
\(809\) 9.85919 0.346631 0.173315 0.984866i \(-0.444552\pi\)
0.173315 + 0.984866i \(0.444552\pi\)
\(810\) −2.18378 −0.0767302
\(811\) 20.5675 0.722222 0.361111 0.932523i \(-0.382398\pi\)
0.361111 + 0.932523i \(0.382398\pi\)
\(812\) 14.3835 0.504761
\(813\) 1.11434 0.0390817
\(814\) −136.526 −4.78522
\(815\) −2.78139 −0.0974278
\(816\) −13.6449 −0.477668
\(817\) −13.4673 −0.471160
\(818\) −33.1116 −1.15772
\(819\) 4.10457 0.143425
\(820\) −22.8352 −0.797441
\(821\) −26.6950 −0.931661 −0.465830 0.884874i \(-0.654244\pi\)
−0.465830 + 0.884874i \(0.654244\pi\)
\(822\) −18.2740 −0.637378
\(823\) −54.6288 −1.90424 −0.952120 0.305723i \(-0.901102\pi\)
−0.952120 + 0.305723i \(0.901102\pi\)
\(824\) 22.9186 0.798409
\(825\) 5.93300 0.206560
\(826\) −21.8056 −0.758715
\(827\) 4.09290 0.142324 0.0711621 0.997465i \(-0.477329\pi\)
0.0711621 + 0.997465i \(0.477329\pi\)
\(828\) 0 0
\(829\) 45.7661 1.58952 0.794761 0.606923i \(-0.207596\pi\)
0.794761 + 0.606923i \(0.207596\pi\)
\(830\) 38.5035 1.33648
\(831\) 2.19727 0.0762224
\(832\) 51.6957 1.79223
\(833\) 43.8495 1.51930
\(834\) 1.17639 0.0407351
\(835\) −16.3886 −0.567152
\(836\) −37.9796 −1.31355
\(837\) −9.31419 −0.321945
\(838\) −24.2019 −0.836042
\(839\) −6.09180 −0.210312 −0.105156 0.994456i \(-0.533534\pi\)
−0.105156 + 0.994456i \(0.533534\pi\)
\(840\) −1.66836 −0.0575639
\(841\) −1.66714 −0.0574876
\(842\) −28.0305 −0.965996
\(843\) −16.4545 −0.566723
\(844\) 49.3770 1.69962
\(845\) 4.06491 0.139837
\(846\) −1.13462 −0.0390090
\(847\) −24.0458 −0.826223
\(848\) 3.69426 0.126861
\(849\) 2.53587 0.0870307
\(850\) 15.9258 0.546250
\(851\) 0 0
\(852\) −1.53157 −0.0524706
\(853\) −8.05785 −0.275895 −0.137948 0.990440i \(-0.544051\pi\)
−0.137948 + 0.990440i \(0.544051\pi\)
\(854\) −10.4415 −0.357302
\(855\) 2.31191 0.0790656
\(856\) −19.3594 −0.661690
\(857\) 38.4610 1.31380 0.656902 0.753976i \(-0.271866\pi\)
0.656902 + 0.753976i \(0.271866\pi\)
\(858\) 53.5223 1.82722
\(859\) 4.75760 0.162327 0.0811636 0.996701i \(-0.474136\pi\)
0.0811636 + 0.996701i \(0.474136\pi\)
\(860\) −16.1293 −0.550003
\(861\) −8.19436 −0.279263
\(862\) −38.3166 −1.30507
\(863\) 37.8469 1.28832 0.644161 0.764890i \(-0.277206\pi\)
0.644161 + 0.764890i \(0.277206\pi\)
\(864\) −7.44408 −0.253253
\(865\) 3.27198 0.111251
\(866\) 22.0486 0.749243
\(867\) −36.1845 −1.22889
\(868\) −25.6252 −0.869775
\(869\) 19.1514 0.649666
\(870\) −11.4170 −0.387072
\(871\) 30.8279 1.04456
\(872\) −10.2196 −0.346078
\(873\) −5.04476 −0.170739
\(874\) 0 0
\(875\) −0.993609 −0.0335901
\(876\) −22.7617 −0.769048
\(877\) −5.70872 −0.192770 −0.0963849 0.995344i \(-0.530728\pi\)
−0.0963849 + 0.995344i \(0.530728\pi\)
\(878\) −12.5680 −0.424148
\(879\) −29.8353 −1.00632
\(880\) 11.1008 0.374207
\(881\) 3.54321 0.119374 0.0596869 0.998217i \(-0.480990\pi\)
0.0596869 + 0.998217i \(0.480990\pi\)
\(882\) 13.1305 0.442127
\(883\) 22.8803 0.769982 0.384991 0.922920i \(-0.374205\pi\)
0.384991 + 0.922920i \(0.374205\pi\)
\(884\) 83.4162 2.80559
\(885\) 10.0495 0.337810
\(886\) 70.4445 2.36663
\(887\) −6.10700 −0.205053 −0.102526 0.994730i \(-0.532693\pi\)
−0.102526 + 0.994730i \(0.532693\pi\)
\(888\) −17.6931 −0.593743
\(889\) 3.44441 0.115522
\(890\) −4.67974 −0.156865
\(891\) −5.93300 −0.198763
\(892\) −13.3689 −0.447624
\(893\) 1.20119 0.0401963
\(894\) 3.79758 0.127010
\(895\) −20.4215 −0.682616
\(896\) −12.3605 −0.412937
\(897\) 0 0
\(898\) 41.4763 1.38408
\(899\) −48.6953 −1.62408
\(900\) 2.76889 0.0922964
\(901\) 14.3993 0.479709
\(902\) −106.852 −3.55778
\(903\) −5.78794 −0.192611
\(904\) 2.02964 0.0675048
\(905\) 3.18638 0.105919
\(906\) 13.5402 0.449844
\(907\) −9.28792 −0.308400 −0.154200 0.988040i \(-0.549280\pi\)
−0.154200 + 0.988040i \(0.549280\pi\)
\(908\) −65.4799 −2.17303
\(909\) 5.57461 0.184898
\(910\) −8.96347 −0.297136
\(911\) −31.3503 −1.03868 −0.519341 0.854567i \(-0.673823\pi\)
−0.519341 + 0.854567i \(0.673823\pi\)
\(912\) 4.32563 0.143236
\(913\) 104.608 3.46203
\(914\) 12.3946 0.409976
\(915\) 4.81217 0.159085
\(916\) −31.7023 −1.04747
\(917\) −7.80226 −0.257653
\(918\) −15.9258 −0.525630
\(919\) −8.58564 −0.283214 −0.141607 0.989923i \(-0.545227\pi\)
−0.141607 + 0.989923i \(0.545227\pi\)
\(920\) 0 0
\(921\) −10.5077 −0.346239
\(922\) 3.97095 0.130776
\(923\) −2.28498 −0.0752110
\(924\) −16.3228 −0.536982
\(925\) −10.5373 −0.346466
\(926\) −36.5559 −1.20130
\(927\) −13.6494 −0.448307
\(928\) −38.9183 −1.27755
\(929\) 28.6555 0.940158 0.470079 0.882624i \(-0.344225\pi\)
0.470079 + 0.882624i \(0.344225\pi\)
\(930\) 20.3401 0.666979
\(931\) −13.9009 −0.455584
\(932\) −33.3475 −1.09233
\(933\) −25.4615 −0.833571
\(934\) 42.4947 1.39047
\(935\) 43.2680 1.41501
\(936\) 6.93627 0.226719
\(937\) −34.8604 −1.13884 −0.569420 0.822047i \(-0.692832\pi\)
−0.569420 + 0.822047i \(0.692832\pi\)
\(938\) −16.1926 −0.528707
\(939\) 14.3344 0.467785
\(940\) 1.43862 0.0469227
\(941\) −40.3556 −1.31556 −0.657778 0.753212i \(-0.728504\pi\)
−0.657778 + 0.753212i \(0.728504\pi\)
\(942\) 22.7933 0.742644
\(943\) 0 0
\(944\) 18.8028 0.611980
\(945\) 0.993609 0.0323221
\(946\) −75.4729 −2.45384
\(947\) −4.13862 −0.134487 −0.0672435 0.997737i \(-0.521420\pi\)
−0.0672435 + 0.997737i \(0.521420\pi\)
\(948\) 8.93783 0.290287
\(949\) −33.9587 −1.10235
\(950\) −5.04870 −0.163801
\(951\) 11.7770 0.381894
\(952\) −12.1670 −0.394333
\(953\) 47.1255 1.52654 0.763272 0.646077i \(-0.223591\pi\)
0.763272 + 0.646077i \(0.223591\pi\)
\(954\) 4.31178 0.139599
\(955\) −11.3085 −0.365935
\(956\) −15.6215 −0.505237
\(957\) −31.0182 −1.00268
\(958\) 19.8652 0.641816
\(959\) 8.31458 0.268492
\(960\) 12.5142 0.403893
\(961\) 55.7541 1.79852
\(962\) −95.0587 −3.06482
\(963\) 11.5297 0.371539
\(964\) 38.2919 1.23330
\(965\) −1.31168 −0.0422245
\(966\) 0 0
\(967\) 9.38576 0.301826 0.150913 0.988547i \(-0.451779\pi\)
0.150913 + 0.988547i \(0.451779\pi\)
\(968\) −40.6347 −1.30605
\(969\) 16.8602 0.541628
\(970\) 11.0167 0.353723
\(971\) −19.1640 −0.615003 −0.307501 0.951548i \(-0.599493\pi\)
−0.307501 + 0.951548i \(0.599493\pi\)
\(972\) −2.76889 −0.0888122
\(973\) −0.535252 −0.0171594
\(974\) −53.3902 −1.71073
\(975\) 4.13097 0.132297
\(976\) 9.00367 0.288200
\(977\) −22.2225 −0.710962 −0.355481 0.934683i \(-0.615683\pi\)
−0.355481 + 0.934683i \(0.615683\pi\)
\(978\) −6.07394 −0.194223
\(979\) −12.7141 −0.406346
\(980\) −16.6486 −0.531821
\(981\) 6.08637 0.194323
\(982\) 57.0421 1.82029
\(983\) −12.6701 −0.404114 −0.202057 0.979374i \(-0.564763\pi\)
−0.202057 + 0.979374i \(0.564763\pi\)
\(984\) −13.8476 −0.441444
\(985\) −20.1870 −0.643212
\(986\) −83.2614 −2.65158
\(987\) 0.516246 0.0164323
\(988\) −26.4441 −0.841299
\(989\) 0 0
\(990\) 12.9564 0.411780
\(991\) −12.4113 −0.394257 −0.197128 0.980378i \(-0.563162\pi\)
−0.197128 + 0.980378i \(0.563162\pi\)
\(992\) 69.3355 2.20141
\(993\) 23.7973 0.755184
\(994\) 1.20020 0.0380681
\(995\) 7.84740 0.248779
\(996\) 48.8200 1.54692
\(997\) 20.4653 0.648142 0.324071 0.946033i \(-0.394948\pi\)
0.324071 + 0.946033i \(0.394948\pi\)
\(998\) 21.7985 0.690019
\(999\) 10.5373 0.333387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bu.1.4 25
23.3 even 11 345.2.m.d.331.5 yes 50
23.8 even 11 345.2.m.d.271.5 50
23.22 odd 2 7935.2.a.bt.1.4 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.d.271.5 50 23.8 even 11
345.2.m.d.331.5 yes 50 23.3 even 11
7935.2.a.bt.1.4 25 23.22 odd 2
7935.2.a.bu.1.4 25 1.1 even 1 trivial