Properties

Label 7935.2.a.bt.1.19
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,1,-25,31,-25,-1,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.59695 q^{2} -1.00000 q^{3} +0.550248 q^{4} -1.00000 q^{5} -1.59695 q^{6} -3.15385 q^{7} -2.31518 q^{8} +1.00000 q^{9} -1.59695 q^{10} -3.93622 q^{11} -0.550248 q^{12} +5.83236 q^{13} -5.03655 q^{14} +1.00000 q^{15} -4.79772 q^{16} -3.95982 q^{17} +1.59695 q^{18} -5.47856 q^{19} -0.550248 q^{20} +3.15385 q^{21} -6.28595 q^{22} +2.31518 q^{24} +1.00000 q^{25} +9.31399 q^{26} -1.00000 q^{27} -1.73540 q^{28} -6.54323 q^{29} +1.59695 q^{30} +5.79234 q^{31} -3.03136 q^{32} +3.93622 q^{33} -6.32363 q^{34} +3.15385 q^{35} +0.550248 q^{36} -4.28799 q^{37} -8.74899 q^{38} -5.83236 q^{39} +2.31518 q^{40} +4.15262 q^{41} +5.03655 q^{42} -3.97479 q^{43} -2.16590 q^{44} -1.00000 q^{45} -11.4438 q^{47} +4.79772 q^{48} +2.94680 q^{49} +1.59695 q^{50} +3.95982 q^{51} +3.20924 q^{52} +4.29277 q^{53} -1.59695 q^{54} +3.93622 q^{55} +7.30174 q^{56} +5.47856 q^{57} -10.4492 q^{58} -13.8795 q^{59} +0.550248 q^{60} -2.38454 q^{61} +9.25007 q^{62} -3.15385 q^{63} +4.75452 q^{64} -5.83236 q^{65} +6.28595 q^{66} -10.2832 q^{67} -2.17888 q^{68} +5.03655 q^{70} -7.43010 q^{71} -2.31518 q^{72} +4.84630 q^{73} -6.84770 q^{74} -1.00000 q^{75} -3.01457 q^{76} +12.4143 q^{77} -9.31399 q^{78} +9.59938 q^{79} +4.79772 q^{80} +1.00000 q^{81} +6.63153 q^{82} -8.40615 q^{83} +1.73540 q^{84} +3.95982 q^{85} -6.34754 q^{86} +6.54323 q^{87} +9.11307 q^{88} +9.86016 q^{89} -1.59695 q^{90} -18.3944 q^{91} -5.79234 q^{93} -18.2752 q^{94} +5.47856 q^{95} +3.03136 q^{96} +15.3346 q^{97} +4.70588 q^{98} -3.93622 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + q^{2} - 25 q^{3} + 31 q^{4} - 25 q^{5} - q^{6} + 15 q^{7} + 3 q^{8} + 25 q^{9} - q^{10} - 15 q^{11} - 31 q^{12} + 24 q^{13} - 5 q^{14} + 25 q^{15} + 39 q^{16} + 6 q^{17} + q^{18} - 13 q^{19}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.59695 1.12921 0.564607 0.825360i \(-0.309028\pi\)
0.564607 + 0.825360i \(0.309028\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.550248 0.275124
\(5\) −1.00000 −0.447214
\(6\) −1.59695 −0.651952
\(7\) −3.15385 −1.19204 −0.596022 0.802968i \(-0.703253\pi\)
−0.596022 + 0.802968i \(0.703253\pi\)
\(8\) −2.31518 −0.818540
\(9\) 1.00000 0.333333
\(10\) −1.59695 −0.505000
\(11\) −3.93622 −1.18682 −0.593408 0.804902i \(-0.702218\pi\)
−0.593408 + 0.804902i \(0.702218\pi\)
\(12\) −0.550248 −0.158843
\(13\) 5.83236 1.61761 0.808803 0.588080i \(-0.200116\pi\)
0.808803 + 0.588080i \(0.200116\pi\)
\(14\) −5.03655 −1.34607
\(15\) 1.00000 0.258199
\(16\) −4.79772 −1.19943
\(17\) −3.95982 −0.960397 −0.480199 0.877160i \(-0.659435\pi\)
−0.480199 + 0.877160i \(0.659435\pi\)
\(18\) 1.59695 0.376405
\(19\) −5.47856 −1.25687 −0.628434 0.777863i \(-0.716304\pi\)
−0.628434 + 0.777863i \(0.716304\pi\)
\(20\) −0.550248 −0.123039
\(21\) 3.15385 0.688227
\(22\) −6.28595 −1.34017
\(23\) 0 0
\(24\) 2.31518 0.472584
\(25\) 1.00000 0.200000
\(26\) 9.31399 1.82662
\(27\) −1.00000 −0.192450
\(28\) −1.73540 −0.327960
\(29\) −6.54323 −1.21505 −0.607524 0.794301i \(-0.707837\pi\)
−0.607524 + 0.794301i \(0.707837\pi\)
\(30\) 1.59695 0.291562
\(31\) 5.79234 1.04033 0.520167 0.854064i \(-0.325870\pi\)
0.520167 + 0.854064i \(0.325870\pi\)
\(32\) −3.03136 −0.535874
\(33\) 3.93622 0.685208
\(34\) −6.32363 −1.08449
\(35\) 3.15385 0.533099
\(36\) 0.550248 0.0917080
\(37\) −4.28799 −0.704941 −0.352470 0.935823i \(-0.614658\pi\)
−0.352470 + 0.935823i \(0.614658\pi\)
\(38\) −8.74899 −1.41927
\(39\) −5.83236 −0.933925
\(40\) 2.31518 0.366062
\(41\) 4.15262 0.648530 0.324265 0.945966i \(-0.394883\pi\)
0.324265 + 0.945966i \(0.394883\pi\)
\(42\) 5.03655 0.777156
\(43\) −3.97479 −0.606150 −0.303075 0.952967i \(-0.598013\pi\)
−0.303075 + 0.952967i \(0.598013\pi\)
\(44\) −2.16590 −0.326521
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −11.4438 −1.66925 −0.834625 0.550818i \(-0.814316\pi\)
−0.834625 + 0.550818i \(0.814316\pi\)
\(48\) 4.79772 0.692492
\(49\) 2.94680 0.420971
\(50\) 1.59695 0.225843
\(51\) 3.95982 0.554486
\(52\) 3.20924 0.445042
\(53\) 4.29277 0.589657 0.294829 0.955550i \(-0.404737\pi\)
0.294829 + 0.955550i \(0.404737\pi\)
\(54\) −1.59695 −0.217317
\(55\) 3.93622 0.530760
\(56\) 7.30174 0.975736
\(57\) 5.47856 0.725653
\(58\) −10.4492 −1.37205
\(59\) −13.8795 −1.80696 −0.903478 0.428635i \(-0.858995\pi\)
−0.903478 + 0.428635i \(0.858995\pi\)
\(60\) 0.550248 0.0710367
\(61\) −2.38454 −0.305310 −0.152655 0.988280i \(-0.548782\pi\)
−0.152655 + 0.988280i \(0.548782\pi\)
\(62\) 9.25007 1.17476
\(63\) −3.15385 −0.397348
\(64\) 4.75452 0.594315
\(65\) −5.83236 −0.723415
\(66\) 6.28595 0.773747
\(67\) −10.2832 −1.25630 −0.628148 0.778094i \(-0.716187\pi\)
−0.628148 + 0.778094i \(0.716187\pi\)
\(68\) −2.17888 −0.264228
\(69\) 0 0
\(70\) 5.03655 0.601982
\(71\) −7.43010 −0.881791 −0.440896 0.897558i \(-0.645339\pi\)
−0.440896 + 0.897558i \(0.645339\pi\)
\(72\) −2.31518 −0.272847
\(73\) 4.84630 0.567216 0.283608 0.958940i \(-0.408468\pi\)
0.283608 + 0.958940i \(0.408468\pi\)
\(74\) −6.84770 −0.796029
\(75\) −1.00000 −0.115470
\(76\) −3.01457 −0.345795
\(77\) 12.4143 1.41474
\(78\) −9.31399 −1.05460
\(79\) 9.59938 1.08001 0.540007 0.841660i \(-0.318421\pi\)
0.540007 + 0.841660i \(0.318421\pi\)
\(80\) 4.79772 0.536402
\(81\) 1.00000 0.111111
\(82\) 6.63153 0.732329
\(83\) −8.40615 −0.922695 −0.461348 0.887220i \(-0.652634\pi\)
−0.461348 + 0.887220i \(0.652634\pi\)
\(84\) 1.73540 0.189348
\(85\) 3.95982 0.429503
\(86\) −6.34754 −0.684473
\(87\) 6.54323 0.701508
\(88\) 9.11307 0.971456
\(89\) 9.86016 1.04518 0.522588 0.852586i \(-0.324967\pi\)
0.522588 + 0.852586i \(0.324967\pi\)
\(90\) −1.59695 −0.168333
\(91\) −18.3944 −1.92826
\(92\) 0 0
\(93\) −5.79234 −0.600638
\(94\) −18.2752 −1.88494
\(95\) 5.47856 0.562089
\(96\) 3.03136 0.309387
\(97\) 15.3346 1.55699 0.778495 0.627650i \(-0.215983\pi\)
0.778495 + 0.627650i \(0.215983\pi\)
\(98\) 4.70588 0.475366
\(99\) −3.93622 −0.395605
\(100\) 0.550248 0.0550248
\(101\) 10.0637 1.00137 0.500686 0.865629i \(-0.333081\pi\)
0.500686 + 0.865629i \(0.333081\pi\)
\(102\) 6.32363 0.626133
\(103\) 9.97456 0.982823 0.491411 0.870928i \(-0.336481\pi\)
0.491411 + 0.870928i \(0.336481\pi\)
\(104\) −13.5030 −1.32408
\(105\) −3.15385 −0.307785
\(106\) 6.85533 0.665849
\(107\) 9.62522 0.930505 0.465253 0.885178i \(-0.345963\pi\)
0.465253 + 0.885178i \(0.345963\pi\)
\(108\) −0.550248 −0.0529476
\(109\) 6.33427 0.606713 0.303357 0.952877i \(-0.401893\pi\)
0.303357 + 0.952877i \(0.401893\pi\)
\(110\) 6.28595 0.599342
\(111\) 4.28799 0.406998
\(112\) 15.1313 1.42978
\(113\) 1.40316 0.131998 0.0659992 0.997820i \(-0.478977\pi\)
0.0659992 + 0.997820i \(0.478977\pi\)
\(114\) 8.74899 0.819418
\(115\) 0 0
\(116\) −3.60040 −0.334289
\(117\) 5.83236 0.539202
\(118\) −22.1648 −2.04044
\(119\) 12.4887 1.14484
\(120\) −2.31518 −0.211346
\(121\) 4.49385 0.408532
\(122\) −3.80800 −0.344760
\(123\) −4.15262 −0.374429
\(124\) 3.18722 0.286221
\(125\) −1.00000 −0.0894427
\(126\) −5.03655 −0.448691
\(127\) 9.47983 0.841199 0.420599 0.907246i \(-0.361820\pi\)
0.420599 + 0.907246i \(0.361820\pi\)
\(128\) 13.6554 1.20698
\(129\) 3.97479 0.349961
\(130\) −9.31399 −0.816891
\(131\) 10.5647 0.923038 0.461519 0.887130i \(-0.347305\pi\)
0.461519 + 0.887130i \(0.347305\pi\)
\(132\) 2.16590 0.188517
\(133\) 17.2786 1.49824
\(134\) −16.4218 −1.41863
\(135\) 1.00000 0.0860663
\(136\) 9.16770 0.786124
\(137\) 15.2769 1.30519 0.652596 0.757706i \(-0.273680\pi\)
0.652596 + 0.757706i \(0.273680\pi\)
\(138\) 0 0
\(139\) −14.5570 −1.23471 −0.617356 0.786684i \(-0.711796\pi\)
−0.617356 + 0.786684i \(0.711796\pi\)
\(140\) 1.73540 0.146668
\(141\) 11.4438 0.963742
\(142\) −11.8655 −0.995731
\(143\) −22.9575 −1.91980
\(144\) −4.79772 −0.399810
\(145\) 6.54323 0.543386
\(146\) 7.73930 0.640509
\(147\) −2.94680 −0.243048
\(148\) −2.35946 −0.193946
\(149\) −5.81663 −0.476517 −0.238259 0.971202i \(-0.576577\pi\)
−0.238259 + 0.971202i \(0.576577\pi\)
\(150\) −1.59695 −0.130390
\(151\) 21.0786 1.71535 0.857677 0.514190i \(-0.171907\pi\)
0.857677 + 0.514190i \(0.171907\pi\)
\(152\) 12.6839 1.02880
\(153\) −3.95982 −0.320132
\(154\) 19.8250 1.59754
\(155\) −5.79234 −0.465252
\(156\) −3.20924 −0.256945
\(157\) −19.1849 −1.53112 −0.765561 0.643364i \(-0.777538\pi\)
−0.765561 + 0.643364i \(0.777538\pi\)
\(158\) 15.3297 1.21957
\(159\) −4.29277 −0.340439
\(160\) 3.03136 0.239650
\(161\) 0 0
\(162\) 1.59695 0.125468
\(163\) 12.5719 0.984710 0.492355 0.870395i \(-0.336136\pi\)
0.492355 + 0.870395i \(0.336136\pi\)
\(164\) 2.28497 0.178426
\(165\) −3.93622 −0.306435
\(166\) −13.4242 −1.04192
\(167\) −14.1477 −1.09479 −0.547393 0.836876i \(-0.684380\pi\)
−0.547393 + 0.836876i \(0.684380\pi\)
\(168\) −7.30174 −0.563342
\(169\) 21.0164 1.61665
\(170\) 6.32363 0.485000
\(171\) −5.47856 −0.418956
\(172\) −2.18712 −0.166766
\(173\) −14.0316 −1.06680 −0.533402 0.845862i \(-0.679087\pi\)
−0.533402 + 0.845862i \(0.679087\pi\)
\(174\) 10.4492 0.792153
\(175\) −3.15385 −0.238409
\(176\) 18.8849 1.42350
\(177\) 13.8795 1.04325
\(178\) 15.7462 1.18023
\(179\) 5.83338 0.436007 0.218004 0.975948i \(-0.430046\pi\)
0.218004 + 0.975948i \(0.430046\pi\)
\(180\) −0.550248 −0.0410131
\(181\) 6.81237 0.506359 0.253180 0.967419i \(-0.418524\pi\)
0.253180 + 0.967419i \(0.418524\pi\)
\(182\) −29.3750 −2.17742
\(183\) 2.38454 0.176271
\(184\) 0 0
\(185\) 4.28799 0.315259
\(186\) −9.25007 −0.678248
\(187\) 15.5867 1.13981
\(188\) −6.29693 −0.459251
\(189\) 3.15385 0.229409
\(190\) 8.74899 0.634718
\(191\) −7.50481 −0.543029 −0.271514 0.962434i \(-0.587524\pi\)
−0.271514 + 0.962434i \(0.587524\pi\)
\(192\) −4.75452 −0.343128
\(193\) 11.0495 0.795357 0.397679 0.917525i \(-0.369816\pi\)
0.397679 + 0.917525i \(0.369816\pi\)
\(194\) 24.4886 1.75818
\(195\) 5.83236 0.417664
\(196\) 1.62147 0.115819
\(197\) −11.5639 −0.823896 −0.411948 0.911207i \(-0.635152\pi\)
−0.411948 + 0.911207i \(0.635152\pi\)
\(198\) −6.28595 −0.446723
\(199\) 21.8556 1.54931 0.774653 0.632387i \(-0.217925\pi\)
0.774653 + 0.632387i \(0.217925\pi\)
\(200\) −2.31518 −0.163708
\(201\) 10.2832 0.725323
\(202\) 16.0712 1.13076
\(203\) 20.6364 1.44839
\(204\) 2.17888 0.152552
\(205\) −4.15262 −0.290032
\(206\) 15.9289 1.10982
\(207\) 0 0
\(208\) −27.9821 −1.94021
\(209\) 21.5648 1.49167
\(210\) −5.03655 −0.347555
\(211\) −14.5644 −1.00265 −0.501326 0.865258i \(-0.667154\pi\)
−0.501326 + 0.865258i \(0.667154\pi\)
\(212\) 2.36209 0.162229
\(213\) 7.43010 0.509102
\(214\) 15.3710 1.05074
\(215\) 3.97479 0.271078
\(216\) 2.31518 0.157528
\(217\) −18.2682 −1.24013
\(218\) 10.1155 0.685109
\(219\) −4.84630 −0.327483
\(220\) 2.16590 0.146025
\(221\) −23.0951 −1.55354
\(222\) 6.84770 0.459587
\(223\) −1.77197 −0.118660 −0.0593301 0.998238i \(-0.518896\pi\)
−0.0593301 + 0.998238i \(0.518896\pi\)
\(224\) 9.56047 0.638786
\(225\) 1.00000 0.0666667
\(226\) 2.24078 0.149054
\(227\) 1.00635 0.0667938 0.0333969 0.999442i \(-0.489367\pi\)
0.0333969 + 0.999442i \(0.489367\pi\)
\(228\) 3.01457 0.199645
\(229\) 19.6059 1.29559 0.647797 0.761813i \(-0.275691\pi\)
0.647797 + 0.761813i \(0.275691\pi\)
\(230\) 0 0
\(231\) −12.4143 −0.816799
\(232\) 15.1488 0.994565
\(233\) 5.02512 0.329206 0.164603 0.986360i \(-0.447366\pi\)
0.164603 + 0.986360i \(0.447366\pi\)
\(234\) 9.31399 0.608874
\(235\) 11.4438 0.746512
\(236\) −7.63716 −0.497137
\(237\) −9.59938 −0.623547
\(238\) 19.9438 1.29277
\(239\) 19.4577 1.25862 0.629308 0.777156i \(-0.283338\pi\)
0.629308 + 0.777156i \(0.283338\pi\)
\(240\) −4.79772 −0.309692
\(241\) −17.6543 −1.13721 −0.568606 0.822610i \(-0.692517\pi\)
−0.568606 + 0.822610i \(0.692517\pi\)
\(242\) 7.17646 0.461320
\(243\) −1.00000 −0.0641500
\(244\) −1.31209 −0.0839980
\(245\) −2.94680 −0.188264
\(246\) −6.63153 −0.422811
\(247\) −31.9530 −2.03312
\(248\) −13.4103 −0.851556
\(249\) 8.40615 0.532718
\(250\) −1.59695 −0.101000
\(251\) −13.8869 −0.876534 −0.438267 0.898845i \(-0.644408\pi\)
−0.438267 + 0.898845i \(0.644408\pi\)
\(252\) −1.73540 −0.109320
\(253\) 0 0
\(254\) 15.1388 0.949893
\(255\) −3.95982 −0.247974
\(256\) 12.2980 0.768626
\(257\) −16.6861 −1.04085 −0.520424 0.853908i \(-0.674226\pi\)
−0.520424 + 0.853908i \(0.674226\pi\)
\(258\) 6.34754 0.395181
\(259\) 13.5237 0.840321
\(260\) −3.20924 −0.199029
\(261\) −6.54323 −0.405016
\(262\) 16.8712 1.04231
\(263\) 4.26366 0.262909 0.131454 0.991322i \(-0.458035\pi\)
0.131454 + 0.991322i \(0.458035\pi\)
\(264\) −9.11307 −0.560871
\(265\) −4.29277 −0.263703
\(266\) 27.5930 1.69184
\(267\) −9.86016 −0.603432
\(268\) −5.65832 −0.345637
\(269\) −21.2982 −1.29858 −0.649288 0.760543i \(-0.724933\pi\)
−0.649288 + 0.760543i \(0.724933\pi\)
\(270\) 1.59695 0.0971873
\(271\) 7.03244 0.427190 0.213595 0.976922i \(-0.431483\pi\)
0.213595 + 0.976922i \(0.431483\pi\)
\(272\) 18.9981 1.15193
\(273\) 18.3944 1.11328
\(274\) 24.3964 1.47384
\(275\) −3.93622 −0.237363
\(276\) 0 0
\(277\) 22.4016 1.34598 0.672991 0.739650i \(-0.265009\pi\)
0.672991 + 0.739650i \(0.265009\pi\)
\(278\) −23.2468 −1.39425
\(279\) 5.79234 0.346778
\(280\) −7.30174 −0.436363
\(281\) 0.667600 0.0398257 0.0199128 0.999802i \(-0.493661\pi\)
0.0199128 + 0.999802i \(0.493661\pi\)
\(282\) 18.2752 1.08827
\(283\) −8.38815 −0.498624 −0.249312 0.968423i \(-0.580204\pi\)
−0.249312 + 0.968423i \(0.580204\pi\)
\(284\) −4.08840 −0.242602
\(285\) −5.47856 −0.324522
\(286\) −36.6619 −2.16787
\(287\) −13.0968 −0.773077
\(288\) −3.03136 −0.178625
\(289\) −1.31983 −0.0776370
\(290\) 10.4492 0.613599
\(291\) −15.3346 −0.898929
\(292\) 2.66667 0.156055
\(293\) −10.5955 −0.618998 −0.309499 0.950900i \(-0.600161\pi\)
−0.309499 + 0.950900i \(0.600161\pi\)
\(294\) −4.70588 −0.274453
\(295\) 13.8795 0.808095
\(296\) 9.92747 0.577022
\(297\) 3.93622 0.228403
\(298\) −9.28887 −0.538090
\(299\) 0 0
\(300\) −0.550248 −0.0317686
\(301\) 12.5359 0.722558
\(302\) 33.6615 1.93700
\(303\) −10.0637 −0.578142
\(304\) 26.2846 1.50753
\(305\) 2.38454 0.136539
\(306\) −6.32363 −0.361498
\(307\) −4.28290 −0.244438 −0.122219 0.992503i \(-0.539001\pi\)
−0.122219 + 0.992503i \(0.539001\pi\)
\(308\) 6.83093 0.389228
\(309\) −9.97456 −0.567433
\(310\) −9.25007 −0.525369
\(311\) −2.25106 −0.127646 −0.0638230 0.997961i \(-0.520329\pi\)
−0.0638230 + 0.997961i \(0.520329\pi\)
\(312\) 13.5030 0.764455
\(313\) −25.0880 −1.41806 −0.709028 0.705180i \(-0.750866\pi\)
−0.709028 + 0.705180i \(0.750866\pi\)
\(314\) −30.6373 −1.72896
\(315\) 3.15385 0.177700
\(316\) 5.28204 0.297138
\(317\) 28.8505 1.62040 0.810202 0.586150i \(-0.199357\pi\)
0.810202 + 0.586150i \(0.199357\pi\)
\(318\) −6.85533 −0.384428
\(319\) 25.7556 1.44204
\(320\) −4.75452 −0.265786
\(321\) −9.62522 −0.537227
\(322\) 0 0
\(323\) 21.6941 1.20709
\(324\) 0.550248 0.0305693
\(325\) 5.83236 0.323521
\(326\) 20.0767 1.11195
\(327\) −6.33427 −0.350286
\(328\) −9.61407 −0.530848
\(329\) 36.0921 1.98982
\(330\) −6.28595 −0.346030
\(331\) −29.9214 −1.64463 −0.822315 0.569032i \(-0.807318\pi\)
−0.822315 + 0.569032i \(0.807318\pi\)
\(332\) −4.62547 −0.253855
\(333\) −4.28799 −0.234980
\(334\) −22.5932 −1.23625
\(335\) 10.2832 0.561833
\(336\) −15.1313 −0.825481
\(337\) −25.4551 −1.38663 −0.693313 0.720637i \(-0.743849\pi\)
−0.693313 + 0.720637i \(0.743849\pi\)
\(338\) 33.5622 1.82554
\(339\) −1.40316 −0.0762093
\(340\) 2.17888 0.118166
\(341\) −22.7999 −1.23469
\(342\) −8.74899 −0.473091
\(343\) 12.7832 0.690229
\(344\) 9.20236 0.496158
\(345\) 0 0
\(346\) −22.4078 −1.20465
\(347\) −12.9541 −0.695414 −0.347707 0.937603i \(-0.613040\pi\)
−0.347707 + 0.937603i \(0.613040\pi\)
\(348\) 3.60040 0.193002
\(349\) 2.48764 0.133160 0.0665802 0.997781i \(-0.478791\pi\)
0.0665802 + 0.997781i \(0.478791\pi\)
\(350\) −5.03655 −0.269215
\(351\) −5.83236 −0.311308
\(352\) 11.9321 0.635983
\(353\) 25.5808 1.36153 0.680763 0.732504i \(-0.261648\pi\)
0.680763 + 0.732504i \(0.261648\pi\)
\(354\) 22.1648 1.17805
\(355\) 7.43010 0.394349
\(356\) 5.42553 0.287553
\(357\) −12.4887 −0.660972
\(358\) 9.31561 0.492345
\(359\) −8.80926 −0.464935 −0.232468 0.972604i \(-0.574680\pi\)
−0.232468 + 0.972604i \(0.574680\pi\)
\(360\) 2.31518 0.122021
\(361\) 11.0147 0.579719
\(362\) 10.8790 0.571788
\(363\) −4.49385 −0.235866
\(364\) −10.1215 −0.530510
\(365\) −4.84630 −0.253667
\(366\) 3.80800 0.199047
\(367\) 21.5533 1.12507 0.562537 0.826772i \(-0.309825\pi\)
0.562537 + 0.826772i \(0.309825\pi\)
\(368\) 0 0
\(369\) 4.15262 0.216177
\(370\) 6.84770 0.355995
\(371\) −13.5388 −0.702898
\(372\) −3.18722 −0.165250
\(373\) 21.1805 1.09668 0.548342 0.836254i \(-0.315259\pi\)
0.548342 + 0.836254i \(0.315259\pi\)
\(374\) 24.8912 1.28709
\(375\) 1.00000 0.0516398
\(376\) 26.4945 1.36635
\(377\) −38.1625 −1.96547
\(378\) 5.03655 0.259052
\(379\) −18.0363 −0.926465 −0.463232 0.886237i \(-0.653310\pi\)
−0.463232 + 0.886237i \(0.653310\pi\)
\(380\) 3.01457 0.154644
\(381\) −9.47983 −0.485666
\(382\) −11.9848 −0.613196
\(383\) 6.92259 0.353728 0.176864 0.984235i \(-0.443405\pi\)
0.176864 + 0.984235i \(0.443405\pi\)
\(384\) −13.6554 −0.696851
\(385\) −12.4143 −0.632690
\(386\) 17.6454 0.898129
\(387\) −3.97479 −0.202050
\(388\) 8.43782 0.428365
\(389\) −0.342102 −0.0173453 −0.00867264 0.999962i \(-0.502761\pi\)
−0.00867264 + 0.999962i \(0.502761\pi\)
\(390\) 9.31399 0.471632
\(391\) 0 0
\(392\) −6.82237 −0.344582
\(393\) −10.5647 −0.532916
\(394\) −18.4670 −0.930355
\(395\) −9.59938 −0.482997
\(396\) −2.16590 −0.108840
\(397\) 0.413811 0.0207686 0.0103843 0.999946i \(-0.496695\pi\)
0.0103843 + 0.999946i \(0.496695\pi\)
\(398\) 34.9024 1.74950
\(399\) −17.2786 −0.865011
\(400\) −4.79772 −0.239886
\(401\) 26.3310 1.31491 0.657453 0.753496i \(-0.271634\pi\)
0.657453 + 0.753496i \(0.271634\pi\)
\(402\) 16.4218 0.819045
\(403\) 33.7830 1.68285
\(404\) 5.53751 0.275501
\(405\) −1.00000 −0.0496904
\(406\) 32.9553 1.63554
\(407\) 16.8785 0.836635
\(408\) −9.16770 −0.453869
\(409\) −15.2266 −0.752907 −0.376453 0.926436i \(-0.622857\pi\)
−0.376453 + 0.926436i \(0.622857\pi\)
\(410\) −6.63153 −0.327508
\(411\) −15.2769 −0.753553
\(412\) 5.48848 0.270398
\(413\) 43.7739 2.15397
\(414\) 0 0
\(415\) 8.40615 0.412642
\(416\) −17.6800 −0.866833
\(417\) 14.5570 0.712861
\(418\) 34.4380 1.68442
\(419\) −25.2312 −1.23263 −0.616313 0.787501i \(-0.711374\pi\)
−0.616313 + 0.787501i \(0.711374\pi\)
\(420\) −1.73540 −0.0846789
\(421\) −2.32484 −0.113306 −0.0566530 0.998394i \(-0.518043\pi\)
−0.0566530 + 0.998394i \(0.518043\pi\)
\(422\) −23.2586 −1.13221
\(423\) −11.4438 −0.556417
\(424\) −9.93854 −0.482658
\(425\) −3.95982 −0.192079
\(426\) 11.8655 0.574885
\(427\) 7.52051 0.363943
\(428\) 5.29626 0.256004
\(429\) 22.9575 1.10840
\(430\) 6.34754 0.306106
\(431\) 11.1893 0.538969 0.269485 0.963005i \(-0.413147\pi\)
0.269485 + 0.963005i \(0.413147\pi\)
\(432\) 4.79772 0.230831
\(433\) −6.64192 −0.319190 −0.159595 0.987183i \(-0.551019\pi\)
−0.159595 + 0.987183i \(0.551019\pi\)
\(434\) −29.1734 −1.40037
\(435\) −6.54323 −0.313724
\(436\) 3.48542 0.166921
\(437\) 0 0
\(438\) −7.73930 −0.369798
\(439\) 34.9295 1.66709 0.833546 0.552450i \(-0.186307\pi\)
0.833546 + 0.552450i \(0.186307\pi\)
\(440\) −9.11307 −0.434449
\(441\) 2.94680 0.140324
\(442\) −36.8817 −1.75428
\(443\) 15.9216 0.756460 0.378230 0.925712i \(-0.376533\pi\)
0.378230 + 0.925712i \(0.376533\pi\)
\(444\) 2.35946 0.111975
\(445\) −9.86016 −0.467417
\(446\) −2.82975 −0.133993
\(447\) 5.81663 0.275117
\(448\) −14.9951 −0.708450
\(449\) −5.41536 −0.255567 −0.127783 0.991802i \(-0.540786\pi\)
−0.127783 + 0.991802i \(0.540786\pi\)
\(450\) 1.59695 0.0752809
\(451\) −16.3456 −0.769686
\(452\) 0.772087 0.0363159
\(453\) −21.0786 −0.990360
\(454\) 1.60709 0.0754245
\(455\) 18.3944 0.862344
\(456\) −12.6839 −0.593976
\(457\) 20.5929 0.963294 0.481647 0.876365i \(-0.340039\pi\)
0.481647 + 0.876365i \(0.340039\pi\)
\(458\) 31.3096 1.46300
\(459\) 3.95982 0.184829
\(460\) 0 0
\(461\) 4.56278 0.212510 0.106255 0.994339i \(-0.466114\pi\)
0.106255 + 0.994339i \(0.466114\pi\)
\(462\) −19.8250 −0.922341
\(463\) −17.8233 −0.828320 −0.414160 0.910204i \(-0.635925\pi\)
−0.414160 + 0.910204i \(0.635925\pi\)
\(464\) 31.3926 1.45737
\(465\) 5.79234 0.268613
\(466\) 8.02486 0.371744
\(467\) 4.29164 0.198593 0.0992967 0.995058i \(-0.468341\pi\)
0.0992967 + 0.995058i \(0.468341\pi\)
\(468\) 3.20924 0.148347
\(469\) 32.4318 1.49756
\(470\) 18.2752 0.842971
\(471\) 19.1849 0.883993
\(472\) 32.1335 1.47907
\(473\) 15.6457 0.719388
\(474\) −15.3297 −0.704118
\(475\) −5.47856 −0.251374
\(476\) 6.87188 0.314972
\(477\) 4.29277 0.196552
\(478\) 31.0730 1.42125
\(479\) 7.66217 0.350093 0.175047 0.984560i \(-0.443992\pi\)
0.175047 + 0.984560i \(0.443992\pi\)
\(480\) −3.03136 −0.138362
\(481\) −25.0091 −1.14032
\(482\) −28.1930 −1.28416
\(483\) 0 0
\(484\) 2.47273 0.112397
\(485\) −15.3346 −0.696307
\(486\) −1.59695 −0.0724391
\(487\) −32.0485 −1.45226 −0.726129 0.687559i \(-0.758682\pi\)
−0.726129 + 0.687559i \(0.758682\pi\)
\(488\) 5.52065 0.249908
\(489\) −12.5719 −0.568522
\(490\) −4.70588 −0.212590
\(491\) 27.7507 1.25237 0.626186 0.779674i \(-0.284615\pi\)
0.626186 + 0.779674i \(0.284615\pi\)
\(492\) −2.28497 −0.103014
\(493\) 25.9100 1.16693
\(494\) −51.0273 −2.29583
\(495\) 3.93622 0.176920
\(496\) −27.7900 −1.24781
\(497\) 23.4335 1.05113
\(498\) 13.4242 0.601553
\(499\) −7.33728 −0.328462 −0.164231 0.986422i \(-0.552514\pi\)
−0.164231 + 0.986422i \(0.552514\pi\)
\(500\) −0.550248 −0.0246078
\(501\) 14.1477 0.632075
\(502\) −22.1767 −0.989794
\(503\) 0.327014 0.0145808 0.00729042 0.999973i \(-0.497679\pi\)
0.00729042 + 0.999973i \(0.497679\pi\)
\(504\) 7.30174 0.325245
\(505\) −10.0637 −0.447827
\(506\) 0 0
\(507\) −21.0164 −0.933373
\(508\) 5.21626 0.231434
\(509\) 5.93584 0.263102 0.131551 0.991309i \(-0.458004\pi\)
0.131551 + 0.991309i \(0.458004\pi\)
\(510\) −6.32363 −0.280015
\(511\) −15.2845 −0.676147
\(512\) −7.67157 −0.339039
\(513\) 5.47856 0.241884
\(514\) −26.6468 −1.17534
\(515\) −9.97456 −0.439532
\(516\) 2.18712 0.0962826
\(517\) 45.0454 1.98109
\(518\) 21.5966 0.948902
\(519\) 14.0316 0.615919
\(520\) 13.5030 0.592145
\(521\) −3.04676 −0.133481 −0.0667404 0.997770i \(-0.521260\pi\)
−0.0667404 + 0.997770i \(0.521260\pi\)
\(522\) −10.4492 −0.457350
\(523\) 13.1323 0.574236 0.287118 0.957895i \(-0.407303\pi\)
0.287118 + 0.957895i \(0.407303\pi\)
\(524\) 5.81318 0.253950
\(525\) 3.15385 0.137645
\(526\) 6.80885 0.296880
\(527\) −22.9366 −0.999135
\(528\) −18.8849 −0.821860
\(529\) 0 0
\(530\) −6.85533 −0.297777
\(531\) −13.8795 −0.602318
\(532\) 9.50751 0.412203
\(533\) 24.2196 1.04907
\(534\) −15.7462 −0.681404
\(535\) −9.62522 −0.416135
\(536\) 23.8075 1.02833
\(537\) −5.83338 −0.251729
\(538\) −34.0122 −1.46637
\(539\) −11.5992 −0.499615
\(540\) 0.550248 0.0236789
\(541\) −11.9281 −0.512830 −0.256415 0.966567i \(-0.582541\pi\)
−0.256415 + 0.966567i \(0.582541\pi\)
\(542\) 11.2305 0.482389
\(543\) −6.81237 −0.292347
\(544\) 12.0036 0.514652
\(545\) −6.33427 −0.271330
\(546\) 29.3750 1.25713
\(547\) 6.09851 0.260754 0.130377 0.991465i \(-0.458381\pi\)
0.130377 + 0.991465i \(0.458381\pi\)
\(548\) 8.40607 0.359089
\(549\) −2.38454 −0.101770
\(550\) −6.28595 −0.268034
\(551\) 35.8475 1.52716
\(552\) 0 0
\(553\) −30.2751 −1.28743
\(554\) 35.7743 1.51990
\(555\) −4.28799 −0.182015
\(556\) −8.00998 −0.339699
\(557\) −37.4088 −1.58506 −0.792530 0.609832i \(-0.791237\pi\)
−0.792530 + 0.609832i \(0.791237\pi\)
\(558\) 9.25007 0.391587
\(559\) −23.1824 −0.980512
\(560\) −15.1313 −0.639415
\(561\) −15.5867 −0.658072
\(562\) 1.06612 0.0449717
\(563\) 8.97422 0.378218 0.189109 0.981956i \(-0.439440\pi\)
0.189109 + 0.981956i \(0.439440\pi\)
\(564\) 6.29693 0.265149
\(565\) −1.40316 −0.0590315
\(566\) −13.3955 −0.563053
\(567\) −3.15385 −0.132449
\(568\) 17.2020 0.721781
\(569\) 19.3436 0.810925 0.405463 0.914112i \(-0.367110\pi\)
0.405463 + 0.914112i \(0.367110\pi\)
\(570\) −8.74899 −0.366455
\(571\) −17.6474 −0.738521 −0.369260 0.929326i \(-0.620389\pi\)
−0.369260 + 0.929326i \(0.620389\pi\)
\(572\) −12.6323 −0.528183
\(573\) 7.50481 0.313518
\(574\) −20.9149 −0.872970
\(575\) 0 0
\(576\) 4.75452 0.198105
\(577\) 2.27364 0.0946531 0.0473265 0.998879i \(-0.484930\pi\)
0.0473265 + 0.998879i \(0.484930\pi\)
\(578\) −2.10770 −0.0876687
\(579\) −11.0495 −0.459200
\(580\) 3.60040 0.149498
\(581\) 26.5118 1.09989
\(582\) −24.4886 −1.01508
\(583\) −16.8973 −0.699814
\(584\) −11.2201 −0.464289
\(585\) −5.83236 −0.241138
\(586\) −16.9205 −0.698981
\(587\) 43.4015 1.79137 0.895686 0.444687i \(-0.146685\pi\)
0.895686 + 0.444687i \(0.146685\pi\)
\(588\) −1.62147 −0.0668682
\(589\) −31.7337 −1.30756
\(590\) 22.1648 0.912512
\(591\) 11.5639 0.475677
\(592\) 20.5726 0.845528
\(593\) 5.96063 0.244774 0.122387 0.992482i \(-0.460945\pi\)
0.122387 + 0.992482i \(0.460945\pi\)
\(594\) 6.28595 0.257916
\(595\) −12.4887 −0.511987
\(596\) −3.20059 −0.131101
\(597\) −21.8556 −0.894492
\(598\) 0 0
\(599\) −42.4563 −1.73472 −0.867359 0.497683i \(-0.834184\pi\)
−0.867359 + 0.497683i \(0.834184\pi\)
\(600\) 2.31518 0.0945169
\(601\) −48.4578 −1.97664 −0.988318 0.152406i \(-0.951298\pi\)
−0.988318 + 0.152406i \(0.951298\pi\)
\(602\) 20.0192 0.815922
\(603\) −10.2832 −0.418765
\(604\) 11.5985 0.471935
\(605\) −4.49385 −0.182701
\(606\) −16.0712 −0.652846
\(607\) −26.6289 −1.08084 −0.540418 0.841397i \(-0.681734\pi\)
−0.540418 + 0.841397i \(0.681734\pi\)
\(608\) 16.6075 0.673523
\(609\) −20.6364 −0.836229
\(610\) 3.80800 0.154181
\(611\) −66.7444 −2.70019
\(612\) −2.17888 −0.0880761
\(613\) −11.8440 −0.478374 −0.239187 0.970974i \(-0.576881\pi\)
−0.239187 + 0.970974i \(0.576881\pi\)
\(614\) −6.83958 −0.276023
\(615\) 4.15262 0.167450
\(616\) −28.7413 −1.15802
\(617\) −12.1685 −0.489884 −0.244942 0.969538i \(-0.578769\pi\)
−0.244942 + 0.969538i \(0.578769\pi\)
\(618\) −15.9289 −0.640753
\(619\) −10.4945 −0.421809 −0.210905 0.977507i \(-0.567641\pi\)
−0.210905 + 0.977507i \(0.567641\pi\)
\(620\) −3.18722 −0.128002
\(621\) 0 0
\(622\) −3.59483 −0.144140
\(623\) −31.0975 −1.24590
\(624\) 27.9821 1.12018
\(625\) 1.00000 0.0400000
\(626\) −40.0642 −1.60129
\(627\) −21.5648 −0.861217
\(628\) −10.5564 −0.421248
\(629\) 16.9797 0.677023
\(630\) 5.03655 0.200661
\(631\) −19.0188 −0.757127 −0.378563 0.925575i \(-0.623582\pi\)
−0.378563 + 0.925575i \(0.623582\pi\)
\(632\) −22.2243 −0.884035
\(633\) 14.5644 0.578882
\(634\) 46.0728 1.82978
\(635\) −9.47983 −0.376195
\(636\) −2.36209 −0.0936628
\(637\) 17.1868 0.680965
\(638\) 41.1304 1.62837
\(639\) −7.43010 −0.293930
\(640\) −13.6554 −0.539779
\(641\) −7.40097 −0.292321 −0.146160 0.989261i \(-0.546692\pi\)
−0.146160 + 0.989261i \(0.546692\pi\)
\(642\) −15.3710 −0.606645
\(643\) 32.3734 1.27668 0.638341 0.769754i \(-0.279621\pi\)
0.638341 + 0.769754i \(0.279621\pi\)
\(644\) 0 0
\(645\) −3.97479 −0.156507
\(646\) 34.6444 1.36307
\(647\) 12.6224 0.496238 0.248119 0.968730i \(-0.420188\pi\)
0.248119 + 0.968730i \(0.420188\pi\)
\(648\) −2.31518 −0.0909489
\(649\) 54.6328 2.14452
\(650\) 9.31399 0.365325
\(651\) 18.2682 0.715987
\(652\) 6.91768 0.270917
\(653\) −44.9565 −1.75928 −0.879641 0.475638i \(-0.842217\pi\)
−0.879641 + 0.475638i \(0.842217\pi\)
\(654\) −10.1155 −0.395548
\(655\) −10.5647 −0.412795
\(656\) −19.9231 −0.777867
\(657\) 4.84630 0.189072
\(658\) 57.6373 2.24693
\(659\) −42.1042 −1.64015 −0.820073 0.572259i \(-0.806067\pi\)
−0.820073 + 0.572259i \(0.806067\pi\)
\(660\) −2.16590 −0.0843075
\(661\) 3.69643 0.143775 0.0718873 0.997413i \(-0.477098\pi\)
0.0718873 + 0.997413i \(0.477098\pi\)
\(662\) −47.7830 −1.85714
\(663\) 23.0951 0.896939
\(664\) 19.4618 0.755263
\(665\) −17.2786 −0.670035
\(666\) −6.84770 −0.265343
\(667\) 0 0
\(668\) −7.78477 −0.301202
\(669\) 1.77197 0.0685084
\(670\) 16.4218 0.634429
\(671\) 9.38610 0.362346
\(672\) −9.56047 −0.368803
\(673\) −9.13570 −0.352155 −0.176078 0.984376i \(-0.556341\pi\)
−0.176078 + 0.984376i \(0.556341\pi\)
\(674\) −40.6504 −1.56580
\(675\) −1.00000 −0.0384900
\(676\) 11.5643 0.444779
\(677\) 8.76436 0.336842 0.168421 0.985715i \(-0.446133\pi\)
0.168421 + 0.985715i \(0.446133\pi\)
\(678\) −2.24078 −0.0860566
\(679\) −48.3630 −1.85600
\(680\) −9.16770 −0.351565
\(681\) −1.00635 −0.0385634
\(682\) −36.4104 −1.39422
\(683\) −21.2139 −0.811729 −0.405865 0.913933i \(-0.633030\pi\)
−0.405865 + 0.913933i \(0.633030\pi\)
\(684\) −3.01457 −0.115265
\(685\) −15.2769 −0.583699
\(686\) 20.4141 0.779416
\(687\) −19.6059 −0.748011
\(688\) 19.0699 0.727035
\(689\) 25.0370 0.953833
\(690\) 0 0
\(691\) −37.0421 −1.40915 −0.704575 0.709630i \(-0.748862\pi\)
−0.704575 + 0.709630i \(0.748862\pi\)
\(692\) −7.72086 −0.293503
\(693\) 12.4143 0.471579
\(694\) −20.6871 −0.785271
\(695\) 14.5570 0.552180
\(696\) −15.1488 −0.574213
\(697\) −16.4436 −0.622847
\(698\) 3.97264 0.150367
\(699\) −5.02512 −0.190067
\(700\) −1.73540 −0.0655920
\(701\) 20.7680 0.784398 0.392199 0.919880i \(-0.371714\pi\)
0.392199 + 0.919880i \(0.371714\pi\)
\(702\) −9.31399 −0.351534
\(703\) 23.4920 0.886018
\(704\) −18.7148 −0.705342
\(705\) −11.4438 −0.430999
\(706\) 40.8512 1.53745
\(707\) −31.7393 −1.19368
\(708\) 7.63716 0.287022
\(709\) −27.2373 −1.02292 −0.511459 0.859308i \(-0.670895\pi\)
−0.511459 + 0.859308i \(0.670895\pi\)
\(710\) 11.8655 0.445304
\(711\) 9.59938 0.360005
\(712\) −22.8281 −0.855518
\(713\) 0 0
\(714\) −19.9438 −0.746378
\(715\) 22.9575 0.858561
\(716\) 3.20980 0.119956
\(717\) −19.4577 −0.726663
\(718\) −14.0680 −0.525011
\(719\) 7.61232 0.283892 0.141946 0.989874i \(-0.454664\pi\)
0.141946 + 0.989874i \(0.454664\pi\)
\(720\) 4.79772 0.178801
\(721\) −31.4583 −1.17157
\(722\) 17.5899 0.654626
\(723\) 17.6543 0.656570
\(724\) 3.74849 0.139312
\(725\) −6.54323 −0.243010
\(726\) −7.17646 −0.266343
\(727\) 34.4174 1.27647 0.638236 0.769841i \(-0.279664\pi\)
0.638236 + 0.769841i \(0.279664\pi\)
\(728\) 42.5864 1.57836
\(729\) 1.00000 0.0370370
\(730\) −7.73930 −0.286444
\(731\) 15.7395 0.582145
\(732\) 1.31209 0.0484963
\(733\) 35.7553 1.32065 0.660327 0.750978i \(-0.270418\pi\)
0.660327 + 0.750978i \(0.270418\pi\)
\(734\) 34.4196 1.27045
\(735\) 2.94680 0.108694
\(736\) 0 0
\(737\) 40.4771 1.49099
\(738\) 6.63153 0.244110
\(739\) 10.4981 0.386178 0.193089 0.981181i \(-0.438149\pi\)
0.193089 + 0.981181i \(0.438149\pi\)
\(740\) 2.35946 0.0867353
\(741\) 31.9530 1.17382
\(742\) −21.6207 −0.793722
\(743\) 41.5766 1.52530 0.762649 0.646813i \(-0.223898\pi\)
0.762649 + 0.646813i \(0.223898\pi\)
\(744\) 13.4103 0.491646
\(745\) 5.81663 0.213105
\(746\) 33.8242 1.23839
\(747\) −8.40615 −0.307565
\(748\) 8.57657 0.313590
\(749\) −30.3565 −1.10920
\(750\) 1.59695 0.0583124
\(751\) −41.5376 −1.51573 −0.757864 0.652413i \(-0.773757\pi\)
−0.757864 + 0.652413i \(0.773757\pi\)
\(752\) 54.9042 2.00215
\(753\) 13.8869 0.506067
\(754\) −60.9436 −2.21943
\(755\) −21.0786 −0.767129
\(756\) 1.73540 0.0631159
\(757\) 40.1294 1.45853 0.729263 0.684233i \(-0.239863\pi\)
0.729263 + 0.684233i \(0.239863\pi\)
\(758\) −28.8031 −1.04618
\(759\) 0 0
\(760\) −12.6839 −0.460092
\(761\) 20.1074 0.728894 0.364447 0.931224i \(-0.381258\pi\)
0.364447 + 0.931224i \(0.381258\pi\)
\(762\) −15.1388 −0.548421
\(763\) −19.9774 −0.723229
\(764\) −4.12950 −0.149400
\(765\) 3.95982 0.143168
\(766\) 11.0550 0.399434
\(767\) −80.9502 −2.92294
\(768\) −12.2980 −0.443767
\(769\) −28.1820 −1.01627 −0.508134 0.861278i \(-0.669665\pi\)
−0.508134 + 0.861278i \(0.669665\pi\)
\(770\) −19.8250 −0.714442
\(771\) 16.6861 0.600934
\(772\) 6.07994 0.218822
\(773\) 39.5086 1.42102 0.710512 0.703685i \(-0.248463\pi\)
0.710512 + 0.703685i \(0.248463\pi\)
\(774\) −6.34754 −0.228158
\(775\) 5.79234 0.208067
\(776\) −35.5023 −1.27446
\(777\) −13.5237 −0.485160
\(778\) −0.546320 −0.0195865
\(779\) −22.7504 −0.815117
\(780\) 3.20924 0.114909
\(781\) 29.2465 1.04652
\(782\) 0 0
\(783\) 6.54323 0.233836
\(784\) −14.1379 −0.504925
\(785\) 19.1849 0.684738
\(786\) −16.8712 −0.601777
\(787\) 47.5964 1.69663 0.848315 0.529492i \(-0.177617\pi\)
0.848315 + 0.529492i \(0.177617\pi\)
\(788\) −6.36303 −0.226674
\(789\) −4.26366 −0.151790
\(790\) −15.3297 −0.545407
\(791\) −4.42537 −0.157348
\(792\) 9.11307 0.323819
\(793\) −13.9075 −0.493871
\(794\) 0.660835 0.0234521
\(795\) 4.29277 0.152249
\(796\) 12.0260 0.426251
\(797\) 8.72578 0.309083 0.154542 0.987986i \(-0.450610\pi\)
0.154542 + 0.987986i \(0.450610\pi\)
\(798\) −27.5930 −0.976783
\(799\) 45.3154 1.60314
\(800\) −3.03136 −0.107175
\(801\) 9.86016 0.348392
\(802\) 42.0492 1.48481
\(803\) −19.0761 −0.673182
\(804\) 5.65832 0.199554
\(805\) 0 0
\(806\) 53.9498 1.90030
\(807\) 21.2982 0.749733
\(808\) −23.2992 −0.819663
\(809\) −26.6379 −0.936539 −0.468270 0.883586i \(-0.655122\pi\)
−0.468270 + 0.883586i \(0.655122\pi\)
\(810\) −1.59695 −0.0561111
\(811\) 1.27595 0.0448047 0.0224023 0.999749i \(-0.492869\pi\)
0.0224023 + 0.999749i \(0.492869\pi\)
\(812\) 11.3551 0.398487
\(813\) −7.03244 −0.246639
\(814\) 26.9541 0.944740
\(815\) −12.5719 −0.440376
\(816\) −18.9981 −0.665067
\(817\) 21.7761 0.761851
\(818\) −24.3161 −0.850193
\(819\) −18.3944 −0.642753
\(820\) −2.28497 −0.0797946
\(821\) −2.15620 −0.0752520 −0.0376260 0.999292i \(-0.511980\pi\)
−0.0376260 + 0.999292i \(0.511980\pi\)
\(822\) −24.3964 −0.850922
\(823\) 26.6507 0.928984 0.464492 0.885577i \(-0.346237\pi\)
0.464492 + 0.885577i \(0.346237\pi\)
\(824\) −23.0929 −0.804480
\(825\) 3.93622 0.137042
\(826\) 69.9047 2.43229
\(827\) −33.2235 −1.15529 −0.577647 0.816287i \(-0.696029\pi\)
−0.577647 + 0.816287i \(0.696029\pi\)
\(828\) 0 0
\(829\) 11.5696 0.401828 0.200914 0.979609i \(-0.435609\pi\)
0.200914 + 0.979609i \(0.435609\pi\)
\(830\) 13.4242 0.465961
\(831\) −22.4016 −0.777104
\(832\) 27.7301 0.961367
\(833\) −11.6688 −0.404299
\(834\) 23.2468 0.804973
\(835\) 14.1477 0.489603
\(836\) 11.8660 0.410395
\(837\) −5.79234 −0.200213
\(838\) −40.2930 −1.39190
\(839\) −6.76579 −0.233581 −0.116791 0.993157i \(-0.537261\pi\)
−0.116791 + 0.993157i \(0.537261\pi\)
\(840\) 7.30174 0.251934
\(841\) 13.8139 0.476341
\(842\) −3.71266 −0.127947
\(843\) −0.667600 −0.0229934
\(844\) −8.01401 −0.275854
\(845\) −21.0164 −0.722988
\(846\) −18.2752 −0.628314
\(847\) −14.1730 −0.486988
\(848\) −20.5955 −0.707253
\(849\) 8.38815 0.287881
\(850\) −6.32363 −0.216899
\(851\) 0 0
\(852\) 4.08840 0.140066
\(853\) 11.5961 0.397044 0.198522 0.980096i \(-0.436386\pi\)
0.198522 + 0.980096i \(0.436386\pi\)
\(854\) 12.0099 0.410969
\(855\) 5.47856 0.187363
\(856\) −22.2841 −0.761656
\(857\) 23.3136 0.796376 0.398188 0.917304i \(-0.369639\pi\)
0.398188 + 0.917304i \(0.369639\pi\)
\(858\) 36.6619 1.25162
\(859\) −39.6318 −1.35222 −0.676110 0.736800i \(-0.736336\pi\)
−0.676110 + 0.736800i \(0.736336\pi\)
\(860\) 2.18712 0.0745802
\(861\) 13.0968 0.446336
\(862\) 17.8687 0.608611
\(863\) 8.89344 0.302736 0.151368 0.988477i \(-0.451632\pi\)
0.151368 + 0.988477i \(0.451632\pi\)
\(864\) 3.03136 0.103129
\(865\) 14.0316 0.477089
\(866\) −10.6068 −0.360434
\(867\) 1.31983 0.0448237
\(868\) −10.0520 −0.341188
\(869\) −37.7853 −1.28178
\(870\) −10.4492 −0.354262
\(871\) −59.9755 −2.03219
\(872\) −14.6650 −0.496619
\(873\) 15.3346 0.518997
\(874\) 0 0
\(875\) 3.15385 0.106620
\(876\) −2.66667 −0.0900983
\(877\) −22.5934 −0.762926 −0.381463 0.924384i \(-0.624580\pi\)
−0.381463 + 0.924384i \(0.624580\pi\)
\(878\) 55.7806 1.88250
\(879\) 10.5955 0.357379
\(880\) −18.8849 −0.636610
\(881\) 13.4061 0.451664 0.225832 0.974166i \(-0.427490\pi\)
0.225832 + 0.974166i \(0.427490\pi\)
\(882\) 4.70588 0.158455
\(883\) 46.7697 1.57392 0.786962 0.617001i \(-0.211653\pi\)
0.786962 + 0.617001i \(0.211653\pi\)
\(884\) −12.7080 −0.427417
\(885\) −13.8795 −0.466554
\(886\) 25.4260 0.854205
\(887\) −12.0307 −0.403952 −0.201976 0.979390i \(-0.564736\pi\)
−0.201976 + 0.979390i \(0.564736\pi\)
\(888\) −9.92747 −0.333144
\(889\) −29.8980 −1.00275
\(890\) −15.7462 −0.527813
\(891\) −3.93622 −0.131868
\(892\) −0.975025 −0.0326462
\(893\) 62.6956 2.09803
\(894\) 9.28887 0.310666
\(895\) −5.83338 −0.194988
\(896\) −43.0673 −1.43878
\(897\) 0 0
\(898\) −8.64806 −0.288590
\(899\) −37.9006 −1.26406
\(900\) 0.550248 0.0183416
\(901\) −16.9986 −0.566305
\(902\) −26.1032 −0.869140
\(903\) −12.5359 −0.417169
\(904\) −3.24858 −0.108046
\(905\) −6.81237 −0.226451
\(906\) −33.6615 −1.11833
\(907\) −8.13587 −0.270147 −0.135074 0.990836i \(-0.543127\pi\)
−0.135074 + 0.990836i \(0.543127\pi\)
\(908\) 0.553742 0.0183766
\(909\) 10.0637 0.333790
\(910\) 29.3750 0.973770
\(911\) 22.6745 0.751241 0.375620 0.926774i \(-0.377430\pi\)
0.375620 + 0.926774i \(0.377430\pi\)
\(912\) −26.2846 −0.870371
\(913\) 33.0885 1.09507
\(914\) 32.8858 1.08777
\(915\) −2.38454 −0.0788306
\(916\) 10.7881 0.356449
\(917\) −33.3194 −1.10030
\(918\) 6.32363 0.208711
\(919\) 45.8160 1.51133 0.755665 0.654959i \(-0.227314\pi\)
0.755665 + 0.654959i \(0.227314\pi\)
\(920\) 0 0
\(921\) 4.28290 0.141126
\(922\) 7.28653 0.239969
\(923\) −43.3350 −1.42639
\(924\) −6.83093 −0.224721
\(925\) −4.28799 −0.140988
\(926\) −28.4630 −0.935351
\(927\) 9.97456 0.327608
\(928\) 19.8349 0.651112
\(929\) 17.4908 0.573853 0.286927 0.957953i \(-0.407366\pi\)
0.286927 + 0.957953i \(0.407366\pi\)
\(930\) 9.25007 0.303322
\(931\) −16.1442 −0.529105
\(932\) 2.76506 0.0905726
\(933\) 2.25106 0.0736964
\(934\) 6.85353 0.224254
\(935\) −15.5867 −0.509741
\(936\) −13.5030 −0.441358
\(937\) −7.07166 −0.231021 −0.115511 0.993306i \(-0.536850\pi\)
−0.115511 + 0.993306i \(0.536850\pi\)
\(938\) 51.7920 1.69107
\(939\) 25.0880 0.818715
\(940\) 6.29693 0.205383
\(941\) −30.7731 −1.00317 −0.501587 0.865107i \(-0.667250\pi\)
−0.501587 + 0.865107i \(0.667250\pi\)
\(942\) 30.6373 0.998217
\(943\) 0 0
\(944\) 66.5899 2.16732
\(945\) −3.15385 −0.102595
\(946\) 24.9853 0.812343
\(947\) 7.09429 0.230533 0.115267 0.993335i \(-0.463228\pi\)
0.115267 + 0.993335i \(0.463228\pi\)
\(948\) −5.28204 −0.171553
\(949\) 28.2654 0.917533
\(950\) −8.74899 −0.283855
\(951\) −28.8505 −0.935541
\(952\) −28.9136 −0.937095
\(953\) −54.9854 −1.78115 −0.890576 0.454834i \(-0.849698\pi\)
−0.890576 + 0.454834i \(0.849698\pi\)
\(954\) 6.85533 0.221950
\(955\) 7.50481 0.242850
\(956\) 10.7066 0.346276
\(957\) −25.7556 −0.832561
\(958\) 12.2361 0.395330
\(959\) −48.1810 −1.55585
\(960\) 4.75452 0.153451
\(961\) 2.55119 0.0822965
\(962\) −39.9383 −1.28766
\(963\) 9.62522 0.310168
\(964\) −9.71423 −0.312874
\(965\) −11.0495 −0.355695
\(966\) 0 0
\(967\) 25.6631 0.825268 0.412634 0.910897i \(-0.364609\pi\)
0.412634 + 0.910897i \(0.364609\pi\)
\(968\) −10.4041 −0.334400
\(969\) −21.6941 −0.696916
\(970\) −24.4886 −0.786280
\(971\) 25.2325 0.809751 0.404875 0.914372i \(-0.367315\pi\)
0.404875 + 0.914372i \(0.367315\pi\)
\(972\) −0.550248 −0.0176492
\(973\) 45.9108 1.47183
\(974\) −51.1799 −1.63991
\(975\) −5.83236 −0.186785
\(976\) 11.4404 0.366198
\(977\) −30.7209 −0.982848 −0.491424 0.870921i \(-0.663523\pi\)
−0.491424 + 0.870921i \(0.663523\pi\)
\(978\) −20.0767 −0.641983
\(979\) −38.8118 −1.24043
\(980\) −1.62147 −0.0517959
\(981\) 6.33427 0.202238
\(982\) 44.3165 1.41420
\(983\) −24.5765 −0.783868 −0.391934 0.919993i \(-0.628194\pi\)
−0.391934 + 0.919993i \(0.628194\pi\)
\(984\) 9.61407 0.306485
\(985\) 11.5639 0.368458
\(986\) 41.3770 1.31771
\(987\) −36.0921 −1.14882
\(988\) −17.5821 −0.559360
\(989\) 0 0
\(990\) 6.28595 0.199781
\(991\) 32.8497 1.04351 0.521753 0.853096i \(-0.325278\pi\)
0.521753 + 0.853096i \(0.325278\pi\)
\(992\) −17.5587 −0.557488
\(993\) 29.9214 0.949528
\(994\) 37.4221 1.18696
\(995\) −21.8556 −0.692871
\(996\) 4.62547 0.146564
\(997\) 29.1053 0.921774 0.460887 0.887459i \(-0.347531\pi\)
0.460887 + 0.887459i \(0.347531\pi\)
\(998\) −11.7173 −0.370903
\(999\) 4.28799 0.135666
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bt.1.19 25
23.11 odd 22 345.2.m.d.121.4 50
23.21 odd 22 345.2.m.d.211.4 yes 50
23.22 odd 2 7935.2.a.bu.1.19 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.d.121.4 50 23.11 odd 22
345.2.m.d.211.4 yes 50 23.21 odd 22
7935.2.a.bt.1.19 25 1.1 even 1 trivial
7935.2.a.bu.1.19 25 23.22 odd 2