Properties

Label 7935.2.a.bt.1.22
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,1,-25,31,-25,-1,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.22
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46508 q^{2} -1.00000 q^{3} +4.07661 q^{4} -1.00000 q^{5} -2.46508 q^{6} -4.49417 q^{7} +5.11900 q^{8} +1.00000 q^{9} -2.46508 q^{10} +1.05963 q^{11} -4.07661 q^{12} +2.71697 q^{13} -11.0785 q^{14} +1.00000 q^{15} +4.46552 q^{16} +3.79273 q^{17} +2.46508 q^{18} -4.64475 q^{19} -4.07661 q^{20} +4.49417 q^{21} +2.61206 q^{22} -5.11900 q^{24} +1.00000 q^{25} +6.69755 q^{26} -1.00000 q^{27} -18.3210 q^{28} +3.82407 q^{29} +2.46508 q^{30} -0.381968 q^{31} +0.769846 q^{32} -1.05963 q^{33} +9.34938 q^{34} +4.49417 q^{35} +4.07661 q^{36} -10.5701 q^{37} -11.4497 q^{38} -2.71697 q^{39} -5.11900 q^{40} +0.415160 q^{41} +11.0785 q^{42} +8.21847 q^{43} +4.31968 q^{44} -1.00000 q^{45} -4.78699 q^{47} -4.46552 q^{48} +13.1976 q^{49} +2.46508 q^{50} -3.79273 q^{51} +11.0760 q^{52} +12.5121 q^{53} -2.46508 q^{54} -1.05963 q^{55} -23.0057 q^{56} +4.64475 q^{57} +9.42663 q^{58} +11.6597 q^{59} +4.07661 q^{60} +7.12915 q^{61} -0.941580 q^{62} -4.49417 q^{63} -7.03330 q^{64} -2.71697 q^{65} -2.61206 q^{66} +3.08483 q^{67} +15.4615 q^{68} +11.0785 q^{70} +8.09757 q^{71} +5.11900 q^{72} +12.4364 q^{73} -26.0561 q^{74} -1.00000 q^{75} -18.9348 q^{76} -4.76214 q^{77} -6.69755 q^{78} -13.4792 q^{79} -4.46552 q^{80} +1.00000 q^{81} +1.02340 q^{82} -1.21364 q^{83} +18.3210 q^{84} -3.79273 q^{85} +20.2592 q^{86} -3.82407 q^{87} +5.42422 q^{88} +12.7167 q^{89} -2.46508 q^{90} -12.2106 q^{91} +0.381968 q^{93} -11.8003 q^{94} +4.64475 q^{95} -0.769846 q^{96} +12.7366 q^{97} +32.5331 q^{98} +1.05963 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + q^{2} - 25 q^{3} + 31 q^{4} - 25 q^{5} - q^{6} + 15 q^{7} + 3 q^{8} + 25 q^{9} - q^{10} - 15 q^{11} - 31 q^{12} + 24 q^{13} - 5 q^{14} + 25 q^{15} + 39 q^{16} + 6 q^{17} + q^{18} - 13 q^{19}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46508 1.74307 0.871537 0.490330i \(-0.163124\pi\)
0.871537 + 0.490330i \(0.163124\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.07661 2.03830
\(5\) −1.00000 −0.447214
\(6\) −2.46508 −1.00636
\(7\) −4.49417 −1.69864 −0.849319 0.527880i \(-0.822987\pi\)
−0.849319 + 0.527880i \(0.822987\pi\)
\(8\) 5.11900 1.80984
\(9\) 1.00000 0.333333
\(10\) −2.46508 −0.779526
\(11\) 1.05963 0.319489 0.159745 0.987158i \(-0.448933\pi\)
0.159745 + 0.987158i \(0.448933\pi\)
\(12\) −4.07661 −1.17682
\(13\) 2.71697 0.753553 0.376777 0.926304i \(-0.377032\pi\)
0.376777 + 0.926304i \(0.377032\pi\)
\(14\) −11.0785 −2.96085
\(15\) 1.00000 0.258199
\(16\) 4.46552 1.11638
\(17\) 3.79273 0.919873 0.459936 0.887952i \(-0.347872\pi\)
0.459936 + 0.887952i \(0.347872\pi\)
\(18\) 2.46508 0.581024
\(19\) −4.64475 −1.06558 −0.532790 0.846248i \(-0.678856\pi\)
−0.532790 + 0.846248i \(0.678856\pi\)
\(20\) −4.07661 −0.911557
\(21\) 4.49417 0.980709
\(22\) 2.61206 0.556893
\(23\) 0 0
\(24\) −5.11900 −1.04491
\(25\) 1.00000 0.200000
\(26\) 6.69755 1.31350
\(27\) −1.00000 −0.192450
\(28\) −18.3210 −3.46234
\(29\) 3.82407 0.710112 0.355056 0.934845i \(-0.384462\pi\)
0.355056 + 0.934845i \(0.384462\pi\)
\(30\) 2.46508 0.450060
\(31\) −0.381968 −0.0686034 −0.0343017 0.999412i \(-0.510921\pi\)
−0.0343017 + 0.999412i \(0.510921\pi\)
\(32\) 0.769846 0.136091
\(33\) −1.05963 −0.184457
\(34\) 9.34938 1.60341
\(35\) 4.49417 0.759654
\(36\) 4.07661 0.679435
\(37\) −10.5701 −1.73771 −0.868855 0.495067i \(-0.835144\pi\)
−0.868855 + 0.495067i \(0.835144\pi\)
\(38\) −11.4497 −1.85738
\(39\) −2.71697 −0.435064
\(40\) −5.11900 −0.809385
\(41\) 0.415160 0.0648372 0.0324186 0.999474i \(-0.489679\pi\)
0.0324186 + 0.999474i \(0.489679\pi\)
\(42\) 11.0785 1.70945
\(43\) 8.21847 1.25331 0.626653 0.779299i \(-0.284425\pi\)
0.626653 + 0.779299i \(0.284425\pi\)
\(44\) 4.31968 0.651216
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −4.78699 −0.698255 −0.349127 0.937075i \(-0.613522\pi\)
−0.349127 + 0.937075i \(0.613522\pi\)
\(48\) −4.46552 −0.644542
\(49\) 13.1976 1.88537
\(50\) 2.46508 0.348615
\(51\) −3.79273 −0.531089
\(52\) 11.0760 1.53597
\(53\) 12.5121 1.71866 0.859332 0.511418i \(-0.170880\pi\)
0.859332 + 0.511418i \(0.170880\pi\)
\(54\) −2.46508 −0.335455
\(55\) −1.05963 −0.142880
\(56\) −23.0057 −3.07426
\(57\) 4.64475 0.615213
\(58\) 9.42663 1.23778
\(59\) 11.6597 1.51796 0.758981 0.651113i \(-0.225698\pi\)
0.758981 + 0.651113i \(0.225698\pi\)
\(60\) 4.07661 0.526288
\(61\) 7.12915 0.912794 0.456397 0.889776i \(-0.349140\pi\)
0.456397 + 0.889776i \(0.349140\pi\)
\(62\) −0.941580 −0.119581
\(63\) −4.49417 −0.566213
\(64\) −7.03330 −0.879163
\(65\) −2.71697 −0.336999
\(66\) −2.61206 −0.321522
\(67\) 3.08483 0.376872 0.188436 0.982085i \(-0.439658\pi\)
0.188436 + 0.982085i \(0.439658\pi\)
\(68\) 15.4615 1.87498
\(69\) 0 0
\(70\) 11.0785 1.32413
\(71\) 8.09757 0.961004 0.480502 0.876994i \(-0.340454\pi\)
0.480502 + 0.876994i \(0.340454\pi\)
\(72\) 5.11900 0.603280
\(73\) 12.4364 1.45557 0.727785 0.685805i \(-0.240550\pi\)
0.727785 + 0.685805i \(0.240550\pi\)
\(74\) −26.0561 −3.02896
\(75\) −1.00000 −0.115470
\(76\) −18.9348 −2.17198
\(77\) −4.76214 −0.542697
\(78\) −6.69755 −0.758349
\(79\) −13.4792 −1.51652 −0.758262 0.651950i \(-0.773951\pi\)
−0.758262 + 0.651950i \(0.773951\pi\)
\(80\) −4.46552 −0.499260
\(81\) 1.00000 0.111111
\(82\) 1.02340 0.113016
\(83\) −1.21364 −0.133215 −0.0666074 0.997779i \(-0.521217\pi\)
−0.0666074 + 0.997779i \(0.521217\pi\)
\(84\) 18.3210 1.99898
\(85\) −3.79273 −0.411379
\(86\) 20.2592 2.18460
\(87\) −3.82407 −0.409983
\(88\) 5.42422 0.578224
\(89\) 12.7167 1.34797 0.673983 0.738747i \(-0.264582\pi\)
0.673983 + 0.738747i \(0.264582\pi\)
\(90\) −2.46508 −0.259842
\(91\) −12.2106 −1.28001
\(92\) 0 0
\(93\) 0.381968 0.0396082
\(94\) −11.8003 −1.21711
\(95\) 4.64475 0.476542
\(96\) −0.769846 −0.0785721
\(97\) 12.7366 1.29321 0.646605 0.762825i \(-0.276188\pi\)
0.646605 + 0.762825i \(0.276188\pi\)
\(98\) 32.5331 3.28634
\(99\) 1.05963 0.106496
\(100\) 4.07661 0.407661
\(101\) 9.12078 0.907552 0.453776 0.891116i \(-0.350077\pi\)
0.453776 + 0.891116i \(0.350077\pi\)
\(102\) −9.34938 −0.925726
\(103\) 5.99103 0.590314 0.295157 0.955449i \(-0.404628\pi\)
0.295157 + 0.955449i \(0.404628\pi\)
\(104\) 13.9082 1.36381
\(105\) −4.49417 −0.438587
\(106\) 30.8432 2.99576
\(107\) 11.2412 1.08673 0.543366 0.839496i \(-0.317150\pi\)
0.543366 + 0.839496i \(0.317150\pi\)
\(108\) −4.07661 −0.392272
\(109\) −13.4160 −1.28502 −0.642510 0.766278i \(-0.722107\pi\)
−0.642510 + 0.766278i \(0.722107\pi\)
\(110\) −2.61206 −0.249050
\(111\) 10.5701 1.00327
\(112\) −20.0688 −1.89632
\(113\) −9.65606 −0.908365 −0.454183 0.890909i \(-0.650069\pi\)
−0.454183 + 0.890909i \(0.650069\pi\)
\(114\) 11.4497 1.07236
\(115\) 0 0
\(116\) 15.5892 1.44742
\(117\) 2.71697 0.251184
\(118\) 28.7420 2.64592
\(119\) −17.0452 −1.56253
\(120\) 5.11900 0.467299
\(121\) −9.87719 −0.897927
\(122\) 17.5739 1.59107
\(123\) −0.415160 −0.0374337
\(124\) −1.55713 −0.139835
\(125\) −1.00000 −0.0894427
\(126\) −11.0785 −0.986950
\(127\) −6.79145 −0.602644 −0.301322 0.953523i \(-0.597428\pi\)
−0.301322 + 0.953523i \(0.597428\pi\)
\(128\) −18.8773 −1.66854
\(129\) −8.21847 −0.723596
\(130\) −6.69755 −0.587414
\(131\) −9.39554 −0.820893 −0.410446 0.911885i \(-0.634627\pi\)
−0.410446 + 0.911885i \(0.634627\pi\)
\(132\) −4.31968 −0.375980
\(133\) 20.8743 1.81003
\(134\) 7.60434 0.656915
\(135\) 1.00000 0.0860663
\(136\) 19.4150 1.66482
\(137\) 6.86666 0.586658 0.293329 0.956012i \(-0.405237\pi\)
0.293329 + 0.956012i \(0.405237\pi\)
\(138\) 0 0
\(139\) −11.8267 −1.00313 −0.501564 0.865121i \(-0.667242\pi\)
−0.501564 + 0.865121i \(0.667242\pi\)
\(140\) 18.3210 1.54841
\(141\) 4.78699 0.403137
\(142\) 19.9611 1.67510
\(143\) 2.87898 0.240752
\(144\) 4.46552 0.372126
\(145\) −3.82407 −0.317572
\(146\) 30.6567 2.53716
\(147\) −13.1976 −1.08852
\(148\) −43.0901 −3.54198
\(149\) 16.1167 1.32033 0.660167 0.751119i \(-0.270485\pi\)
0.660167 + 0.751119i \(0.270485\pi\)
\(150\) −2.46508 −0.201273
\(151\) −1.06417 −0.0866010 −0.0433005 0.999062i \(-0.513787\pi\)
−0.0433005 + 0.999062i \(0.513787\pi\)
\(152\) −23.7765 −1.92853
\(153\) 3.79273 0.306624
\(154\) −11.7391 −0.945960
\(155\) 0.381968 0.0306804
\(156\) −11.0760 −0.886793
\(157\) 15.8742 1.26690 0.633450 0.773784i \(-0.281638\pi\)
0.633450 + 0.773784i \(0.281638\pi\)
\(158\) −33.2272 −2.64341
\(159\) −12.5121 −0.992271
\(160\) −0.769846 −0.0608617
\(161\) 0 0
\(162\) 2.46508 0.193675
\(163\) 17.3304 1.35742 0.678711 0.734406i \(-0.262539\pi\)
0.678711 + 0.734406i \(0.262539\pi\)
\(164\) 1.69245 0.132158
\(165\) 1.05963 0.0824918
\(166\) −2.99173 −0.232203
\(167\) 9.48647 0.734085 0.367043 0.930204i \(-0.380370\pi\)
0.367043 + 0.930204i \(0.380370\pi\)
\(168\) 23.0057 1.77493
\(169\) −5.61805 −0.432158
\(170\) −9.34938 −0.717065
\(171\) −4.64475 −0.355193
\(172\) 33.5035 2.55462
\(173\) 13.2938 1.01071 0.505356 0.862911i \(-0.331361\pi\)
0.505356 + 0.862911i \(0.331361\pi\)
\(174\) −9.42663 −0.714631
\(175\) −4.49417 −0.339728
\(176\) 4.73178 0.356671
\(177\) −11.6597 −0.876396
\(178\) 31.3476 2.34960
\(179\) −10.8091 −0.807908 −0.403954 0.914779i \(-0.632364\pi\)
−0.403954 + 0.914779i \(0.632364\pi\)
\(180\) −4.07661 −0.303852
\(181\) −25.4115 −1.88882 −0.944411 0.328766i \(-0.893367\pi\)
−0.944411 + 0.328766i \(0.893367\pi\)
\(182\) −30.1000 −2.23116
\(183\) −7.12915 −0.527002
\(184\) 0 0
\(185\) 10.5701 0.777128
\(186\) 0.941580 0.0690400
\(187\) 4.01888 0.293889
\(188\) −19.5147 −1.42325
\(189\) 4.49417 0.326903
\(190\) 11.4497 0.830647
\(191\) 12.8593 0.930465 0.465233 0.885189i \(-0.345971\pi\)
0.465233 + 0.885189i \(0.345971\pi\)
\(192\) 7.03330 0.507585
\(193\) 9.04279 0.650914 0.325457 0.945557i \(-0.394482\pi\)
0.325457 + 0.945557i \(0.394482\pi\)
\(194\) 31.3968 2.25416
\(195\) 2.71697 0.194567
\(196\) 53.8015 3.84296
\(197\) 11.8999 0.847829 0.423915 0.905702i \(-0.360656\pi\)
0.423915 + 0.905702i \(0.360656\pi\)
\(198\) 2.61206 0.185631
\(199\) −1.03969 −0.0737013 −0.0368507 0.999321i \(-0.511733\pi\)
−0.0368507 + 0.999321i \(0.511733\pi\)
\(200\) 5.11900 0.361968
\(201\) −3.08483 −0.217587
\(202\) 22.4834 1.58193
\(203\) −17.1860 −1.20622
\(204\) −15.4615 −1.08252
\(205\) −0.415160 −0.0289961
\(206\) 14.7684 1.02896
\(207\) 0 0
\(208\) 12.1327 0.841251
\(209\) −4.92170 −0.340441
\(210\) −11.0785 −0.764488
\(211\) 25.3794 1.74719 0.873595 0.486653i \(-0.161782\pi\)
0.873595 + 0.486653i \(0.161782\pi\)
\(212\) 51.0068 3.50316
\(213\) −8.09757 −0.554836
\(214\) 27.7105 1.89425
\(215\) −8.21847 −0.560495
\(216\) −5.11900 −0.348304
\(217\) 1.71663 0.116532
\(218\) −33.0715 −2.23988
\(219\) −12.4364 −0.840374
\(220\) −4.31968 −0.291233
\(221\) 10.3048 0.693173
\(222\) 26.0561 1.74877
\(223\) 7.70140 0.515724 0.257862 0.966182i \(-0.416982\pi\)
0.257862 + 0.966182i \(0.416982\pi\)
\(224\) −3.45982 −0.231169
\(225\) 1.00000 0.0666667
\(226\) −23.8029 −1.58335
\(227\) −2.74997 −0.182522 −0.0912610 0.995827i \(-0.529090\pi\)
−0.0912610 + 0.995827i \(0.529090\pi\)
\(228\) 18.9348 1.25399
\(229\) −2.93094 −0.193682 −0.0968411 0.995300i \(-0.530874\pi\)
−0.0968411 + 0.995300i \(0.530874\pi\)
\(230\) 0 0
\(231\) 4.76214 0.313326
\(232\) 19.5754 1.28519
\(233\) −19.6184 −1.28524 −0.642622 0.766183i \(-0.722154\pi\)
−0.642622 + 0.766183i \(0.722154\pi\)
\(234\) 6.69755 0.437833
\(235\) 4.78699 0.312269
\(236\) 47.5320 3.09407
\(237\) 13.4792 0.875566
\(238\) −42.0177 −2.72361
\(239\) −2.24046 −0.144924 −0.0724618 0.997371i \(-0.523086\pi\)
−0.0724618 + 0.997371i \(0.523086\pi\)
\(240\) 4.46552 0.288248
\(241\) 24.0841 1.55139 0.775697 0.631106i \(-0.217399\pi\)
0.775697 + 0.631106i \(0.217399\pi\)
\(242\) −24.3480 −1.56515
\(243\) −1.00000 −0.0641500
\(244\) 29.0627 1.86055
\(245\) −13.1976 −0.843164
\(246\) −1.02340 −0.0652498
\(247\) −12.6197 −0.802971
\(248\) −1.95529 −0.124161
\(249\) 1.21364 0.0769116
\(250\) −2.46508 −0.155905
\(251\) 8.77127 0.553638 0.276819 0.960922i \(-0.410720\pi\)
0.276819 + 0.960922i \(0.410720\pi\)
\(252\) −18.3210 −1.15411
\(253\) 0 0
\(254\) −16.7414 −1.05045
\(255\) 3.79273 0.237510
\(256\) −32.4675 −2.02922
\(257\) 8.72479 0.544238 0.272119 0.962264i \(-0.412276\pi\)
0.272119 + 0.962264i \(0.412276\pi\)
\(258\) −20.2592 −1.26128
\(259\) 47.5038 2.95174
\(260\) −11.0760 −0.686907
\(261\) 3.82407 0.236704
\(262\) −23.1607 −1.43088
\(263\) 24.8439 1.53194 0.765971 0.642875i \(-0.222259\pi\)
0.765971 + 0.642875i \(0.222259\pi\)
\(264\) −5.42422 −0.333838
\(265\) −12.5121 −0.768610
\(266\) 51.4569 3.15502
\(267\) −12.7167 −0.778249
\(268\) 12.5756 0.768179
\(269\) 22.8779 1.39489 0.697445 0.716638i \(-0.254320\pi\)
0.697445 + 0.716638i \(0.254320\pi\)
\(270\) 2.46508 0.150020
\(271\) −4.16939 −0.253272 −0.126636 0.991949i \(-0.540418\pi\)
−0.126636 + 0.991949i \(0.540418\pi\)
\(272\) 16.9365 1.02693
\(273\) 12.2106 0.739017
\(274\) 16.9268 1.02259
\(275\) 1.05963 0.0638978
\(276\) 0 0
\(277\) −29.8462 −1.79329 −0.896643 0.442755i \(-0.854001\pi\)
−0.896643 + 0.442755i \(0.854001\pi\)
\(278\) −29.1537 −1.74852
\(279\) −0.381968 −0.0228678
\(280\) 23.0057 1.37485
\(281\) −14.0939 −0.840769 −0.420384 0.907346i \(-0.638105\pi\)
−0.420384 + 0.907346i \(0.638105\pi\)
\(282\) 11.8003 0.702698
\(283\) −3.26414 −0.194033 −0.0970164 0.995283i \(-0.530930\pi\)
−0.0970164 + 0.995283i \(0.530930\pi\)
\(284\) 33.0106 1.95882
\(285\) −4.64475 −0.275131
\(286\) 7.09690 0.419648
\(287\) −1.86580 −0.110135
\(288\) 0.769846 0.0453636
\(289\) −2.61519 −0.153835
\(290\) −9.42663 −0.553551
\(291\) −12.7366 −0.746635
\(292\) 50.6983 2.96689
\(293\) 16.9075 0.987746 0.493873 0.869534i \(-0.335581\pi\)
0.493873 + 0.869534i \(0.335581\pi\)
\(294\) −32.5331 −1.89737
\(295\) −11.6597 −0.678853
\(296\) −54.1082 −3.14498
\(297\) −1.05963 −0.0614857
\(298\) 39.7290 2.30144
\(299\) 0 0
\(300\) −4.07661 −0.235363
\(301\) −36.9352 −2.12891
\(302\) −2.62327 −0.150952
\(303\) −9.12078 −0.523975
\(304\) −20.7412 −1.18959
\(305\) −7.12915 −0.408214
\(306\) 9.34938 0.534468
\(307\) 13.4258 0.766250 0.383125 0.923697i \(-0.374848\pi\)
0.383125 + 0.923697i \(0.374848\pi\)
\(308\) −19.4134 −1.10618
\(309\) −5.99103 −0.340818
\(310\) 0.941580 0.0534782
\(311\) −12.5633 −0.712402 −0.356201 0.934409i \(-0.615928\pi\)
−0.356201 + 0.934409i \(0.615928\pi\)
\(312\) −13.9082 −0.787396
\(313\) −16.4283 −0.928581 −0.464290 0.885683i \(-0.653691\pi\)
−0.464290 + 0.885683i \(0.653691\pi\)
\(314\) 39.1312 2.20830
\(315\) 4.49417 0.253218
\(316\) −54.9493 −3.09114
\(317\) 32.1840 1.80764 0.903818 0.427917i \(-0.140753\pi\)
0.903818 + 0.427917i \(0.140753\pi\)
\(318\) −30.8432 −1.72960
\(319\) 4.05208 0.226873
\(320\) 7.03330 0.393174
\(321\) −11.2412 −0.627425
\(322\) 0 0
\(323\) −17.6163 −0.980197
\(324\) 4.07661 0.226478
\(325\) 2.71697 0.150711
\(326\) 42.7208 2.36608
\(327\) 13.4160 0.741906
\(328\) 2.12521 0.117345
\(329\) 21.5136 1.18608
\(330\) 2.61206 0.143789
\(331\) 2.34092 0.128669 0.0643343 0.997928i \(-0.479508\pi\)
0.0643343 + 0.997928i \(0.479508\pi\)
\(332\) −4.94755 −0.271532
\(333\) −10.5701 −0.579237
\(334\) 23.3849 1.27956
\(335\) −3.08483 −0.168542
\(336\) 20.0688 1.09484
\(337\) 1.87312 0.102035 0.0510177 0.998698i \(-0.483754\pi\)
0.0510177 + 0.998698i \(0.483754\pi\)
\(338\) −13.8489 −0.753283
\(339\) 9.65606 0.524445
\(340\) −15.4615 −0.838516
\(341\) −0.404743 −0.0219181
\(342\) −11.4497 −0.619128
\(343\) −27.8531 −1.50393
\(344\) 42.0704 2.26828
\(345\) 0 0
\(346\) 32.7703 1.76174
\(347\) −19.9731 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(348\) −15.5892 −0.835670
\(349\) 7.61197 0.407459 0.203730 0.979027i \(-0.434694\pi\)
0.203730 + 0.979027i \(0.434694\pi\)
\(350\) −11.0785 −0.592170
\(351\) −2.71697 −0.145021
\(352\) 0.815749 0.0434796
\(353\) 6.58204 0.350326 0.175163 0.984539i \(-0.443955\pi\)
0.175163 + 0.984539i \(0.443955\pi\)
\(354\) −28.7420 −1.52762
\(355\) −8.09757 −0.429774
\(356\) 51.8409 2.74756
\(357\) 17.0452 0.902128
\(358\) −26.6452 −1.40824
\(359\) −17.3292 −0.914601 −0.457301 0.889312i \(-0.651184\pi\)
−0.457301 + 0.889312i \(0.651184\pi\)
\(360\) −5.11900 −0.269795
\(361\) 2.57374 0.135460
\(362\) −62.6413 −3.29236
\(363\) 9.87719 0.518418
\(364\) −49.7777 −2.60906
\(365\) −12.4364 −0.650951
\(366\) −17.5739 −0.918603
\(367\) −24.3244 −1.26973 −0.634863 0.772625i \(-0.718943\pi\)
−0.634863 + 0.772625i \(0.718943\pi\)
\(368\) 0 0
\(369\) 0.415160 0.0216124
\(370\) 26.0561 1.35459
\(371\) −56.2314 −2.91939
\(372\) 1.55713 0.0807336
\(373\) −15.3299 −0.793752 −0.396876 0.917872i \(-0.629906\pi\)
−0.396876 + 0.917872i \(0.629906\pi\)
\(374\) 9.90684 0.512271
\(375\) 1.00000 0.0516398
\(376\) −24.5046 −1.26373
\(377\) 10.3899 0.535107
\(378\) 11.0785 0.569816
\(379\) 7.52041 0.386297 0.193149 0.981169i \(-0.438130\pi\)
0.193149 + 0.981169i \(0.438130\pi\)
\(380\) 18.9348 0.971337
\(381\) 6.79145 0.347936
\(382\) 31.6991 1.62187
\(383\) 6.08256 0.310805 0.155402 0.987851i \(-0.450333\pi\)
0.155402 + 0.987851i \(0.450333\pi\)
\(384\) 18.8773 0.963330
\(385\) 4.76214 0.242701
\(386\) 22.2912 1.13459
\(387\) 8.21847 0.417768
\(388\) 51.9223 2.63595
\(389\) 39.0906 1.98197 0.990985 0.133970i \(-0.0427725\pi\)
0.990985 + 0.133970i \(0.0427725\pi\)
\(390\) 6.69755 0.339144
\(391\) 0 0
\(392\) 67.5585 3.41222
\(393\) 9.39554 0.473943
\(394\) 29.3341 1.47783
\(395\) 13.4792 0.678210
\(396\) 4.31968 0.217072
\(397\) −27.8350 −1.39700 −0.698498 0.715612i \(-0.746148\pi\)
−0.698498 + 0.715612i \(0.746148\pi\)
\(398\) −2.56290 −0.128467
\(399\) −20.8743 −1.04502
\(400\) 4.46552 0.223276
\(401\) −6.63943 −0.331557 −0.165779 0.986163i \(-0.553014\pi\)
−0.165779 + 0.986163i \(0.553014\pi\)
\(402\) −7.60434 −0.379270
\(403\) −1.03780 −0.0516963
\(404\) 37.1819 1.84987
\(405\) −1.00000 −0.0496904
\(406\) −42.3649 −2.10253
\(407\) −11.2003 −0.555180
\(408\) −19.4150 −0.961185
\(409\) 22.9479 1.13470 0.567351 0.823476i \(-0.307968\pi\)
0.567351 + 0.823476i \(0.307968\pi\)
\(410\) −1.02340 −0.0505422
\(411\) −6.86666 −0.338707
\(412\) 24.4231 1.20324
\(413\) −52.4007 −2.57847
\(414\) 0 0
\(415\) 1.21364 0.0595754
\(416\) 2.09165 0.102552
\(417\) 11.8267 0.579156
\(418\) −12.1324 −0.593414
\(419\) 6.99875 0.341912 0.170956 0.985279i \(-0.445314\pi\)
0.170956 + 0.985279i \(0.445314\pi\)
\(420\) −18.3210 −0.893973
\(421\) −34.6759 −1.69000 −0.845000 0.534766i \(-0.820400\pi\)
−0.845000 + 0.534766i \(0.820400\pi\)
\(422\) 62.5622 3.04548
\(423\) −4.78699 −0.232752
\(424\) 64.0492 3.11051
\(425\) 3.79273 0.183975
\(426\) −19.9611 −0.967120
\(427\) −32.0396 −1.55051
\(428\) 45.8261 2.21509
\(429\) −2.87898 −0.138998
\(430\) −20.2592 −0.976984
\(431\) −18.3973 −0.886166 −0.443083 0.896481i \(-0.646115\pi\)
−0.443083 + 0.896481i \(0.646115\pi\)
\(432\) −4.46552 −0.214847
\(433\) 9.87626 0.474623 0.237311 0.971434i \(-0.423734\pi\)
0.237311 + 0.971434i \(0.423734\pi\)
\(434\) 4.23163 0.203125
\(435\) 3.82407 0.183350
\(436\) −54.6918 −2.61926
\(437\) 0 0
\(438\) −30.6567 −1.46483
\(439\) −4.06457 −0.193991 −0.0969956 0.995285i \(-0.530923\pi\)
−0.0969956 + 0.995285i \(0.530923\pi\)
\(440\) −5.42422 −0.258590
\(441\) 13.1976 0.628457
\(442\) 25.4020 1.20825
\(443\) −6.21947 −0.295496 −0.147748 0.989025i \(-0.547202\pi\)
−0.147748 + 0.989025i \(0.547202\pi\)
\(444\) 43.0901 2.04496
\(445\) −12.7167 −0.602829
\(446\) 18.9846 0.898945
\(447\) −16.1167 −0.762295
\(448\) 31.6089 1.49338
\(449\) 8.09307 0.381936 0.190968 0.981596i \(-0.438837\pi\)
0.190968 + 0.981596i \(0.438837\pi\)
\(450\) 2.46508 0.116205
\(451\) 0.439915 0.0207148
\(452\) −39.3640 −1.85152
\(453\) 1.06417 0.0499991
\(454\) −6.77890 −0.318149
\(455\) 12.2106 0.572440
\(456\) 23.7765 1.11344
\(457\) −12.6104 −0.589888 −0.294944 0.955515i \(-0.595301\pi\)
−0.294944 + 0.955515i \(0.595301\pi\)
\(458\) −7.22500 −0.337602
\(459\) −3.79273 −0.177030
\(460\) 0 0
\(461\) −23.9496 −1.11544 −0.557722 0.830027i \(-0.688325\pi\)
−0.557722 + 0.830027i \(0.688325\pi\)
\(462\) 11.7391 0.546150
\(463\) −20.4958 −0.952521 −0.476260 0.879304i \(-0.658008\pi\)
−0.476260 + 0.879304i \(0.658008\pi\)
\(464\) 17.0764 0.792754
\(465\) −0.381968 −0.0177133
\(466\) −48.3609 −2.24028
\(467\) −11.9098 −0.551120 −0.275560 0.961284i \(-0.588863\pi\)
−0.275560 + 0.961284i \(0.588863\pi\)
\(468\) 11.0760 0.511990
\(469\) −13.8638 −0.640169
\(470\) 11.8003 0.544308
\(471\) −15.8742 −0.731445
\(472\) 59.6859 2.74727
\(473\) 8.70850 0.400417
\(474\) 33.2272 1.52617
\(475\) −4.64475 −0.213116
\(476\) −69.4866 −3.18491
\(477\) 12.5121 0.572888
\(478\) −5.52292 −0.252612
\(479\) −6.75560 −0.308671 −0.154336 0.988018i \(-0.549324\pi\)
−0.154336 + 0.988018i \(0.549324\pi\)
\(480\) 0.769846 0.0351385
\(481\) −28.7186 −1.30946
\(482\) 59.3692 2.70419
\(483\) 0 0
\(484\) −40.2654 −1.83025
\(485\) −12.7366 −0.578341
\(486\) −2.46508 −0.111818
\(487\) −11.5090 −0.521522 −0.260761 0.965403i \(-0.583973\pi\)
−0.260761 + 0.965403i \(0.583973\pi\)
\(488\) 36.4941 1.65201
\(489\) −17.3304 −0.783708
\(490\) −32.5331 −1.46970
\(491\) −40.9226 −1.84681 −0.923404 0.383828i \(-0.874605\pi\)
−0.923404 + 0.383828i \(0.874605\pi\)
\(492\) −1.69245 −0.0763014
\(493\) 14.5037 0.653212
\(494\) −31.1085 −1.39964
\(495\) −1.05963 −0.0476266
\(496\) −1.70568 −0.0765875
\(497\) −36.3919 −1.63240
\(498\) 2.99173 0.134063
\(499\) 9.62367 0.430815 0.215407 0.976524i \(-0.430892\pi\)
0.215407 + 0.976524i \(0.430892\pi\)
\(500\) −4.07661 −0.182311
\(501\) −9.48647 −0.423824
\(502\) 21.6219 0.965031
\(503\) 21.2606 0.947964 0.473982 0.880535i \(-0.342816\pi\)
0.473982 + 0.880535i \(0.342816\pi\)
\(504\) −23.0057 −1.02475
\(505\) −9.12078 −0.405869
\(506\) 0 0
\(507\) 5.61805 0.249506
\(508\) −27.6861 −1.22837
\(509\) −34.5160 −1.52989 −0.764947 0.644093i \(-0.777235\pi\)
−0.764947 + 0.644093i \(0.777235\pi\)
\(510\) 9.34938 0.413997
\(511\) −55.8913 −2.47249
\(512\) −42.2802 −1.86854
\(513\) 4.64475 0.205071
\(514\) 21.5073 0.948646
\(515\) −5.99103 −0.263996
\(516\) −33.5035 −1.47491
\(517\) −5.07242 −0.223085
\(518\) 117.100 5.14510
\(519\) −13.2938 −0.583535
\(520\) −13.9082 −0.609915
\(521\) −0.246034 −0.0107789 −0.00538947 0.999985i \(-0.501716\pi\)
−0.00538947 + 0.999985i \(0.501716\pi\)
\(522\) 9.42663 0.412592
\(523\) −4.34525 −0.190005 −0.0950023 0.995477i \(-0.530286\pi\)
−0.0950023 + 0.995477i \(0.530286\pi\)
\(524\) −38.3020 −1.67323
\(525\) 4.49417 0.196142
\(526\) 61.2422 2.67029
\(527\) −1.44870 −0.0631064
\(528\) −4.73178 −0.205924
\(529\) 0 0
\(530\) −30.8432 −1.33974
\(531\) 11.6597 0.505987
\(532\) 85.0965 3.68940
\(533\) 1.12798 0.0488582
\(534\) −31.3476 −1.35654
\(535\) −11.2412 −0.486001
\(536\) 15.7912 0.682078
\(537\) 10.8091 0.466446
\(538\) 56.3958 2.43139
\(539\) 13.9845 0.602356
\(540\) 4.07661 0.175429
\(541\) 10.4580 0.449623 0.224812 0.974402i \(-0.427823\pi\)
0.224812 + 0.974402i \(0.427823\pi\)
\(542\) −10.2779 −0.441472
\(543\) 25.4115 1.09051
\(544\) 2.91982 0.125186
\(545\) 13.4160 0.574678
\(546\) 30.1000 1.28816
\(547\) 0.443683 0.0189705 0.00948526 0.999955i \(-0.496981\pi\)
0.00948526 + 0.999955i \(0.496981\pi\)
\(548\) 27.9927 1.19579
\(549\) 7.12915 0.304265
\(550\) 2.61206 0.111379
\(551\) −17.7619 −0.756681
\(552\) 0 0
\(553\) 60.5777 2.57603
\(554\) −73.5732 −3.12583
\(555\) −10.5701 −0.448675
\(556\) −48.2128 −2.04468
\(557\) 1.77163 0.0750666 0.0375333 0.999295i \(-0.488050\pi\)
0.0375333 + 0.999295i \(0.488050\pi\)
\(558\) −0.941580 −0.0398603
\(559\) 22.3294 0.944432
\(560\) 20.0688 0.848062
\(561\) −4.01888 −0.169677
\(562\) −34.7424 −1.46552
\(563\) −37.2279 −1.56897 −0.784485 0.620148i \(-0.787073\pi\)
−0.784485 + 0.620148i \(0.787073\pi\)
\(564\) 19.5147 0.821717
\(565\) 9.65606 0.406233
\(566\) −8.04635 −0.338213
\(567\) −4.49417 −0.188738
\(568\) 41.4514 1.73926
\(569\) −8.69454 −0.364494 −0.182247 0.983253i \(-0.558337\pi\)
−0.182247 + 0.983253i \(0.558337\pi\)
\(570\) −11.4497 −0.479574
\(571\) −8.45548 −0.353851 −0.176925 0.984224i \(-0.556615\pi\)
−0.176925 + 0.984224i \(0.556615\pi\)
\(572\) 11.7365 0.490726
\(573\) −12.8593 −0.537204
\(574\) −4.59935 −0.191973
\(575\) 0 0
\(576\) −7.03330 −0.293054
\(577\) 24.3076 1.01194 0.505969 0.862551i \(-0.331135\pi\)
0.505969 + 0.862551i \(0.331135\pi\)
\(578\) −6.44664 −0.268145
\(579\) −9.04279 −0.375805
\(580\) −15.5892 −0.647307
\(581\) 5.45433 0.226284
\(582\) −31.3968 −1.30144
\(583\) 13.2581 0.549094
\(584\) 63.6619 2.63435
\(585\) −2.71697 −0.112333
\(586\) 41.6783 1.72171
\(587\) 16.9986 0.701609 0.350804 0.936449i \(-0.385908\pi\)
0.350804 + 0.936449i \(0.385908\pi\)
\(588\) −53.8015 −2.21873
\(589\) 1.77415 0.0731024
\(590\) −28.7420 −1.18329
\(591\) −11.8999 −0.489494
\(592\) −47.2009 −1.93994
\(593\) 33.1814 1.36260 0.681298 0.732006i \(-0.261416\pi\)
0.681298 + 0.732006i \(0.261416\pi\)
\(594\) −2.61206 −0.107174
\(595\) 17.0452 0.698785
\(596\) 65.7016 2.69124
\(597\) 1.03969 0.0425515
\(598\) 0 0
\(599\) 9.03872 0.369312 0.184656 0.982803i \(-0.440883\pi\)
0.184656 + 0.982803i \(0.440883\pi\)
\(600\) −5.11900 −0.208982
\(601\) −18.1738 −0.741326 −0.370663 0.928767i \(-0.620870\pi\)
−0.370663 + 0.928767i \(0.620870\pi\)
\(602\) −91.0483 −3.71085
\(603\) 3.08483 0.125624
\(604\) −4.33821 −0.176519
\(605\) 9.87719 0.401565
\(606\) −22.4834 −0.913327
\(607\) 4.57162 0.185556 0.0927782 0.995687i \(-0.470425\pi\)
0.0927782 + 0.995687i \(0.470425\pi\)
\(608\) −3.57575 −0.145016
\(609\) 17.1860 0.696413
\(610\) −17.5739 −0.711547
\(611\) −13.0061 −0.526172
\(612\) 15.4615 0.624993
\(613\) 45.6151 1.84238 0.921189 0.389115i \(-0.127219\pi\)
0.921189 + 0.389115i \(0.127219\pi\)
\(614\) 33.0956 1.33563
\(615\) 0.415160 0.0167409
\(616\) −24.3774 −0.982194
\(617\) 17.7245 0.713560 0.356780 0.934188i \(-0.383875\pi\)
0.356780 + 0.934188i \(0.383875\pi\)
\(618\) −14.7684 −0.594070
\(619\) 41.0036 1.64807 0.824037 0.566537i \(-0.191717\pi\)
0.824037 + 0.566537i \(0.191717\pi\)
\(620\) 1.55713 0.0625360
\(621\) 0 0
\(622\) −30.9696 −1.24177
\(623\) −57.1510 −2.28971
\(624\) −12.1327 −0.485697
\(625\) 1.00000 0.0400000
\(626\) −40.4970 −1.61858
\(627\) 4.92170 0.196554
\(628\) 64.7129 2.58233
\(629\) −40.0895 −1.59847
\(630\) 11.0785 0.441378
\(631\) 11.6296 0.462969 0.231485 0.972839i \(-0.425642\pi\)
0.231485 + 0.972839i \(0.425642\pi\)
\(632\) −68.9998 −2.74467
\(633\) −25.3794 −1.00874
\(634\) 79.3362 3.15084
\(635\) 6.79145 0.269510
\(636\) −51.0068 −2.02255
\(637\) 35.8576 1.42073
\(638\) 9.98869 0.395456
\(639\) 8.09757 0.320335
\(640\) 18.8773 0.746192
\(641\) 19.0735 0.753357 0.376678 0.926344i \(-0.377066\pi\)
0.376678 + 0.926344i \(0.377066\pi\)
\(642\) −27.7105 −1.09365
\(643\) 29.2335 1.15286 0.576429 0.817148i \(-0.304446\pi\)
0.576429 + 0.817148i \(0.304446\pi\)
\(644\) 0 0
\(645\) 8.21847 0.323602
\(646\) −43.4256 −1.70856
\(647\) 1.33879 0.0526332 0.0263166 0.999654i \(-0.491622\pi\)
0.0263166 + 0.999654i \(0.491622\pi\)
\(648\) 5.11900 0.201093
\(649\) 12.3549 0.484972
\(650\) 6.69755 0.262700
\(651\) −1.71663 −0.0672800
\(652\) 70.6492 2.76684
\(653\) −46.4199 −1.81655 −0.908275 0.418374i \(-0.862600\pi\)
−0.908275 + 0.418374i \(0.862600\pi\)
\(654\) 33.0715 1.29320
\(655\) 9.39554 0.367114
\(656\) 1.85391 0.0723829
\(657\) 12.4364 0.485190
\(658\) 53.0326 2.06743
\(659\) −17.1595 −0.668439 −0.334219 0.942495i \(-0.608473\pi\)
−0.334219 + 0.942495i \(0.608473\pi\)
\(660\) 4.31968 0.168143
\(661\) 6.47531 0.251860 0.125930 0.992039i \(-0.459808\pi\)
0.125930 + 0.992039i \(0.459808\pi\)
\(662\) 5.77055 0.224279
\(663\) −10.3048 −0.400203
\(664\) −6.21264 −0.241097
\(665\) −20.8743 −0.809472
\(666\) −26.0561 −1.00965
\(667\) 0 0
\(668\) 38.6726 1.49629
\(669\) −7.70140 −0.297754
\(670\) −7.60434 −0.293781
\(671\) 7.55423 0.291628
\(672\) 3.45982 0.133466
\(673\) 22.2651 0.858258 0.429129 0.903243i \(-0.358821\pi\)
0.429129 + 0.903243i \(0.358821\pi\)
\(674\) 4.61738 0.177855
\(675\) −1.00000 −0.0384900
\(676\) −22.9026 −0.880869
\(677\) 16.9998 0.653356 0.326678 0.945136i \(-0.394071\pi\)
0.326678 + 0.945136i \(0.394071\pi\)
\(678\) 23.8029 0.914146
\(679\) −57.2407 −2.19670
\(680\) −19.4150 −0.744531
\(681\) 2.74997 0.105379
\(682\) −0.997723 −0.0382048
\(683\) −31.9822 −1.22377 −0.611883 0.790948i \(-0.709588\pi\)
−0.611883 + 0.790948i \(0.709588\pi\)
\(684\) −18.9348 −0.723992
\(685\) −6.86666 −0.262362
\(686\) −68.6601 −2.62145
\(687\) 2.93094 0.111822
\(688\) 36.6997 1.39916
\(689\) 33.9949 1.29510
\(690\) 0 0
\(691\) −35.4966 −1.35035 −0.675177 0.737655i \(-0.735933\pi\)
−0.675177 + 0.737655i \(0.735933\pi\)
\(692\) 54.1938 2.06014
\(693\) −4.76214 −0.180899
\(694\) −49.2354 −1.86895
\(695\) 11.8267 0.448612
\(696\) −19.5754 −0.742004
\(697\) 1.57459 0.0596419
\(698\) 18.7641 0.710231
\(699\) 19.6184 0.742036
\(700\) −18.3210 −0.692468
\(701\) −0.331760 −0.0125304 −0.00626520 0.999980i \(-0.501994\pi\)
−0.00626520 + 0.999980i \(0.501994\pi\)
\(702\) −6.69755 −0.252783
\(703\) 49.0954 1.85167
\(704\) −7.45267 −0.280883
\(705\) −4.78699 −0.180289
\(706\) 16.2252 0.610645
\(707\) −40.9904 −1.54160
\(708\) −47.5320 −1.78636
\(709\) −1.80586 −0.0678206 −0.0339103 0.999425i \(-0.510796\pi\)
−0.0339103 + 0.999425i \(0.510796\pi\)
\(710\) −19.9611 −0.749128
\(711\) −13.4792 −0.505508
\(712\) 65.0967 2.43960
\(713\) 0 0
\(714\) 42.0177 1.57247
\(715\) −2.87898 −0.107668
\(716\) −44.0643 −1.64676
\(717\) 2.24046 0.0836717
\(718\) −42.7179 −1.59422
\(719\) 16.9292 0.631351 0.315676 0.948867i \(-0.397769\pi\)
0.315676 + 0.948867i \(0.397769\pi\)
\(720\) −4.46552 −0.166420
\(721\) −26.9247 −1.00273
\(722\) 6.34447 0.236117
\(723\) −24.0841 −0.895697
\(724\) −103.593 −3.84999
\(725\) 3.82407 0.142022
\(726\) 24.3480 0.903641
\(727\) −49.2693 −1.82730 −0.913649 0.406505i \(-0.866748\pi\)
−0.913649 + 0.406505i \(0.866748\pi\)
\(728\) −62.5058 −2.31662
\(729\) 1.00000 0.0370370
\(730\) −30.6567 −1.13465
\(731\) 31.1705 1.15288
\(732\) −29.0627 −1.07419
\(733\) 5.21430 0.192594 0.0962972 0.995353i \(-0.469300\pi\)
0.0962972 + 0.995353i \(0.469300\pi\)
\(734\) −59.9617 −2.21323
\(735\) 13.1976 0.486801
\(736\) 0 0
\(737\) 3.26876 0.120406
\(738\) 1.02340 0.0376720
\(739\) 7.55599 0.277952 0.138976 0.990296i \(-0.455619\pi\)
0.138976 + 0.990296i \(0.455619\pi\)
\(740\) 43.0901 1.58402
\(741\) 12.6197 0.463595
\(742\) −138.615 −5.08871
\(743\) −20.0428 −0.735297 −0.367649 0.929965i \(-0.619837\pi\)
−0.367649 + 0.929965i \(0.619837\pi\)
\(744\) 1.95529 0.0716845
\(745\) −16.1167 −0.590471
\(746\) −37.7894 −1.38357
\(747\) −1.21364 −0.0444049
\(748\) 16.3834 0.599036
\(749\) −50.5201 −1.84596
\(750\) 2.46508 0.0900119
\(751\) −15.9637 −0.582523 −0.291262 0.956643i \(-0.594075\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(752\) −21.3764 −0.779517
\(753\) −8.77127 −0.319643
\(754\) 25.6119 0.932730
\(755\) 1.06417 0.0387292
\(756\) 18.3210 0.666328
\(757\) −3.40154 −0.123631 −0.0618156 0.998088i \(-0.519689\pi\)
−0.0618156 + 0.998088i \(0.519689\pi\)
\(758\) 18.5384 0.673345
\(759\) 0 0
\(760\) 23.7765 0.862464
\(761\) 24.1546 0.875604 0.437802 0.899071i \(-0.355757\pi\)
0.437802 + 0.899071i \(0.355757\pi\)
\(762\) 16.7414 0.606479
\(763\) 60.2938 2.18278
\(764\) 52.4223 1.89657
\(765\) −3.79273 −0.137126
\(766\) 14.9940 0.541755
\(767\) 31.6791 1.14386
\(768\) 32.4675 1.17157
\(769\) −2.62218 −0.0945583 −0.0472792 0.998882i \(-0.515055\pi\)
−0.0472792 + 0.998882i \(0.515055\pi\)
\(770\) 11.7391 0.423046
\(771\) −8.72479 −0.314216
\(772\) 36.8639 1.32676
\(773\) −41.5899 −1.49588 −0.747942 0.663764i \(-0.768958\pi\)
−0.747942 + 0.663764i \(0.768958\pi\)
\(774\) 20.2592 0.728201
\(775\) −0.381968 −0.0137207
\(776\) 65.1988 2.34050
\(777\) −47.5038 −1.70419
\(778\) 96.3613 3.45472
\(779\) −1.92832 −0.0690892
\(780\) 11.0760 0.396586
\(781\) 8.58039 0.307030
\(782\) 0 0
\(783\) −3.82407 −0.136661
\(784\) 58.9341 2.10479
\(785\) −15.8742 −0.566575
\(786\) 23.1607 0.826117
\(787\) 37.9159 1.35155 0.675777 0.737106i \(-0.263808\pi\)
0.675777 + 0.737106i \(0.263808\pi\)
\(788\) 48.5110 1.72813
\(789\) −24.8439 −0.884467
\(790\) 33.2272 1.18217
\(791\) 43.3960 1.54298
\(792\) 5.42422 0.192741
\(793\) 19.3697 0.687839
\(794\) −68.6154 −2.43507
\(795\) 12.5121 0.443757
\(796\) −4.23839 −0.150226
\(797\) −34.4820 −1.22141 −0.610707 0.791857i \(-0.709115\pi\)
−0.610707 + 0.791857i \(0.709115\pi\)
\(798\) −51.4569 −1.82155
\(799\) −18.1558 −0.642305
\(800\) 0.769846 0.0272182
\(801\) 12.7167 0.449322
\(802\) −16.3667 −0.577929
\(803\) 13.1779 0.465039
\(804\) −12.5756 −0.443508
\(805\) 0 0
\(806\) −2.55825 −0.0901105
\(807\) −22.8779 −0.805340
\(808\) 46.6893 1.64252
\(809\) −23.2506 −0.817449 −0.408724 0.912658i \(-0.634026\pi\)
−0.408724 + 0.912658i \(0.634026\pi\)
\(810\) −2.46508 −0.0866140
\(811\) 9.57534 0.336236 0.168118 0.985767i \(-0.446231\pi\)
0.168118 + 0.985767i \(0.446231\pi\)
\(812\) −70.0607 −2.45865
\(813\) 4.16939 0.146227
\(814\) −27.6097 −0.967719
\(815\) −17.3304 −0.607057
\(816\) −16.9365 −0.592896
\(817\) −38.1728 −1.33550
\(818\) 56.5684 1.97787
\(819\) −12.2106 −0.426671
\(820\) −1.69245 −0.0591028
\(821\) −24.4923 −0.854789 −0.427394 0.904065i \(-0.640568\pi\)
−0.427394 + 0.904065i \(0.640568\pi\)
\(822\) −16.9268 −0.590392
\(823\) −51.1554 −1.78317 −0.891583 0.452857i \(-0.850405\pi\)
−0.891583 + 0.452857i \(0.850405\pi\)
\(824\) 30.6681 1.06837
\(825\) −1.05963 −0.0368914
\(826\) −129.172 −4.49446
\(827\) 19.4775 0.677300 0.338650 0.940912i \(-0.390030\pi\)
0.338650 + 0.940912i \(0.390030\pi\)
\(828\) 0 0
\(829\) −18.1914 −0.631814 −0.315907 0.948790i \(-0.602309\pi\)
−0.315907 + 0.948790i \(0.602309\pi\)
\(830\) 2.99173 0.103844
\(831\) 29.8462 1.03535
\(832\) −19.1093 −0.662496
\(833\) 50.0550 1.73430
\(834\) 29.1537 1.00951
\(835\) −9.48647 −0.328293
\(836\) −20.0638 −0.693923
\(837\) 0.381968 0.0132027
\(838\) 17.2525 0.595977
\(839\) −6.41227 −0.221376 −0.110688 0.993855i \(-0.535305\pi\)
−0.110688 + 0.993855i \(0.535305\pi\)
\(840\) −23.0057 −0.793771
\(841\) −14.3765 −0.495741
\(842\) −85.4788 −2.94579
\(843\) 14.0939 0.485418
\(844\) 103.462 3.56131
\(845\) 5.61805 0.193267
\(846\) −11.8003 −0.405703
\(847\) 44.3898 1.52525
\(848\) 55.8728 1.91868
\(849\) 3.26414 0.112025
\(850\) 9.34938 0.320681
\(851\) 0 0
\(852\) −33.0106 −1.13092
\(853\) −1.91188 −0.0654615 −0.0327308 0.999464i \(-0.510420\pi\)
−0.0327308 + 0.999464i \(0.510420\pi\)
\(854\) −78.9802 −2.70265
\(855\) 4.64475 0.158847
\(856\) 57.5439 1.96681
\(857\) −15.4003 −0.526063 −0.263031 0.964787i \(-0.584722\pi\)
−0.263031 + 0.964787i \(0.584722\pi\)
\(858\) −7.09690 −0.242284
\(859\) −40.4530 −1.38024 −0.690120 0.723695i \(-0.742442\pi\)
−0.690120 + 0.723695i \(0.742442\pi\)
\(860\) −33.5035 −1.14246
\(861\) 1.86580 0.0635864
\(862\) −45.3507 −1.54465
\(863\) −46.2998 −1.57606 −0.788031 0.615635i \(-0.788899\pi\)
−0.788031 + 0.615635i \(0.788899\pi\)
\(864\) −0.769846 −0.0261907
\(865\) −13.2938 −0.452004
\(866\) 24.3457 0.827302
\(867\) 2.61519 0.0888164
\(868\) 6.99803 0.237529
\(869\) −14.2829 −0.484513
\(870\) 9.42663 0.319593
\(871\) 8.38140 0.283993
\(872\) −68.6765 −2.32568
\(873\) 12.7366 0.431070
\(874\) 0 0
\(875\) 4.49417 0.151931
\(876\) −50.6983 −1.71294
\(877\) −4.97428 −0.167970 −0.0839848 0.996467i \(-0.526765\pi\)
−0.0839848 + 0.996467i \(0.526765\pi\)
\(878\) −10.0195 −0.338141
\(879\) −16.9075 −0.570275
\(880\) −4.73178 −0.159508
\(881\) −13.7398 −0.462907 −0.231454 0.972846i \(-0.574348\pi\)
−0.231454 + 0.972846i \(0.574348\pi\)
\(882\) 32.5331 1.09545
\(883\) −18.8961 −0.635904 −0.317952 0.948107i \(-0.602995\pi\)
−0.317952 + 0.948107i \(0.602995\pi\)
\(884\) 42.0084 1.41290
\(885\) 11.6597 0.391936
\(886\) −15.3315 −0.515071
\(887\) −54.5154 −1.83045 −0.915224 0.402946i \(-0.867986\pi\)
−0.915224 + 0.402946i \(0.867986\pi\)
\(888\) 54.1082 1.81575
\(889\) 30.5219 1.02367
\(890\) −31.3476 −1.05077
\(891\) 1.05963 0.0354988
\(892\) 31.3956 1.05120
\(893\) 22.2344 0.744046
\(894\) −39.7290 −1.32874
\(895\) 10.8091 0.361307
\(896\) 84.8380 2.83424
\(897\) 0 0
\(898\) 19.9500 0.665742
\(899\) −1.46067 −0.0487161
\(900\) 4.07661 0.135887
\(901\) 47.4549 1.58095
\(902\) 1.08442 0.0361074
\(903\) 36.9352 1.22913
\(904\) −49.4294 −1.64400
\(905\) 25.4115 0.844707
\(906\) 2.62327 0.0871521
\(907\) 8.34585 0.277120 0.138560 0.990354i \(-0.455753\pi\)
0.138560 + 0.990354i \(0.455753\pi\)
\(908\) −11.2106 −0.372035
\(909\) 9.12078 0.302517
\(910\) 30.1000 0.997804
\(911\) 6.04817 0.200385 0.100192 0.994968i \(-0.468054\pi\)
0.100192 + 0.994968i \(0.468054\pi\)
\(912\) 20.7412 0.686811
\(913\) −1.28601 −0.0425607
\(914\) −31.0855 −1.02822
\(915\) 7.12915 0.235682
\(916\) −11.9483 −0.394783
\(917\) 42.2252 1.39440
\(918\) −9.34938 −0.308575
\(919\) −28.5122 −0.940529 −0.470265 0.882525i \(-0.655842\pi\)
−0.470265 + 0.882525i \(0.655842\pi\)
\(920\) 0 0
\(921\) −13.4258 −0.442394
\(922\) −59.0377 −1.94430
\(923\) 22.0009 0.724168
\(924\) 19.4134 0.638654
\(925\) −10.5701 −0.347542
\(926\) −50.5237 −1.66031
\(927\) 5.99103 0.196771
\(928\) 2.94395 0.0966397
\(929\) 13.0644 0.428629 0.214315 0.976765i \(-0.431248\pi\)
0.214315 + 0.976765i \(0.431248\pi\)
\(930\) −0.941580 −0.0308756
\(931\) −61.2996 −2.00901
\(932\) −79.9766 −2.61972
\(933\) 12.5633 0.411305
\(934\) −29.3586 −0.960643
\(935\) −4.01888 −0.131431
\(936\) 13.9082 0.454603
\(937\) 57.5576 1.88032 0.940162 0.340729i \(-0.110674\pi\)
0.940162 + 0.340729i \(0.110674\pi\)
\(938\) −34.1752 −1.11586
\(939\) 16.4283 0.536116
\(940\) 19.5147 0.636499
\(941\) −25.3489 −0.826352 −0.413176 0.910651i \(-0.635580\pi\)
−0.413176 + 0.910651i \(0.635580\pi\)
\(942\) −39.1312 −1.27496
\(943\) 0 0
\(944\) 52.0665 1.69462
\(945\) −4.49417 −0.146196
\(946\) 21.4671 0.697957
\(947\) 47.0537 1.52904 0.764521 0.644599i \(-0.222976\pi\)
0.764521 + 0.644599i \(0.222976\pi\)
\(948\) 54.9493 1.78467
\(949\) 33.7894 1.09685
\(950\) −11.4497 −0.371477
\(951\) −32.1840 −1.04364
\(952\) −87.2544 −2.82793
\(953\) 47.7427 1.54654 0.773269 0.634079i \(-0.218620\pi\)
0.773269 + 0.634079i \(0.218620\pi\)
\(954\) 30.8432 0.998585
\(955\) −12.8593 −0.416117
\(956\) −9.13350 −0.295398
\(957\) −4.05208 −0.130985
\(958\) −16.6531 −0.538036
\(959\) −30.8600 −0.996520
\(960\) −7.03330 −0.226999
\(961\) −30.8541 −0.995294
\(962\) −70.7937 −2.28248
\(963\) 11.2412 0.362244
\(964\) 98.1815 3.16221
\(965\) −9.04279 −0.291098
\(966\) 0 0
\(967\) −14.9460 −0.480632 −0.240316 0.970695i \(-0.577251\pi\)
−0.240316 + 0.970695i \(0.577251\pi\)
\(968\) −50.5614 −1.62510
\(969\) 17.6163 0.565917
\(970\) −31.3968 −1.00809
\(971\) −6.50678 −0.208813 −0.104406 0.994535i \(-0.533294\pi\)
−0.104406 + 0.994535i \(0.533294\pi\)
\(972\) −4.07661 −0.130757
\(973\) 53.1512 1.70395
\(974\) −28.3705 −0.909051
\(975\) −2.71697 −0.0870128
\(976\) 31.8353 1.01902
\(977\) 45.2595 1.44798 0.723990 0.689810i \(-0.242306\pi\)
0.723990 + 0.689810i \(0.242306\pi\)
\(978\) −42.7208 −1.36606
\(979\) 13.4749 0.430661
\(980\) −53.8015 −1.71862
\(981\) −13.4160 −0.428340
\(982\) −100.877 −3.21912
\(983\) 11.4195 0.364225 0.182113 0.983278i \(-0.441706\pi\)
0.182113 + 0.983278i \(0.441706\pi\)
\(984\) −2.12521 −0.0677491
\(985\) −11.8999 −0.379161
\(986\) 35.7527 1.13860
\(987\) −21.5136 −0.684785
\(988\) −51.4455 −1.63670
\(989\) 0 0
\(990\) −2.61206 −0.0830167
\(991\) 22.7751 0.723475 0.361737 0.932280i \(-0.382184\pi\)
0.361737 + 0.932280i \(0.382184\pi\)
\(992\) −0.294057 −0.00933630
\(993\) −2.34092 −0.0742868
\(994\) −89.7088 −2.84539
\(995\) 1.03969 0.0329602
\(996\) 4.94755 0.156769
\(997\) −7.19037 −0.227721 −0.113861 0.993497i \(-0.536322\pi\)
−0.113861 + 0.993497i \(0.536322\pi\)
\(998\) 23.7231 0.750942
\(999\) 10.5701 0.334422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bt.1.22 25
23.17 odd 22 345.2.m.d.151.1 yes 50
23.19 odd 22 345.2.m.d.16.1 50
23.22 odd 2 7935.2.a.bu.1.22 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.d.16.1 50 23.19 odd 22
345.2.m.d.151.1 yes 50 23.17 odd 22
7935.2.a.bt.1.22 25 1.1 even 1 trivial
7935.2.a.bu.1.22 25 23.22 odd 2